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This paper explores some uses of model theory in classical problems of group
algebras. Some apparently new results are obtained, especially bearing on the
von Neumann finiteness condition xy yx 1. We begin with a brief
discussion of basic model-theoretic methods.
One of the most fundamental theorems of mathematical logic is the complete-

ness theorem for first-order logic (originally due to Godel). It has various appli-
cations to algebra, via the concept of a model. We shall develop here some
necessary terminology in abbreviated form (for a thorough exposition, see
Mendelson [1-1). A first-order theory is a structure consisting of a (first-order)
language, axioms, and rules (for constructing proofs). Typically, the rules are
fixed, and the language and axioms are varied to suit one’s purposes. A model
M of a theory T is another structure containing objects corresponding to various
of the symbols of the language of T, such that the axioms of T are true when
interpreted via this correspondence. Thus, any group can be regarded as a
model of the theory whose axioms are the usual group axioms as well as the
customary axioms of logic and equality.
Now, the completeness theorem can be stated in several ways. Given a

(first-order) theory T:
,1) If a sentence s of the language of T is true in all models of T, then s is a

theorem of T.
(2) If T is consistent (i.e., no logical contradiction is provable in T) then T

has a model.
(3) If every finite subtheory of T (i.e., one using only finitely many of T’s

axioms) has a model, then so does T.
Usually the third version is the one most readily applicable here, and in this

form has its own special name" the compactness theorem for first-order logic.
One must exercise caution in. using this result. The theory must be specified
carefully, and one should know something about its possible models. A typical
example is the following.

Let stand for the theory whose language includes the symbols /,., 0, and
1, as well as the usual logical symbols , A, V, V, 3, ,-, variables, and paren-
theses and =, and whose axioms, in addition to the standard ones of first-order
logic with equality, include the field axioms, i.e.,

VxVy(x + y y + x), VxVy(x’y y’x),

etc. Any model of is necessarily a field (if elements related by "=" are
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identified) and conversely every field can be seen as a model of . Thus the
theorems of , by the completeness theorem, are precisely the sentences of
which hold in all fields. Now if we add to the axiom 1 + + 1 0 (where
in the sum appears p times, p a prime), this new theory , is the theory of
fields of characteristic p (its models are precisely those fields). Since it is trivial
to construct finite fields of characteristic p, indeed of arbitrarily large order, it
follows that we have models not only of , but of the theory

{x...x (~x x2 A ~x x A... A ~x_ xD},

namely any fields of characteristic p and order at least k for arbitrary fixed k.
We immediately conclude that there exist infinite fields of characteristic p, since
we have just seen that every finite subtheory of the theory

{c} {c} ".

has a model, where c is the axiom added to above, for k 2, 3,..., and
so the entire theory has a model which of course must be a field of characteristic
p and with infinitely many elements. This obviously is not a new result, nor even
an original application of our method; it is solely to show the kind of argument
that will be used below.

Now we turn to group algebras. First we construct an appropriate theory.
We want to include the axioms of above, but only for field elements, so we
introduce the symbol F into the language, that we will use by writing F(x) to
mean x is in the field of the group algebra in question. Similarly G(x) will mean
x is in the group of the group algebra. Thus, we want all the axioms of but
modified so as to apply to field elements,

VxVy (F(x) A F(y)- x + y y + x),

etc., as well as the closure rules

F(x) A F(y) (F(x + y) A t(x. y)).

Similarly, for group axioms we use the normal ones restricted to group
elements, e.g.,

G(1) A Vy (G(y) - y. 1.y y),

and also the closure rule G(x) A G(y) --, G(x. y).
Let us call the theory whose language then is that of together with the

symbols F and G, and whose axioms are the above field and group axioms,
TGA (tentative theory of group algebras). Since + and are symbols of the
language, the usual formal sums found in group algebras will appear in sen-
tences, e.g., the sumfa "gl + f2"ff2 + + f,’g,. We would like, if possible,
to include axioms that require there to be no elements (of models) that are not
of this form. This would help a great deal to insure that all models are group
algebras. However various practical and theoretical difficulties stand in the
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way, and indeed we will show there is no genuine first-order theory of group
algebras (i.e., one whose models are precisely the group algebras); a main
stumbling block is the need to express the fact that we want finite formal sums,
which presupposes a satisfactory formalization of arithmetic.

