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1. Introduction

Let E be an arbitrary nonempty set of (positive rational) prime numbers. For
each positive integer n, let co(n; E) denote the number of distinct primes in E
which divide n, and let )(n; E) be the total number of primes in E which divide
n, counted according to multiplicity. Thus if n p,... ,r ,,Prn where r > 0,
P1,---, P, are distinct primes in E, each aj is a positive integer, and n’ has no
prime factor in E, then co(n;E) rand(n;E) a +...+ at. WhenE
is the set of all primes, we write c0(n; E) co(n), fl(n; E) (n). The main
objective of this paper and a subsequent one [-31-] is to derive some very accurate
information about the distribution of values of these functions.

In the study of the sizes of co(n; E) and (n; E), an important role is played
by the function

(.) (x) Y p-’.
p<_x,pE

For example, it is easy to show by the method of [20, Section 22.10] that
co(n; E) has average order E(n), and the same is true of fl(n; E) if E(n) tends to
infinity with n. Furthermore, a general theorem of Turin [38] shows in par-
ticular that if E(x) + as x - + , then each of co(n; E) and (n; E) has
normal order E(n). Turfin’s proof yields a quantitative version of this result
which can be stated as follows for co(n; E)" if (x) > 0 and E(x) > 1, then

(1.2) card {n’n < x and [co(n; E) E(x)] > E(x)} < clx/ZE(x).
(Throughout this paper, card B denotes the number of members of the set B.
For 1, 2,..., ci(6, e,...) means a positive number depending only on
6, e,..., while c means a positive absolute constant.) In particular,

(1.3) card {n’n < x and [co(n; E) E(x)[ > E(x)} o(x)

ifE(x) + and0E(x)1/2 + asx +. The result (1.3) was first
proved by Hardy and Ramanujan [19] (this paper is reprinted in [33, pp.
262-275]) for the special case in which E is the set of all primes (in this case, it is
well known that E(x) log log x + O(1) for x > 2, and in fact, E(x) can be
replaced by log log x in (1.3)).
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Using a difficult probabilistic method, Elliott [12, Theorem 6] recently
obtained a very general theorem of which a special case is

(1.4) card {n" n < x and [co(n; E) E(x)[ > E(x)) < CzX exp (-c32E(x)}
for x > 1, 0 < 0 _< 1. Although this estimate is far stronger than Turfin’s
inequality (1.2) when 2E(x) is large, it is not immediately clear just how precise
(1.4) is, and it does not even seem easy to calculate the positive absolute con-
stants c2 and c3 by Elliott’s method.

In this paper, we shall derive some new and very precise improvements of
(1.2) and (1.4). First we state a result in which the set E is arbitrary.

(1.5) THEOREM. Suppose that 7(n) co(n; E) (for all n) or 7(n) D(n; E)
(for all n). For any real numbers x, , define
(1.6) A(x, ; E, 9) card {n’n <_ x and [g(n) E(x)l _> E(x)}.

If O < < fl < and E(x) > O, then

(1.7) A(x,

where

(1.8) Q() 0 (1 + 00 log (1 + ).
The inequality (1.7) is best possible in the following sense’If E(z) +oo as
z + c, and if 0 < fl < 1, then there is a number es(, E) such that whenever
x > cs(, E) and E(x)-1/2 <_ < , we have

(1.9) A(x,

It should be noted that

(1.10) --Z2/2 < Q(z) < (-0.386)z2 for 0 < < 1.

For larger values of , our results are less precise than Theorem (1.5). For
example, our methods show that

(1.11) A(x, o; E, co) <_ c7xe
Q(a)E(x) for x >_ 1, 0 _> 0,

and similar but weaker upper bounds can be obtained for A(x, ; E, ) in some
cases. However, we have been unable to get lower bounds for either A(x, ; E, co)
or A(x, ; E, ) when z > 1. For the proofs of Theorem (1.5) and related
inequalities, see Section 5. The proofs depend on some beautiful theorems of
Halfisz [-14], [15] and on certain elementary inequalities obtained in Sections
3 and 4 below.

In Section 6, we consider analogues of Theorem (1.5) for a set E which con-
sists of the primes in various arithmetic progressions with the same modulus.
Here we mention only a special case of the results of Section 6. Suppose that
k, I are integers with k > and (k, l) 1. Then for each real x _> 2,

(1.12) ] p-1 (k)-1 log log x + O(1),
p<x, p=l (mod k)
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where b is Euler’s function and the implied constant is absolute. This estimation
of the error term in (1.12) is new and best possible. Using (1.12), we can derive
the following result"

(1.13) TrEOREM. Let k, be integers with k > 1, (k, l) 1. Let E be the
set of all primes p satisfying p =- l (mod k), and let g(n) co(n; E) (for all n)
or g(n) f(n; E) (for all n). Write log log x log/x, andfor any real x,
with x >_ 3, let

(1.14) Al(x ; E,g)
card {n’n <_ x and ]g(n) b(k) -1 log2 xl > b(k)-1 log2 x},

where d? is Euler’s function. If x > 3 and 0 < <_ < 1, then

(1.15) A(x, o; E, g) <_ c8(fl)o-lx{q(k)/log2 X} 1/2 (log X)Q()/ck(k),

where Q() is defined by (1.8). Furthermore, ifO < fl < 1, then there is a number
c9(fl, k) such that whenever x > c9(fl, k) and {b(k)/log2 x} 1/2 <_ <_ fl, we have

(1.16) A(x, ; E, g) > Cxo(fl)-ax{qb(k)/log2 x} 1/2 (log x)-)/ok).

For the proofs of more general results, see Section 6.
It is interesting to compare Theorems (1.5) and (1.13) with a result of Kubilius.

