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1. Introduction

Let {.} be a discrete-time Markov process with stationary transition prob-
abilities, and let # be the distributions of o- Let z be a randomized stopping
time, and let v be the distribution of . Then say that/ can be balayaged to v,
and write / - v, or / v(z) to indicate the stopping time that effects the
balayage. In this paper we consider the problem of giving an analytical ex-
pression for E[z-I when # --* v(z).

This problem has a well-known solution in the transient case. Let P be the
transition operator of the process, and define the potential operator G--
O=o pk. If #--* V(Z) then E[z] (l- v)G. This is the discrete-time
analogue of the case of Brownian motion in dimension three or higher. In the
Brownian motion case for dimension one or two the potential still exists as an
operator on differences of probability measures, and the same formula remains
valid. The discrete-time analogue of this situation would be a recurrent process
such that the potential exists and such that tP" 0 as n for all probability
measures t. For such a process the above formula is again valid, and we shall
not deal with this case further. A general discussion of potential theory for
recurrent processes is given in [9-1 and [11].

In the present paper we wish to consider processes which are strongly re-
current. It is assumed that tP" 2 as n c for all probability measures/,
where 2 is an invariant probability measure, and that the potential operator G
exists for differences of probability measures. It is then shown that/ v if
and only if the negative part of (/ v)G is of the form d2, that is, absolutely
continuous with respect to 2. Furthermore

ess sup I1 min {E[z] # - v(z)}.
Thus a supremum has replaced the integral which occurred in the transient case.

2. Balayage sequences

Let (S, ) be a measurable space and let {,, n 0, 1,...} be a
discrete-time Markov process with state space S, having stationary transition
probabilities p(x, A), where p is a Markov kernel on S x N. If/, is a measure
on N,/,P will as usual denote the measure

(2.1) #P(A) l(dx)p(x, A).
J
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Let r/be a random variable independent of and let. tr(o,... ,, r/), n 0, 1,2,

A stopping time relative to (o,) will be called a random&ed stoppin9 time.
Let # be the distribution of o. Let

(2.2) r,(A) P(, A,z > n) and

It is easy to show that

r[,(A) P(, e A, n)
for allAin,0_< n < oo.

(2.3) r,P for0 < n < oo,rn+ -I- rn+
(2.4) ro + r #.

Conversely, if r, and r, are sequences of nonnegative measures satisfying (2.3)
and (2.4), it is a straightforward matter to construct a randomized stopping time
such that (2.2) holds. (Cf. [10].)
We shall call a double sequence r (r,, r/,) satisfying (2.3) a balayage

sequence. For our purposes, we can work entirely with such sequences, rather
than with the stopping times that induce them. The initial measure of the
sequence is defined to be ro + r. The terminal measure of the sequence
is Y’,= o r. If # is the initial and v is the terminal measure of a balayage
sequence r, we shall write # --, v or # --. v(r), in accordance with the notation
of Section 1. We shall write Z=o rk(S) E[r], since this is E[z] for any z
which induces r.
The arguments in the rest of the paper can be readily visualized if one keeps

the following facts in mind: r, is the mass still in motion at time n (i.e., not yet
stopped), r is the mass that was in motion prior to time n but which has just
been stopped at time n. 2=o r is the total mass stopped at times up to and
including time n. Y’,= o r is the total mass stopped. 2,=o r + r, is all the
mass at time n (i.e., the distribution of ^,).
The balayage defined here, which uses an operator on measures (or L1-

functions) has been treated by several authors. See for example [2], [10], [13].

3. The filling scheme

Let # and v be two given nonnegative measures. We shall define a special
balayage sequence (f) using/ and v, called the filling scheme. The filling scheme
was defined in i-5] and has been studied in various contexts. (Cf. [1], [10], [13].)
# will be the initial measure off. v will not necessarily be the terminal measure

but will dominate the terminal measure. We think of/ as dirt, and v as a hole,
and try to fill the hole with the initial measure, using P as a "shovel". We stop
as much mass as possible at each time. Definef (f,, f,) by

(3.1) f / A v,

(3.2) f’,+, =f,, A (v- k=0 f’)"
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Clearly

(3.3) f.A (V k=O f)=0 for all n.