Nevertheless we can include the very important axiom that finite sums are
formal in the sense that they are to be considered equal only when formally
identical; this actually requires infinitely many axioms given as follows, for
each k 1, 2, 3,...

[F(f) A... A F(f) A F(Ya) A... A F(fk)
A G(g,) A A G(gk) A G(t) A"" A G(tk)

A "gl g2 A "gl if3 A’’" A ’ffk-1 gk

h "9 9z h "9 ’93 h’" h "’9-
[fx’g, +"" + fk’gk fa’ox +’’" + fk" lk

il, ik

where the disjunction is over all permutations (il,..., ik) of the integers
1, 2,..., k.

Finally, we need the product rule for formal sums, and the general associative
(for /) and distributive laws:

F(fx) A F(f2) A G(gl) A G(gz) (f ga) (.f g2) (fx f2) (gx gz)

VxVyVzE(x + (y + z)) ((x +y) + z)]

Vx Vy’qz ((y + z).x (y.x) + (z.x) A x. (y + z) (x.y) + (x.z)).

There is some redundancy with earlier axioms, but this is unimportant.
We shall then take TGA augmented by these further axioms to be our basic

theory 9.1 for our study of group algebras, even though as already observed
whereas every group algebra can be seen as a model of ffi, not every model of
ffigl is necessarily a group algebra.
We now turn to the yon Neumann finiteness condition, xy --. yx 1,

i.e., inverses commute. It is a long-standing conjecture that this condition holds
in all group algebras, where x and y are arbitrary formal sums. This is already
known to be true when the field is of characteristic 0 (due to Kaplansky; see
Passman [2, p. 98]); however all proofs of this to date have relied on analytic
methods, relating the field to the complex numbers and utilizing properties of
operators. Our first result here will show that, in a well-defined sense, algebraic
proofs of this must exist.

DEFINITION. Let (59.Io be ffig.l w {,-, 1 + 1 0} w {, 1 + + 1 0} w...
where all sums of 1 a prime number oftimes appear, so that in the new theory all
finite (i.e., positive) characteristics are ruled out.



GROUP ALGEBRAS AND MODEL THEORY 301

LEMMA. Let n be apositive inteyer. Then the sentence V.,

[(F(f,) A... A F(f) A F(f,) A... A F(fn)
A G(g) A... A G(g,) A G() A A G(,)
A (f, .g, + + f.g). (f,.., +... + f,.) 1]

(f,. + + f,.,).(f.g +... + f.g,) 1,

is a theorem of (5o, i.e., there is a proof entirely in the language of ff.lo, and
using only its axioms and rules, of thefact thatformal sum inverses of length < n
commute.

Proof We will show that the sentence V. above holds in all models of 15o,

which will suffice. Let M be a model of 92o. Then M contains a group G*
corresponding to the symbol G and a field F* of characteristic 0 corresponding
to the symbol F, and M thus contains the group algebra F*(G*). But the sen-
tence when interpreted in M refers only to formal sums arising from F* and G*,
i.e., refers only to F*(G*). Indeed V, refers only to sums of length _< n. And
now Kaplansky’s result for characteristic 0 tells us that formal sum inverses (of
any finite length, i.e., any elements of F*(G*)) commute, so that V, is true in M.
This completes the proof.

One might think that since the above argument works for all n, that we could
instead simply apply it directly to the statement xy yx 1. However
this would no longer necessarily refer, in a model, to formal sums, and so
Kaplansky’s work would not apply; and to refer to formal sums we must take
them one length at a time, unless we alter our formalism to include reference to
finiteness which is very troublesome. Still, we see in the above proof that every
model of (fig.lo contains a group algebra.

It is then not necessarily accurate to say that the von Neumann condition is
provable in 6i9o. That is, quite different proofs may be needed for the cases,
say, of length L < 12 and of L _< 1,039; to be sure, the latter would include
the former, but neither may do for L < 1,040, etc. At this time, to my knowl-
edge, no one has actually discovered such proofs in 6i9o, for any lengths except
in the extremely simple cases of n or n 2 where in fact the characteristic
is not important at all.