In [23, Theorem 9.2], he derives a theorem from which it follows that if
0 0(x) o(1)and (x)(log2 x) 1/2 +or as x +o, then

(1.17) card{n’n < xandco(n) < (1 )log2x}

(2n)- 1/2a- x (log2 x)- 1/2 (log x)e(- ")

and

(1.18) card {n’n <_ x and co(n) > (1 + 0)log2 x}
(2n)- 1/20- ix (log2 x)- 1/2 (log x)

as x /, where denotes asymptotic equivalence. Our results are of
almost the same precision, do not require the hypothesis o(1), and apply to
more general functions. (For a different kind of generalization, see Kubilius
[24]. See also [23, p. 168] for further remarks.) It should be added that the
proof of Theorem (! .5) is basically much simpler than Kubilius’s proof of (1.17)
and (1.18).
Our theorems lead to new information about the distribution of values of

divisor functions. If m, n are any integers with rn _> 2, n _> 1, define dm(n) to
be the number of ordered m-tuples (tl,..., t,,) of positive integers such that
x’’’tm n. (Thus dz(n) d(n) is the number of distinct positive divisors of

n.) It is possible to show by the method in [20, Section 18.1] that for fixed m,
the maximum order of d,,(n) is about m(lgn)/lg2n. On the other hand, the
average order of d,,(n) is the much smaller quantity (log n)m-1/(m 1)!. (The
latter assertion is classical and can be proved rather simply by induction on m.
It is also a special case of a result due to Selberg [36, Theorem 1].) However,
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d,.(n) is usually considerably smaller than even its average order. To see this,
we observe that the inequalities

(1.19) m’(") < d,,(n) <_ mn(") (m >_ 2, n > 1)

follow easily from the obvious formula d,.+ x(n) ,1, din(t) by induction on
m, and a combination of (1.19) with the results of Section 6 (when k 1)
yields:

(1.20) THEOREM. Let rn >_ 2. For any real x, with x > 3, let

D(x, , m) card {n: n < x, and either d,,(n) <_ (log x)-) log

or dm(n) >_ (log x)(x +) log m}.

If x >_ 3 and O < t <_ fl < 1, then

(1.21) D(x, o, m) <_ c (fl)o- x (log2 x)- 1/z (log x)().

Furthermore, /f 0 < fl < 1, then there is a number c2(fl) such that whenever
x >__ c2(fl)and (log2 x)-/2 <_ < fl, we have

(1.22) D(x, , m) >_ Cx3(fl)o-x (log2 x)-a/z (log x)().

A problem posed by Dr. John Steinig is to estimate the number of n _< x for
which d(n) (= d2(n)) is as large as its average order log n. From (1.19) and the
results of Section 6, it is easy to deduce that for x > 3, this number is bounded
by positive constant multiples of x (log2 x)-a/2 (log x), where

6 (log 2)-a(1 log 2 + log log 2) -0.086.

It is possible to give specific numerical inequalities for a few of the quantities
we have considered. For example, if x _> exp exp 6 and 0 _< _< 1, then

(1.23) card {n: n < x and log(n) log2 x] _> log2 x} < 3x (log x)(’).

Also, if x >_ exp exp 8 and 0 _< _< 0.6, then

(1.24) card {n: n < x and [O(n) log2 x[ >_ t log2 x} < 5x (log x)().

We shall not present the proofs here, since they involve some rather tedious
calculations. We merely remark that the proofs depend on a recent paper of
Hall [17] and on some inequalities due to Rosser 1-34] and Rosser and Schoen-
feld [35, Theorems 5, 8, 12]. When x is quite large and is not too close to 0,
(1.23) and (1.24) are worthwhile for computations.

In Section 7, we conclude with a few remarks about the limitations of the
methods used here and mention some unsolved problems.
The early history of this subject is interesting. The pioneers in the field were

Hardy and Ramanujan [19], who proved (1.3) for the case in which E is the set
of all primes. (They established also the same theorem for f(n).) Their proof,
although elementary, was somewhat involved and difficult to generalize (see
further remarks in Section 3 below). In 1934, Turfin [37] (see also [20, Section
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22.11]) presented a new proof of their theorem along quite different lines.
Turin’s proof is a model of beautiful simplicity, and he later showed in [38]
that it could be extended to prove similar results for more general additive
functions (n) in place of o9(n) or f(n), and also for functions of the forms
og(If(n)l) and f(If(n)l), where f is a polynomial with integral coefficients.
Furthermore, the deduction of (1.2) is very similar to the proof of Chebyshev’s
inequality in the theory of probability, and together with the Erd6s-Kac
theorem [13], it could be regarded as having provided the initial inspiration for
the field of probabilistic number theory. For all of these reasons, Turfin’s
method has been very influential, and the original method of Hardy and
Ramanujan has fallen into disuse. Surprisingly, it seems to have gone generally
unnoticed that for the particular functions og(n) and f(n), the Hardy-Ramanujan
proof gives results which are much sharper than those of Turfin. In fact, by
reading [19] carefully and filling in a number of details, one can see that Hardy
and Ramanujan essentially proved (1.15) when k and 9(n) oo(n),
and their result for f(n), though weaker, was also much superior to Turfin’s in
a quantitative sense. However, they never stated an estimate like (1.15), being
content with the qualitative result (1.3) (with E the set of all primes). As they
were apparently unable to get good lower bounds like (1.16), they could not
have known how precise their work was.
Many years later, in discussing his joint work with Ramanujan on this subject

[18, Chapter III], Hardy remarked that their method was "in some ways more
suggestive" than Turfin’s, but he said nothing about the remarkable quantitative
difference between the results.
Here we shall use the original method of Hardy and Ramanujan, suitably

augmented by recent results of Halfisz [14], [15] and some simple lemmas given
below. In a later paper [31], we shall obtain further theorems on the distribu-
tion of og(n; E) and f(n; E). These will involve certain quantitative improve-
ments of the Erd6s-Kac theorem.
Much of this work was done while I held a visiting research position in the

Mathematics Department of the University of Geneva. Special thanks are due
to Dr. John Steinig for arranging and facilitating my very pleasant visit. I
would also like to thank Dr. Steinig and Professor P. D. T. A. Elliott for valu-
able and stimulating conversations about some of the problems considered here.