We now prove two results which show the special nature of the filling scheme.
We shall not use the fact that P is mass-preserving, only that P is a positive
contraction.

(3.4) LEMMA. Letfand r be balayaye sequences with f + f ro + r/) !,
and let =o r. Suppose that

(3.5) f, A (- k=Of)<O foralln.

Then

(3.6) fk <-- rk foralln.
k=O k=0

Proof. fo A (r0 f) < O, so / A r <f, orr6 <f6. Thusro >fo, so
(3.6) holds for n 0.

Suppose that (3.6) holds for some n. We shall prove it for n + 1.
Choose some reference measure with respect to which all measures involved

are absolutely continuous. We shall denote a measure and its density by the
same letter. All equations are to hold almost everywhere. (The use of densities
seems to make the argument clearer, but could easily be avoided.

Consider a point x in S. There are two possible cases"

Case 1. (x) ,+fk’(X) > 0. Then fk(X) 0 for k 0,...,n + 1.
Hence (2.10) holds trivially at x.

Case 2. k(x) Y’.’+ f[,(x) < O. Then by (2.3) and (2.10),
n+l n+l

E fk(X) p(X) + fkP(X) ., f[,(X)
k=O k=O k=0

<_ p(x) + rkP(X) (x)
k=O

n+l

<_
k=O

Thus (3.6) holds for n + 1, so the lemma is proved.

Remark. If we exchange primed and unprimed terms in the hypothesis of
Lemma (3.4), then (3.6) holds with the inequality reversed. The proof is almost
identical to that given above. Results of this sort are stated in [6-1, apparently
with a different method of proof.
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(3.7) LEMMA. Letfand r be balaya#e sequences withfo + J’ ro + r p,
such that (3.6) holds. Let a. ,=o f(S) and let b ,=o r(S). Then

(3.8) ak > bk for alln.
k=O k=0

Proof. We note that (S’) P(S) >_ 0 for any nonnegative measure y.
Hence if Yl >- Y2, then 1(S) ylP(S) >_ y2(S) y2P(S).

n--1

a, p(S) + (fkP(S) fk(S)) f,(S) by (2.3),
k=O

n-1

>_ I(S) + (rkP(S) rk(S)) f(S) by (3.6),
k=0

b -f(S) + r,(S).

Summing and applying (3.6) once more, the lemma is proved.
In order to apply these lemmas to the filling scheme, let # and v be given, and

let f be the filling scheme for p and v. Let r be any other balayage sequence
such that p - v(r). It follows from (3.3) and Lemma (3.4) that (3.6) holds.
Hence by Lemma (3.7), (3.8) holds. Since # v(r), b, v(S) as n oz, in
the notation of Lemma (3.7). Since a, <_ v(S) and (3.8) holds, it must also be
true that a, v(S) as n c. Thus p - v(f). This result is stated in [10] as
a consequence of the theorems of [13].

Equation (2.10) implies the further fact that E[U] < E[r].

To summarize" If# can be balayaged to v in any way then # can be balayaged
to v usin9 the filling scheme. Furthermore the fillin9 scheme stoppin9 time has
minimal expectation.

Various authors have studied the problem of determining when one measure
can be balayaged to another, especially in the case of Brownian motion. (Cf.
[14], [7], [13].)

4. The main result

We now restrict our attention to a class of "highly recurrent" processes. We
shall assume that there exists an invariant probability measure 2. Let N denote
the space of bounded signed measures on with (S) O. We assume that
for each in N, (I + P +... + P) converges in total variation norm as
n . We define the operator G on N by

(4.1) yG= pk.
k=O

By the uniform boundedness principle G is a bounded linear operator on N,
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with respect to total variation norm. We extend G to a bounded linear operator
on the space of all bounded signed measures y on by setting

(4.2) yG ( y(S)2)G.