THEOREM. Let n be a positive integer. Then there is a prime p p(n) such
that for any fieM F of characteristic >_ p andfor any group G the yon Neumann
finiteness condition holds for allformal sums of length < n in the group algebra
F(G).

Proof. The earlier sentence V,, being a theorem of ffio, must have a proof
in (fio, which can use only finitely many axioms of (fifo, by the very meaning
of proof in a formal theory, and hence V, must be a theorem of

9.I {.1 + 1 0} w {,1 + + 0} w...w {.-,1 +...+ 1 ---0}
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where the last sum has I appearing, say, q times for some prime q. But then if F
has characteristic p > q and G is any group, F(G) will be a model of this theory
and so its theorem l/n will be true in F(G).

Clearly, in this case too there are algebraic proofs yet to be discovered, in
particular the formal proofs of l/n in the above theories for each n and asso-
ciated p. This is actually no different from the task of finding proofs in tSo,
of course. Unfortunately it is in general quite difficult to find proofs in formal
theories unless very similar informal proofs are already known, even though in
our case we have a very definite proof that such proofs (i.e., "algebraic") must
exist
The theorem suggests a function, p(n), where p(n) is the least prime such that

l is true in all group algebras of characteristic >_ p. We already know of course
that pl) p(2) 2. An immediate question is whether we can show p(n) to
be bounded, which if true would say that all group algebras of sufficiently high
characteristic are von Neumann finite; but this would appear to depend on a far
deeper knowledge of the proof structure of t59o than presently exists. Another
direction is to suppose that in general p(n) is increasing and thus one should
look for counterexamples using small characteristic and progressively longer
sums. In the simplest case, taking F (0, l) so that sums are merely sums of
group elements, for an arbitrary group G, already sums of length 3 become a
calculational displeasure, although I believe I have been able to show that after
all xy 1 - yx- 1 for this case. Others are invited to consider lengths
5, 7, 9, etc. (only odd lengths are possible candidates for this simplest of all
fields, as is easily seen) in a search for counterexamples. If p(n) has a genuine
dependence on n, one might conjecture that p(n) the least prime larger than
n, since a sum of n times might reasonably appear in a product of two formal
sums of length n, whereas it is more difficult to see how longer sums of l’s, and
hence higher characteristic, would be significant.

Concerning von Neumann finiteness, one further model-theoretic illustration,
although trivial, may be of interest: the above corollary immediately implies
that if G is finite then there is a p such that F(G) is von Neumann finite if F is
any field of characteristic _> p. This of course is well known (if G is finite F can
have any characteristic) but the usual argument relies on matrix representations
of F(G). In general the approach of models avoids deeper probing of the
algebraic structure itself but draws out latent information from the formal
aspects of given results.
These techniques are similarly applicable to certain other matters in group

algebras, such as zero-divisors which are briefly treated below. However when
the problems depend crucially on set-theoretic concepts (such as semisimplicity
which requires use of ideals) then the language must be expanded and the models
become correspondingly more intractable.
Our final application here concerns the conjecture that "G torsion-free

implies F(G) has no zero-divisors." This is readily seen to be equivalent to the
fol!owing assertion:
"For each fixed n, there cannot be zero-divisors of length _< n in group alge-
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bras of arbitrarily large torsion" where by the "torsion" of F(G) I mean the
least prime p such that G has an element of order p, if such exists, and 0 other-
wise. Or, equivalently, "for each n, there is a p(n) such that F(G) has no zero-
divisors of length < n if G has no elements of order < p other than the
identity." It follows that p(n) would have to be greater than n if these equivalent
statements are true, since it is known that zero-divisors of length n can be con-
structed in F(G) if G has an element of order n.
The above assertions of equivalence follow immediately from consideration

of the theory
ff[ w (G(x) A x --, x2 1) w"" w (G(x) A x - xk 1) w""
and the sentence that says there exist two nonzero sums of length no greater
than a fixed n, whose product is zero.

Unfortunately the nontrivial direction of the equivalence is one that sheds no
light on how one might try to prove the torsion-free conjecture. On the other
hand, it does suggest that one look for zero-divisors of bounded length in group
algebras of ever-greater torsion (recall the above definition) to try to disprove
the conjecture.