2. Notation and a lemma

The symbols k, 1, m, n always represent integers, with k and n being positive.
The letter p always denotes a prime, while v, x, y, z, ,/Y, 6, e are real numbers.
Ix] means the largest integer < x, and logz x means log log x. b always de-
notes Euler’s function. Empty sums mean 0, empty products 1. The notation
xl x,,/yl y, is sometimes used instead of (x Xm)(y Yn)- 1.
The notation Oa,, indicates an implied constant depending at most on

6, e,..., while O without subscripts implies an absolute constant. A similar
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convention holds for the positive constants ci(6, e,... ), ci (see the remark after
(1.2)). We shall also occasionally use the notations <<, >>, which always imply
absolute constants in this paper. Thus A << B is equivalent to A O(B).
Throughout the paper, E denotes a nonempty set of primes, to be regarded

as quite arbitrary unless further assumptions are stated. E(x) is always defined
by (1.1).
The function Q(a) is defined throughout as in the following lemma.

(2.1) LEMMA. Define

(2.2)

so that

Q(a) a (1 + a) log(1 + a) fora > -1,

Q(-1) -1 lim
a-l+

lan
(2.3) Q(a)

(n- 1)n
for Il-< 1.

Q(a) is strictly increasing on [-1, 0] and strictly decreasing on [0, + m) (thus
Q(a) < 0for a # 0). If we define

(2.4)
h(a) a-2Q(a) for a >_ -1, a # O,

h(0) 1/2 lim It(a),

then h(a) is strictly increasing on [-1, + c). Hence

(2.6)

Also,

(2.7)

-a2 < Q(a) < -a2/2 for-1 < a < O,

-a2/2 < Q(a) < (1 21og2)a2 < (-0.386)az forO < a < 1.

Q(-a) < Q(a) a3/3 for 0 < a < 1.

Proof To prove the statement about h(a), define

H(a) -2a + (a + 2)log(1 + a) fora > -1

and note that

(2.8) H(a) a3h’(a) for a > -1, a # 0.

Computing H’(a) and H"(a), we find that H’(a) has its minimum at a 0,
so H’(a) > 0 for a # 0. Hence H(a) is strictly increasing, so by (2.8), h’(a) > 0
for a > -1, a # 0. Since h(a) is continuous on [-1, + ), it is strictly in-
creasing on the same interval. (2.5) and (2.6) follow immediately. Finally, (2.7)
follows from (2.3). Q.E.D.
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3. Some preliminary results

In order to prove (1.3) when E is the set of all primes, Hardy and Ramanujan
began by defining

N(m,x) card {n’n < xandoD(n) m} form 0, 1,2,....

Assuming that x > 3, replacing E(x) by its close approximant log2 x, and
writing

y (1 ) log2 x, z (1 + ) log2 x

(where > 0), they observed that

(3.1) card {n’n < xandloD(n)- lOgEX[ _> lOgEX}
 V(m, + Y.  V(m,

O<m<_y m>z

They were able to show by an elementary inductive method that

(3.2) N(m, x) < Cl.X {log2 x + c,5} for x > 2, m 1, 2,....
(m- 1)!logx

Combining (3.2) with (3.1) and using some simple upper estimates for partial
sums of the exponential series, they arrived at the desired result. Their proof of
the corresponding theorem for f(n) was similar but more difficult, since the
obvious analogue of (3.2) for O(n) does not hold without some restriction on the
size of m, so that (3.2) must be replaced by a more complicated inequality.

In attempting to use this method to deal with the functions o(n; E) and
f(n; E) (where E is arbitrary), one finds that the principal difficulty is to obtain
an appropriate extension of (3.2), since the simple inductive proof of Hardy and
Ramanujan does not generalize. For values of m which are not too large, this
problem was solved very successfully by Halfisz [-14], [15]. What we need here
is the following result from [15]"

(3.3) LEMMA. Suppose that either 9(n)= oD(n; E) (for all n) or #(n)=
f(n; E) (for all n). Define
(3.4) N(m, x; E, 9) card {n’n <_ x and y(n) m}

for m O, 1,2,.... Let 0 < 6 < 2. If x > and O < m < (2- 6)E(x),
then

(3.5) N(m x E, g) <_ 16(t)X Era(X) -E(x)e
m!

Suppose also tkat E(z) -, / as z / oo and tkat x is sufficiently larye (i.e.,
x >_ cx(8, E)). Tken for 0 <_ m

_
(2 8)E(x), we kave

(3.6) N(m, x E, g)
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In [15], the proof of Lemma (3.3) is given only for g(n) (n; E). It is
virtually elementary but very ingenious and depends in part on estimations
involving the function

F(z, a) z n(";E)n- II (1 zp-")-’ l--I (1 p--)-l,
n=l pE pCE

the series and the products being absolutely convergent for a > and any
complex z with Izl < 2. A similar proof can be given for the case 9(n)
o9(n; E) by making use of the function

G(z,a) =,=,Z z’(";E)n +
P" ,el-I (1 p

the series and products being absolutely convergent for a > and any finite
complex z. One calculates the function H(z, a) determined by

G(z, a) H(z, a)F(z, a) for a > 1, Izl < 2,

and shows that H(z, a) has certain simple bounds for 0 < Izl 2 6, a > 1.
It follows that the behavior of G(z, a) is very similar to that of F(z, a) for
a > 1, [zl < 2. Hence one can take advantage of Halfisz’s analysis of F(z, a)
in order to estimate G(z, a) and the integral involving it which arises as in [15].
The rest of the proof proceeds as in [ 15] with only minor changes.

