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1. Introduction and preliminaries

Very simple arguments can be combined with recent results of Summerhill
and Pedersen to improve the known bounds for the minimal number of open
n-cells required to cover an n-dimensional topological manifold. There are two
basic methods of proof, both of which depend on the notion of residual set, a
concept invented by Doyle and Hocking [1] to mean the complement of a
dense open n-cell in a closed topological manifold.
The terminology used in this report follows the usage in [-6], except where an

explicit reference is cited. In what follows, M denotes a closed topological
manifold of dimension n. Using the language of residual sets, the recent results
which were referred to above are the following:

SUMMERHILL’S THEOREM. Let 0 < k < n 3. If M is k-connected then
there is a strong Zk-1-set which is residual in M.

Actually, Summerhill proves the converse as well. For the proof, see [8];
for facts about Zm-sets, also see [7].

PEDERSEN’S THEOREM. Let 3 < k and 6 < n. If M is k-connected then there
is a polyhedron of dimension n- k locally tamely embedded in M which is
residual in M.

The proof is immediate from corollary 3 of [5] and the topological version of
the Tubular Neighborhood Theorem [2].

2. The de Morgan approach

The salient point of this method is the observation that M can be covered by r
dense open n-cells if and only ifM has r residual sets whose common intersection
is empty. (This is just de Morgan’s law. The reader might enjoy the easy exercise
of proving that the product of two spheres can always be covered by three
open cells, using this idea.) In order to apply this idea to the problem at hand,
we need another result of Summerhill [7], a less technical rendition of which is

GENERAL POSITION THEOREM. Let X and Y be "tame" closed subsets of
E" having dimensions p and q, respectively. Then arbitrarily close to the identity
there exists a self-homeomorphism h of E" such that X c h( Y) has dimension at

most p + q- n.
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The "tameness" referred to in the theorem is satisfied by a Zk-a-set in M or
by a locally tamely embedded polyhedron, so that this theorem applies to the
situations considered in the theorems of Summerhill and of Pedersen.

Restricting our attention to the former case, we note [7] that the dimension
of a Zk-a-set in M does not exceed n k 1; therefore such a set X can be
pushed off itself via a small homeomorphism h so that X c h(X) is a "tame"
set of dimension at most n 2k 2. An iteration of this procedure yields the
fact that r such residual sets in general position will have a common intersection
of dimension at most n rk r. Therefore, M can be covered by r dense
open n-cells if n- rk- r < 1, that is, if(n + 1)/(k + 1) < r. (This is
exactly the result proved by Luft [3].) A similar line of reasoning can be applied
to the situation of Pedersen’s theorem; the end product of both arguments
combined is"

THEOREM 1. Let M be k-connected. If 0 < k <_ n 3, then M can be
covered by ((n + 1)/(k + 1)) open n-cells. If 6 <_ n and 3 <_ k, then M can be
covered by ((n + 1)/k) open n-cells.

Here (x) denotes the least integer not smaller than x.

3. Engulfing the residual set

Perhaps the most naive way to use the idea of residual set to approach the
problem of cell coverings is to try to determine the number of cells necessary
to cover the residual set; the manifold itself can then certainly be covered with
one additional cell (the complement of the residual set). This is essentially
the technique used in [4], where it was shown that a sphere bundle over a
sphere can be covered by three cells whenever it admits a cross-section. Peder-
sen’s theorem permits the use of an antique engulfing trick in making the initial
determination for this method"

THEOREM 2. Suppose M has as residual set a polyhedron K of dimension
n k, locally tamely embedded in M. Then M can be covered by n k + 2
open n-cells.

Proof. Subdivide the finite simplicial complex which comprises K so finely
that each simplex is tamely embedded in M. It is an easy matter to enclose the
0-simplexes of K in a cell Co. Inductively, the points in the p-simplexes of K
which are in the complement of Co .w Cp_ lie in a finite union of mutually
disjoint cellular subsets of M, so they can all be enclosed in another cell Cp.
Thus K is seen to be covered by the n k + cells Cp.
As mentioned previously, situations which admit the application of this

theorem are provided by Pedersen’s theorem. However, a minute or two spent
with the inequalities involved will convince the reader that the estimates given
by Theorem 1 are always better than those given by Theorem 2. Nevertheless,
the situation of the latter theorem does provide a setting for the following
refinement"
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THEOREM 3. Suppose M has as residual set a polyhedron ]K[, the underlying
point set of a cell complex K with the interior of each cell locallyflatly embedded
in M. Then M can be covered by d + open n-cells, where d is the number of
distinct dimensions of the cells which comprise K.

Proof Because the interior of each p-cell D ofK is locally flatly embedded in
M, every closed p-cell contained in the interior of D is flatly embedded in M
(see [-6, p. 105]) and therefore is cellular in M. The proof now proceeds exactly
as does that of Theorem 2, enclosing the sets of cellular cells one dimension at a
time instead of doing the same for the sets of subsets of simplexes.

The improvement of the results given by Theorem 3 over those given by
Theorem 2 is rather dramatically illustrated by the example of quaternionic
projective n-space QP" of (real) dimension 4n. If it is recalled that QP"-1 is a
spine of QP", and hence is residual therein, it will be seen that QP" can be
covered by n + open 4n-cells according to Theorem 3; Theorem 2 merely
yields the possibility of covering this space with 4n 3 such cells.
The local tameness of the polyhedron given in Pedersen’s Theorem insures

that the structure of any cell complex given to it will satisfy the hypothesis of
Theorem 3, so that the latter theorem is always applicable when such a cell
structure is known.
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