If F(G) has no zero-divisors then it is von Neumann finite, interestingly:
xy implies yx idempotent so yx(yx 1) 0. (Kaplansky’s proof shows
that e2 e and tr (e) implies e 1 in char 0. And we can thus say that
for every n there is a p such that L(e) < n, with e2 and tr (e) 1, implies
e in char >_p.)
Now, in a negative vein, we point out some limitations of these methods.

Returning first to von Neumann finiteness, we observe that in its general form
xy yx 1, it is not atheorem ofi92o. This is so since any ringR
containing the rationals Q is a model of 6J9o, where F Q and G is trivial.
But since we can always embed Q in Ro x Q R for any ring Ro with identity,
then von Neumann finiteness in models of 15o will in general fail.
Next we shall prove the aforementioned result that there is no first-order

theory T whose models are precisely the group algebras. The referee has pointed
out the following very simple proof: we add the axioms (to any supposed T as
above) that a fixed constant c is distinct from every finite sum of length n, for
each n 1, 2, Compactness gives immediately that this is consistent, yet
any model of this extension is not a group algebra due to the constant c, con-
tradicting the condition on T’s models.

However, we will also present a longer proof, which has an apparently wider
range of application to other cases than the above argument. Roughly, we shall
show that any theory T as above necessarily can be extended so that it contains
a complete characterization of a fixed infinite cardinal. But this will be seen to
contradict the following model-theoretic result:

THEOREM. Let T be a first-order theory whose language includes a predicate
symbol N. If T has a model in which the set of elements having the property
corresponding to N is of cardinality tc >_ No then V2 > x there is a model of T in
which the corresponding set N has cardinality 2.
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This theorem is an extension of Tarski’s Cardinality Theorem, and since its
proof is only a variation of that of the latter it will be omitted.
Now suppose T is a theory whose models are the group algebras, as above.

Extend T to T’ by adding the predicate symbols N and A and a function
symbol L, as well as the following axioms"

(1) F(f) A(f),

(2) (t) -, A(),

(3) A(x) A A(y) A(xy) A A(x + y),

(4) N(y)- x (A(x) A y L(x)),

and for all n 1, 2,...

(5) [-g =/= gz A... A ,,,_ = ,,, A f =/= 0 A... A f # 0]- L(fg + + fg) L(fO +"" + f)
Intuitively A(x) means x is an element of the algebra, and N(y) that y is an in-
teger giving the length L(x) of an algebra element x. Now clearly there are
models of T’ in which N corresponds to an infinite set N, namely any group
algebra F(G) where G is infinite and/ is the set of nonnegative integers. It
follows from the theorem above that there are models of T’ in which the
corresponding

_
is uncountable. Our conclusion can now be easily reached"

THEOREM. If T is a first-order theory whose language includes that of
then the models of T cannot be precisely the group algebras.

Proof. Suppose otherwise. Extend T to T’ as above. Any model of T’
now consists in part of a set

_
corresponding to A which is an actual group

algebra (by hypothesis), and in part of a set N each of whose elements is asso-
ciated (via L) with an element of N. But elements of A of the same length cor-
respond to the same element of N. Since there are only countably many lengths
in ,, N must be countable, a contradiction.

Since this argument relies on cardinality rather than a specific finitary pro-
perty, it can be similarly applied to uncountable structures or structures in
which infinite countable formal sums appear. In particular we easily can de-
termine that there is no theory whose models are precisely the group algebras
and certain natural analytic structures that come to mind as models of
namely "ultra" group algebras allowing countably infinite formal sums and
obeying the same finitary combinatorial rules but having a norm as well. The
norm can be used to introduce an unambiguous set of lengths as above. Numer-
ous variations on this theme are similarly handled. Thus not merely nonfinitely
expressible elements can occur in models of t59.10, but ones not even countably
expressible. Also, we get trivial proofs, for instance, that there are no theories
of precisely the, say, real vector spaces, nor those over any given field or fields
of bounded cardinality.
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It should be pointed out that with a different kind of formal language these
negative results need not hold. In particular in an infinitary language, one can
adequately characterize the integers and indeed successfully require that every
element of the algebra be a (finite) formal sum. This opens up possibilities for
further study and in fact infinitary model theory is an active subject; however it
also brings up new complications: for instance the compactness theorem is no
longer true in general in the nice form that we have used. The reader is referred
to I-3] for further information along these lines.
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