In [14], Halfisz derived an asymptotic formula for N(m, x; E, g) which is
valid if E(x) + H and m E(x) + o(E(x)) as x - + H. Lemma (3.3) and
the results of [14] are remarkable for their precision, their uniformity in m, and
their almost complete lack of assumptions about E. Asymptotic formulas for
N(m, x; E, g) had previously been obtained by several authors, but only under
more restrictive conditions. For example, Landau proved such formulas when
m is fixed and E is the set of all primes (see [26, pp. 203-213] or [20, Section
22.18]), and he even derived asymptotic expansions in this case [25]. (Inci-
dentally, his work shows that (3.2) is sharp except for the constants c14 and c15.)
His work was considerably generalized in a series of papers by Delange (see
[6, Theorems 12, 14, 16, 34, 36], [7], [8], [9], [10, pp. 130, 132, 136-146]), but
Delange’s work depended on certain assumptions about the distribution of the
primes in E, and his formulas were not asserted to hold uniformly in m. Wirsing
[40] obtained an asymptotic formula for the case m 0 (again under an as-
sumption about the distribution of E), and Selberg [36] gave certain asymptotic
formulas which hold when E is the set of all primes, the results being uniform
in m if m is not too large. Wintner [39] and Delange [11] gave asymptotic
formulas which hold for any fixed m and for other rather general integral-valued
additive functions in place of og(n; E) or f(n; E). For further discussion and
references to related work of Sathe, Erd6s, Pillai, Kubilius, Wirsing, and
Delange, see [14].
The success of Hardy and Ramanujan’s work is due largely to the precision

of their estimate (3.2) and the fact that it holds uniformly for all m, so that it
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can be substituted in (3.1). (3.5) and (3.6) are of comparable precision but are
asserted to hold only for rn < (2 6)E(x), and some such restriction on the
size of m seems to be an essential feature of Halfisz’s proof. Furthermore, it is
easy to see that no inequality of the form N(m, x; E, f)) << xe-E(X)Em(x)/m!
could be true for all x and all m, for if rn [-(log x)/log Pl] (where Pl is the
smallest member of E), Stirling’s formula shows that the right-hand side of the
inequality tends to 0 as x -, + oo, whereas clearly N(m, x; E, f)) > 1.
Thus we need a substitute for Lemma (3.3) when rn is large. More precisely,

we need to show that to(n; E) and f)(n; E) rarely take large values. There are
several ways of seeing this. One of the simplest and most effective was suggested
to the author by Professor Elliott, who observed that from the elementary
inequality

(3.7) Y 2’(") << xlogx (x > 2),
n.

it can be deduced that co(n) is seldom very large. (As Elliott pointed out, a
similar idea was used in a different context by Hooley [21, Lemmas 6, 7], who
dealt with the function f(n).) In order to exploit this idea, we need a generaliza-
tion of (3.7), and here we can use the following result of Halfisz [14, Theorem 2]

(3.8) LEMMA. Letf(n) be a complex-valued completely multiplicativefunction.
Define Op argf(p). Suppose there existfixed real numbers 6 > 0 and Oo such
that for all p, we have 6 < If(P)] <- 2 6 and [eiOn" ei[ >_ t. Then for
x>_l,

As an immediate corollary, we have (for each 6 > 0)

(3.9) z’(n;e) < E 2a(n;e) - Cl9(t)Xe(z-1)e(x) for _< z < 2 6.
n<_x n<_x

(3.9) is sufficient to obtain our main results below. However, the proof of
Lemma (3.8) is rather long and difficult, and it is not technically elementary.
Since we need only the very special case (3.9), it seems worthwhile to indicate
briefly how to give a much simpler proof of it which actually yields somewhat
more. For the sum involving z ’("; E), this is particularly easy. The basic idea is
to find a function h(n) such that for each n _> 1, z(";) Zdln h(d). The
M6bius inversion formula shows that such a function h(n) exists and is deter-
mined by

h(n) la(d)z ("/d; ).

Since h is the "Dirichlet convolution" of two multiplicative functions, it is also
multiplicative. It is easy to verify that if a is a positive integer, we have h(p")
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z- lifpEanda 1, whileh(p") 0otherwise. Thush(n) >_ Oforalln,
and

] z(";E) h(d)[x/d] <_ x h(d)d-’ _< x H {1 + h(p)p-’}.
n<x d<x d<x p<x

This yields"

(3.10) LEMMA. If z >_ and x >_ 1, then ,_<zo(";E) < xe(z-1)E(x).