We define the "Laplacian", A, as usual:

(4.3) A P- 1.

Let A be defined by

(4.4) ),A (S)2.

(4.5) LEMMA. AG I + A.

The proof is immediate.
Operators like G, and more general operators, are studied systematically in

[8] and [9]. G is also the discrete-time analogue of the Green operator defined
in [-3] for diffusions on compact manifolds.
A simple example of a situation where the assumptions of this section hold

is that of an ergodic Markov chain with a finite number of states. Let P denote
the transition matrix. Let A denote the matrix with every row equal to the
invariant measure 2. The matrix of G is

(4.6) G (Pa- A)= (I- (P- A))-’
k=O

Another example, this time of a rather trivial nature, is helpful in under-
standing the theorem that follows. Let S [0, 1], N the Borel sets, and
let 2 be the ordinary Lebesgue measure on N. Define P A. Then G I A.
We shall prove

(4.7) THEOREM. Let 12 and v be probability measures on . Then 12 - v if
and only if the negative part of (12 v)G is absolutely continuous with respect to
2. If# v then

(4.8) min {El-r] I - v(r)} ess sup Il, where q is the density of the
negative part of (12 v)G with respect to 2.

The proof of the theorem requires some preliminary lemmas.

(4.9) LEMMA. For any bounded measure on , yP" ,(S)2 as n oz.

The proof follows at once from the invariance of 2 and the convergence of
(4.1).

(4.10) LEMMA. Let {rn} be a sequence of nonnegative, bounded measures,
such that r,P > r,+ for all n. Let c limn-.o r,(S). Then r, e2 as n - .
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Proof.

llr.P- g=+ll IIr,+-aPm-+a r,+P-ll
k=l

< IIr,+-P r,+ll

k=l

rn(S ) rn+m(S ).

It follows easily from Lemma (4.9) that r is a Cauchy sequence, and hence
that the lemma holds.

(4.11) LEMMA. Let It and v be bounded, mutually singular measures on
with It(S) v(S). Suppose that

(4.12) (It- v)G + c2 >_ O on for some c, - < c < c.

Then

(4.13) (It v)G It + c2 >_ 0 on .
Proof Choose setsAandBinwithA cB 0, A uB= S,v 0on

A c’ and It 0 on Bc. Let 7 (It- v)G- It + c2. Then clearly
7 > 0 on B c , by (4.12). Since 7 is "superharmonic" on A c , that is,
since A7 < 0 on A c we can finish the proofby proving a simple "domination
principle" and applying it to 7. However, it is faster to proceed directly.

It also follows from (4.12) that

(4.14) (It- v)GP + c2 > 0 ong.

This is trivial if c is finite. If c c, one shows first that the operator P pre-
serves absolute continuity with respect to 2. Applying this fact to the negative
part of (It v)G then gives the inequality.
By Lemma (4.5), we write (4.14) as

(It v)G It + v + c2 >_ 0 on.

But then (4.13) holds on A c so the lemma is proved.

COROLLARY. Usillff Lemma (4.5) we see that (4.13) can also be stated as

(4.15) (ItP- v)G + (c- It(S))2_> 0 on.

Proof of Theorem (4.7). Let It and v be given. Let f (f,f) be an
arbitrary balayage sequence with fo + f(; It and ff=of < v. For example,
f could be the filling scheme for It and v.
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By Lemma (4.9), f, converges to a limit foo which is a multiple of 2. Define

(4.16) 9, v f for alln.
k=0

The 9, decrease to a limit which is called 9o. Clearly p v fo qo and

(4.17) f, + g, + f,P 9, for all n.

Applying Lemma (4.5) to (4.17),
n-1 n-1

(4.18) (f, g,)G (p v)G ., fk + fk(S)2.
k=O k=O

(4.19) (f(R) 9o)G <_ (p v)G + fk(S)2.
k=0

(a) Suppose that p v(f). Then fo go 0, so

(4.20) 0 < (l- v)G + E[f]2.
Hence the negative part of (t v)G must be of the form tk d2, with

(4.21) ess sup [b] _< E[f].