In this proof, we estimated a sum of the form .,<_f(n) (where f(n) is real-
valued and multiplicative) by writing f(n) al, h(d) and using the non-
negativity of h(n), which follows (in general) from the assumption that <
f(p) < f(p2) < for each prime p. This idea was used previously by Barban
[1]. (The results of this paper are summarized in [2, pp. 98-100]. I am in-
debted to Professor Elliott for these references.) Although Barban’s results do
not seem to be applicable to the problems considered here, we can use the same
basic idea to obtain"

(3.11) LEMMA.
z < Px, then

where

Let P be the smallest member of E. If x > and <

z n(";e) < xG(x, z)e(z-1)(x)+4z,

Gl(X, z) min {1 + logx Pl-}log Pl Pl

The proof begins as before by expressing zn(" E) in the form al, h(d). The
assumption z > implies that h(n) >_ 0 for all n. Writing Xp (log x)/logp
and using the multiplicativity of h, we get

z a(";E) _< x Z h(n)n-’
n<_x n<_x

(3.12)
<_ x H Z h(p")p-"

p<_x O<_a<Xp+

x ,_<xH’ {1 + (z 1)p -1 (z/p)"},O<_a<_Xp

where the means that the product is taken over primes p E. We may assume
x > Pl (otherwise the lemma is trivial). In the last product occurring in (3.12),
the term corresponding to p pl does not exceed G(x, z) (since z < p by
hypothesis). Thus we get

(3.13)

z"("; <- x6i(x, z) H’ {+z-}n<x p<p<x p

2z<p<_x
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Now ifp > 2z, then

(p z)- =p

Furthermore,

-(1 + zp-(1 zp-1)-) < p-(1 + 2zp-X).

, p-2 < n-Z < (2z)-2 + -2 dt (2z) -2 + (2z)-2z<p<x n> 2z 2z

Combining these estimates with (3.13), we get

But by a well-known elementary lemma (see

Pl e(z- )E(x) +

[27, p. 109]), llp_<y p < 4Y for
y _> l, and the proof of Lemma (3.1 !) is complete.

It is possible to obtain a result st)mewhat like Lemma (3.! l) for the case
z > Pl, but the proof is more complicated, and we have no application for the
result.
Lemmas (3.10) and (3.11) can be used to give certain extensions of (3.5). For

example, it follows from Lemma (3.10) and the obvious inequality

z ’";E) >_ zmN(m,x; E, oo) (m O, 1,2,...)

that

(3.14) N(m, x" E, co) < xe-’’)(eE(x)/m) for rn > E(x).

This inequality is only slightly weaker than (3.5) and does not require the
assumption rn < (2 6)E(x). A similar method (using Lemma (3.11)) leads
to various upper bounds for N(m, x; E, f) when rn >_ E(x), but the results
and the proofs are more complicated, and we shall not discuss them here.
Unfortunately, these methods give no information about possible extensions
of (3.6).
When 0 < z < 1, the method used to prove Lemmas (3.10) and (3.11) will

no longer work (since the functions h(n) are sometimes negative), and a com-
pletely different method seems to be required. In this case, we can use a recent
elementary theorem of Hall [17]. As an immediate corollary of his result, we
get

(3.15) zn(,;v.) < z’("; E) << xe(=-l)v(’) forx > 1,0 < z < 1.
n<x n<x

This goes a bit further than what we could get from Lemma (3.8) and is again
much simpler to prove. However, we shall make only a minor application of
(3.15) (in the proof of Lemma (6.20)).

It is also possible to establish lower bounds for the sums we have considered.
It turns out that if z is not too large, and if E(x) - + o as x - + o, then the
upper bounds given in Lemmas (3.10) and (3.11) cannot be improved signifi-
cantly. We suppress the details since we have no application for this,fact.
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Quite a bit of work has been done previously on the estimation of the sums
considered in Lemmas (3.10) and (3.11) (or more general sums). We shall not
give a complete survey of this work but refer, for example, to Selberg [36,
Theorem 2], Bateman [3], Delange [7], [10, Theorem B], Wirsing [41], [42],
and Levin and Fainleib [28], [29], [30]. All of these authors obtained asymp-
totic formulas or asymptotic expansions for the sums in question (often for
complex z), but only under special assumptions about the set E (in particular,
about its distribution). Hal.sz [14, Theorems 2, 3] appears to be the only pre-
vious author to give results such as (3.9) in which nothing is assumed about E.

4. Partial sums of the exponential series

It is clear from the remarks in Section 3 (cf. especially (3.1) and Lemma (3.3))
that we need to estimate certain partial sums of the Taylor series for ex. In this
section, we shall obtain estimates which are elementary but quite precise. In
stating these, we make use of the function Q(a) defined by (2.2).
The first result is known (see [16, p. 149]), but the proof is so simple that we

include it for completeness.

(4.1) LEMMA. Let v, be real with v > O. Then

(4.2)
O<m<(1 -z)v m

< e-(-) forO < < 1,

(4.3) E e-Vvm
< e-()o for z >_ O.

m>(l+a)v DI!

Proof If0 < w < v, then

E E <- --<
O<m<w m! O<m<w O<m<w m!

This yields (4.2) for z < 1, and (4.2) is trivial for z 1. The proof of (4.3) is
similar. Q.E.D.
Lemma (4.1) can be improved for most values of . To obtain the improve-

ments, we shall use Stirling’s formula stated in the form of two inequalities (see
[22, p. 529]):

(4.4) n"e-"(2ztn) 1/z < n! < n"e-"(2rcn)l/2el/X2" for n 1, 2,

(4.5) LEMMA. Let v, be real with v > 0, 0 < < 1. Then

e- vl)mE < - 1( )-1/21)-1/2e(-)-
O<_m<(1--a)v 1Tl!
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Proof The result is trivial if (1 )v < 1, since Q(-) > Q(- 1) by
Lemma (2.1). Suppose (1 )v >_ 1, and let n [(1 )v]. Then

V V - n2
0_<m_<(1-)v m! n! =o/’’ (n 1)! v

M /=0

Vn
<-- Y, (1-)

//! l=

< (e/n)"-(n)-
by (4.4). But if v > 0 is fixed, then (ev/w) increases with w for 0 < w v, so

n--/ )v
e+(-’)". Q.E.D.

The next result shows that Lemma (4.5) is virtually best possible provided
is not too close to 0 or 1.

(4.6) LEMMA. Let v, be real with v >_ 6, v-1/2 ( 3V-1. Set

n- [-(1 )v] 1, y- {(1 )v}-(soO < y < 1). Then
e vl)m

>> (1 t)3/2/) 1/2eQ(-)v.
(1 --)n<m<_n m

Proof Write fl n(1 y)v-1 ,soO < fl < 1. Then

v" n!
n! o<_ _vn (n m)! V

v" (.n- m-t- 1)"n! o<_ _n V

n! O<m<,n

v titan]+1
n! -

V

(1 -),)n<_m<n rn

Now, n > (1 )v 2 > (1 )v/3, so

logfltr"]+l < ),nlogfl < vnlog(1 t) < -vn < -V(I )v/3 -1/3.
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Also,

fl > (1 - 2v-)(1 7)
> - 2v- y(1 )
> - 3(v)-
> 1-4

since > v-1/2. Collecting these results and using (4.4), we obtain

v v e -1/3

1-),_<,,_<, m! n! 4

v"+2 (n + 2)(n + l)
>>
(n + 2)! /)2

/)n+2
>> z-X(l z)2"

(n + 2)!

But
-l(l-03/2/)-l/2(e/)ln+2"n+2

(1 )v _< n + 2 < v(1 + v-) _< v(1 /)-1/2

and since (ev/w) increases with w for 0 < w < v, we have

q_. /)-1) V,

which completes the proof.

(4.7) LEMMA. Let v, be real and positive. Then

e- v/)m

m_>(1 +)v H//!
< (2rt)-/z-1(1 + )/2v- /ZeQ)v"

Proof
we get

Let n be the smallest integer such that n > (1 + 0t)v. Using (4.4),

m! n! =o

/)n

n! =o

< (2rt)- 1/2- 1(1 + 001/2/)-ll2(evln)n"
But if v > 0 is fixed, then (ev/w) is a decreasing function of w for w _> v.
Hence

()n (.(e/) )0)(+)v< e +Q). Q.E.D.
1+
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We now show that the inequality of Lemma (4.7) is essentially best possible
if z is neither too small nor too large.

(4.8) LEMMA.

Then

Let v, be real with v > 1, _> U -1/2. Set

n [(1 + )v] + 1, y (2w) -1.

e- vvm
n<m<( +y)n m

1(1 + z)- 1/20- 1/2eQ()v.

Proof Write fl v/n(1 + 7), so 0 <

V VS,
n<m<(1 + y)n m rl

V

n!

V

n!

fl < 1. Then

t/! V

0_<m_<, (n + m)!

E zm
O<m<yn

if:Y"]+1
1-/

Since log (1 + z) > a(1 + a)-l, we have

logfltr"]+l < ynlogfl < -ynlog(1 + ) < -yw -1/2.
Furthermore,

fl-1 _< v-l{1 + (2V)-1} {(1 + )V + 1}
< + + 2v-1 + (czv)-I
<l+4x

since v-1 < and (zv)-I < oz. Thus (1 fl)-I
these estimates and using (4.4), we obtain

V O
>> -’( +)--

>> u- 1(1 + z). Collecting

-1 V

(n 1)!

>>z-l(l+z)-l/2v-1/z(eV)n-l"n
But v _< (1 + cz)v < n < (1 + cz)v, and since (ev/w) is a decreasing
function of w for w > v, we get the desired result.

5. The distribution of co(n;E) and D(n;E) for arbitrary E

Throughout this section, E denotes any nonempty set of primes, and (as
always) E(x) is defined by (1.1). Suppose that either g(n) co(n; E) (for all n)
or g(n) I’(n; E) (for all n). For any real x, z, we define

(5.1) L(x, ; E, g) card {n’n <_ x and g(n) <_ (1 a)E(x)},
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(5.2) R(x, e; E, g) card {n: n _< x and g(n) >_ (1 + e)E(x)}.

If A(x, ; E, g) is defined by (1.6), then clearly

(5.3) A(x, ; E, g) <_ L(x, ; E, g) + R(x, ; E, g),

with equality if a > 0 and E(x) > 0. Also,

(5.4) A(x, ; E,g) R(x, a; E,g) ifa > andE(x) > O.

These results enable us to estimate A(x, ; E, g) by estimating L(x,’a; E, g) and
R(x, o; E, g) separately. To carry out this program, we define N(m, x; E, #)
by (3.4) and note the following obvious formulas (for any real x, ):

(5.5) L(x, c; E, O) N(m, x; E, g),
0 ot)E(x)

(5.6) R(x, a; E, a) N(m, x; E, g).
+ )E(x)

Observing that the inequality co(n; E) < f(n; E) implies

(5.7) L(x, ; E, ) < L(x, ; E, co),

(5.8) R(x, o; E, co) < R(x, ; E, f),

we now proceed to estimate these four quantities in various ways.

(5.9) THEOREM. If x > and 0 <_ <_ 1, then

L(x, a; E, f) <_ L(x, a; E, co) << xe-(-)E(x).

Proof. This is trivial if E(x) 0. Otherwise, simply combine (5.5), (3.5)
(with 6 1), and (4.2). Q.E.D.

(5.10) THEOREM. If E(x) > 0 and O < < 1, then

L(x, ; E, ) <_ L(x, ; E, co) << -1(1 )-/ZxE(x)-l/Ze-(-)e(x).

Proof. Combine (5.5), (3.5) (with 1), and Lemma (4.5). Q.E.D.
The next result shows that Theorem (5.10) is almost best possible.