(b) Conversely, let the negative part of (p v)G be of the form b d2, and
let c ess sup Ib]. Then

(4.22) (t- v)G + c2 >_ 0 on.

Letf (f,, f) now denote the filling scheme for p and v. By (3.3), f, A g,
0 for all n. By (4.17) and (4.15),

(4.23) (f,- g,,)G + c- fk(S) 2 >_ 0 on
k=0

for all n. Hence

(4.24) (f(R) 9oo)G + c2 > _, fk(S)2 on .
k=0

Since foo is a multiple of 2, it follows that gooG must be absolutely continuous
with respect to 2. Since P preserves absolute continuity with respect to 2, goo
must be absolutely continuous with respect to 2, by Lemma (4.5). Hence
foo 0 goo, since foo and goo are mutually singular. Thus /t --, v(f), and
by (4.24).

(4.25) c > E[f].
By combining (4.21) and (4.25), the theorem is proved.
Some sufficient conditions for the assumptions of this section to hold can be

found in [11]. It seems very likely that the assumptions of this section can be
weakened, particularly as concerns the manner in which ff=o pk converges
on N.

Hence
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In order to apply Theorem (4.7) more efficiently, we note that (/- v)G
should "assume its minimum" on the support of v. More formally, the following
lemma holds:

(4.26) LEMMA. Let p and v be probability measures on . Let the negative
part of (p v)G be of the form ck d2. Let B be any set in with v(B) and
2(B) > 0. Then

ess sup I1 on B ess sup I1 on S.

Proof. Let c ess sup i1 on B. If c c the lemma is obvious, so assume
c < c. Let 7 (p- v)G + c2. Then 7 > 0 on BcM and A7 < 0 on
A c N, where A B c. Since 7 is "superharmonic" on A N, it follows that
7 >_ 0 on all of . Indeed, let Q ZB + PZa. Then 7P < ]) on A c
implies ,Q < 7 on N, and hence 7Q" < 7 for all n. Clearly 7Q" > 7(Pza) for
all n. Since 2(B) > 0, Lemma (4.10) implies that 7(Pza) 0 as n m. Thus
> 0 on N, i.e., I1 -< c on , so the lemma is proved.
As an example, consider again the case of a Markov chain with a finite number

of states. Let/ 2andlet v mj, a unit mass on the jth point of S. In
this case the minimal stopping time z such that/ v(z) is obviously unique.
By the theorem,

E[z] -inf {(# v)G({i})/2({i}) S}.

By Lemma (4.26), E[z] -(! v)G({j})/2({j}), or, since 2G 0,

E[] mjG({j})/2({j}).

This agrees with the formula for E[z] given in Proposition 9-79(1) of [9].
Finally, we will mention an alternative proof of part of Theorem (4.7), which

was suggested by the referee. Let two probability measures/ and v be given,
and suppose we know that # v via the filling scheme f. We wish to derive
the formula for E[f]. Let h ]ff=0 f. Then h(S) E[f]. The following
theorem is known: h is the minimal nonnegative solution of the equation
hP+l=h+v.

This equation can be regarded as the Poisson equation for the potential h
of the distribution # v. Another solution of the same equation is of course
the potential (# v)G, which we will call . One should note that 9 is by
assumption a finite measure, whereas h will have infinite total mass if E[f] .

Since both h and # satisfy the Poisson equation, the difference h-# is
invariant under P. This invariance implies that h-# c2, for some e,
0 < c < c. To see this, we note that the assumed existence of (# 2)G
implies easily that h, and hence h #, must have at most a finite singular part
with respect to 2. Lemma (4.9) then shows that h 9 e2.
We have h + e2 > 0, and this, together with the minimaBty of h,

implies that is the ess. sup. of the negative part of 0. On the other hand
E[f] h(S) e, so the formula is proved.
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