(5.11) THEOREM. Suppose that E(z) + oo as z - + oo. Then there is a
number c21(E such that if x > c21(E and E(x)- 1/2 (X -- 3E(x)- 1, we
have

L(x, ; E, co) > L(x, ; E, f) >> e-l(1 o03/2xE(x)-l/2eQ(-)E(x).

Proof. WriteE(x) v,n [(1 e)v] 1. By(5.5),

L(x, a; E, f) >_ N(m, x; E, f), L(x, a; E,f) >_ N(m + l,x;E,f),
m--O

SO

L(x, ; E, n) >> {N(m, x; E, n) + N(m + 1, x; E, f)}.
m=0

The theorem now follows from (3.6) (with 6 1) and Lemma (4.6).
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If 0 < < E(x) -1/2 o, and if the other hypotheses of Theorem (5.11)
hold, then by Theorem (5.11) and (2.3), we have

L(x, E, ) >_ L(x, 0o; E, ) >> x,

which is best possible except for the undetermined constant factor. More
precise results (when e is small) will be obtained in [31].

(5.12) THEOREM. Suppose E(x) > O and O < < < 1. Then

R(x, o; E, co) < R(x, ; E, ) <_ 22(fl)o-lxE(x)-l/2eQ’()E(x).

Proof Let7 (fl + 1)/2, soft < y < 1. By(5.6),

(5.13) R(x, o; E, f) N(m, x; E, f) + R(x, 7; E, f).
+ )E(x) + ,)E(x)

First we estimate R(x, y; E, ) using Halfisz’s inequality (3.9) (Lemma (3.11)
would do just as well). For 6 > 0 and g z < 2 6, we have

z (x + )e(X)R(x, y E, ) < zn("; E) < c9(6)xe(z- )’(x),

SO

R(x, y; E, ) < cx9(6)x exp {(z- 1)E(x) (1 + y)E(x)log z}.

The right-hand side is minimized by taking z + y, which is permissible
since 7 < 1. We get

(5.14) R(x, y E, ) <_ c23(fl)xeO-()F(x).

Combining (5.13), (5.14), (3.5), and Lemma (4.7), we get

R(x, 0; E, f) <_ c24(fl)o-1xE(x)-/2e-(’)(’){1 + E(x)/2e-()-o-(’)r(x)}.
But by Lemma (2.1), Q is strictly decreasing on [0, + 0), so Q(e) >_ Q(fl) >
Q(y) and

ee(’)-e(’)() > + {Q(fl)- Q(7)}E(x).
If we use Lemma (3.11) instead of (3.9), then the method used to prove (5.14)

yields

(5.15) R(x, o; E, ) <_ (px 1)(p O- xee()(x) +( + ")

for x_> and 0_< e <pl (where p is the smallest member of E).
Similarly, Lemma (3.10) yields

(5.16) R(x, ; E, co) <_ xe-()() for x _> 1, 0 >_ 0. Q.E.D.

(5.17) THEOREM. Suppose that E(z) +o as z +oo. Let O < fl < 1.
Then there is a number c2s(fl, E) such that if x >_ c2s(fl, E) and E(x)-/2 <_

<_ fl, wehave

R(x, o; E, ) >_ R(x, o; E, co) > c26(fl)o-lxg(x)-l/2eQ-()E(x).
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Proof WriteE(x) v,n [(1 + s)v] + 1, (2vs) -x. By(5.6),

(5.18) R(x, s; E, oo) >> Z {N(m, x; E, o) + N(m + 1, x; E, o)))

n<_m_ + ,)n

Furthermore, if Czs(fl, E) is sufficiently large and x > c2(, E), then

(1 + ,)n _< v{1 + s + v -x + (1 + s)(2sv)- + (2svZ) -1}
V{1 q- fl "k- V -1 q- I; -1/2 -+- (2/)3/2) -1 }

_< v{ +/ + ( -/)I2}

v{2 ( -/)/2}.

The result now follows by combining (5.18), (3.6), and Lemma (4.8).
IrE(z) + c as z -+ + oo, and ifx > c27(E) and 0 _< s <_ E(x)- /z

then by Theorem (5.17) and (2.3), we have R(x, s; E, oo) > R(x, So; E, o0) >> x,
which is best possible except for the undetermined constant. For more precise
results when s is small, see [31].
The results of this section yield a proof of Theorem (1.5), for (1.7) follows

from Theorems (5.10) and (5.12), while (1.9) is a consequence of Theorem (5.17).
Also, if 0 < s < 1, then (1.11) follows from (5.3), Theorem (5.9), (5.16), and
the inequality O(-s)< O(s) (cf. (2.7)). For s > and E(x)> 0, (1.11)
follows from (5.4) and (5.16), and it is trivial if E(x) 0. When 0 < s <
p 1, an upper bound for A(x, s; E, 1) can be deduced similarly, using
(5.15) instead of (5.16).

6. Prime factors in arithmetic progressions

There seem to be few known types of sets E for which E(x) is unbounded but
can be calculated rather accurately in terms of elementary functions of x. In
this section, we obtain analogues of the results of Section 5 for one such type of
set, which consists of the primes in various arithmetic progressions with the
same modulus.

Consider first the case of a single arithmetic progression. Let k, I be integers
with k > 1, (k, l) 1, and let E be the set of all primesp l (mod k). The
estimate

(6.1) E(x) b(k)-’log2x + Bk,, + Ok ((log x)- (x > 2)

was proved by Mertens in 1874 (see Landau [26, pp. 41-43, 449-450]). Here
Bk, is a number depending only on k and 1. After de la Vall6e Poussin proved
a strong form of the prime number theorem for arithmetic progressions (which
was slightly improved by Landau), it was possible to replace (6.1) by

(6.2) E(x) b(k)-’ log2 x + Bk, q" Ok (exp {--c2s (log x)’/2})
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(6.5)

Also,

for x > 2 (where c28 is a positive absolute constant). Both of these results have
the disadvantage of giving no information about the size of the error term as a
function of k, nor about the magnitude of the number Bk, . It was shown by
Bateman, Chowla, and Erd6s [-4, Lemma 3] that (roughly speaking) a result
like (6.2) holds with an implied constant which is absolute (i.e., Ok can be re-
placed by O) provided that x is sufficiently large compared to k, but only if k
does not belong to a small exceptional set. They also did not estimate Bk, I.

In view of all this, the result (1.12) seems to be of intrinsic interest, and it has
applications to the problems discussed in Section 5. It can be generalized as
follows:

(6.3) LEMMA. Let k be a positive integer, and let L be a nonempty set of
integers such that

(6.4) < 1< k and (k, l) for each e L.

Write card L 2, and let

E U (p:p l(mod k)}.
leL

Then for x >_ 2,

E(x) 2qS(k)- log x + p- + O(24(k)- log (3k)).
p<x, p L

(6.6)

Proof
(6.7)

p- < log2 (2 + 3) + O(1).
p<x,pL

First, it is clear that

E(x) p-1 if2__< x < k.
p<_x, p L

Next, let n(x; k, 1) be the number of primes p such that p _< x and p 1
(mod k), and let

p<_x, peE leL

If k _< x, then the Brun-Titchmarsh inequality (see Prachar [-32, p. 44]) yields

and hence

re(x; k, l) <<
qS(k) log (3x/k)

o _< E(x) e(k)

t- drt(t; E)

_< x-rc(x; E) + t-arc(t; E) dt

<< 2b(k)- loga (3x/k).
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Applying (6.7), we obtain

(6.8) E(x) p-’ + O(2b(k) -llog(3k)) ifk < x < expkz.
p<x, peL

Now suppose that x > exp k2 B, say. Then the Siegel-Walfisz theorem
(see Prachar [32, p. 144] or Davenport [5, p. 136]) yields the estimate

(6.9) rt(x; k, 1) dp(k)-ILi(x) + O(x exp {-Cz9 (log x)X/z})
whenever (k, l) 1, where Li is defined by

Li(y) (log t)- dt fory> 1.

If we write

re(t; E) 2dp(k)-lLi(t) + A(t; E) for > B,

then by (6.9), A(t; E) << 2t exp {--C29 (log t)I/z}, and an easy calculation gives

E(x)- E(B)= 2{(k)t log t}-’ dt + t-’ dA(t; E)

2qS(k)-’ log2 x + O(2dp(k)-’ log (3k)).

It follows from this and (6.8) that (6.5) holds for x >_ B. But for 2 <_ x _< B,
we have 2qS(k)- logz x O(2b(k)- log (3k)), so by (6.7) and (6.8), (6.5) holds
for allx > 2.

Finally, let Pr denote the rth prime (P 2). Then clearly

p-’ < P-’ logzPz + O(1) < log2(2 + 3) + O(1),
r-l

and the proof is complete.
If 2 is close to qS(k), we can get a better result than (6.5). In fact, if we con-

tinue to use the notation of Lemma (6.3) and let

L {l" kand(k,l) 1} L,
then for x _> 2,

(6.10) E(x) 24,(k) -1 log2 x p-1 p-,
p<_x, pLx p<_x, p k

+ O(1 + {b(k)- 2}b(k)-a log (3k)).

This is well known if 2 (k), and if G 2 K (k) 1, it follows in an
obvious way from Lemma (6.3).

It is interesting to observe that the implied constant in (6.5) can actually be
computed (although we have made no attempt to do so). For it follows from
[5, pp. 127-128] that when x exp k2, both the number c29 and the implied
constant in (6.9) are effectively computable. (I owe this remark to Professor
H. Halberstam.)
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If there is no "exceptional" character Z (mod k) for which the Dirichlet
L-function L(s, 7.) has a large real zero, then for each real u > 0, we have

t(x; k, l) dp(k)-lLi(x) + Ou(x exp (-C3o(U)(log x)1/2})
whenever (k, l) and x > max {2, exp (u log2 k)}. (See !-5, p. 127] or
[32, pp. 136-138].) In this case, we can obtain the following improvement of
(6.5) for each x > 2:

:(x) ;4,()-’ og x + p-’ + o(4,()-’ og, (3k)).
p<x, p L

The proof is the same as before except that we now take B exp log4 (3k).
We now introduce some notation which will be used throughout the remainder

of this section.

(6.11)

(6.12)

(6.13)

(6.14)

k, L, 2, E satisfy the hypotheses of Lemma (6.3),

v 2(k)-1 log2 x (x > 3),

W-- p 1,
p<x ,p L

y 2qS(k)-’ log (3k).

If 9(n) o9(n; E) (for all n) or 9(n) f(n; E) (for all n), then for any real
x, with x >_ 3, we define

(6.15) L(x, ; E, 9) card {n: n < x and 9(n) < (1 )v},

(6.16) Rl(x, ; E, 9) card {n: n < x and q(n) >_ (1 + )v},

(6.17) A(x, ; E, 9) card {n: n < x and 19(n) vl _> v}.

With these definitions, the obvious analogues of (5.3) and (5.4) hold. If we
continue to define N(m, x; E, 9) by (3.4) (subject to (6.11)), then (5.5) and (5.6)
must be replaced by

(6.18) Ll(X z; E, 9) N(m, x; E, 9),
0_<m_<(1 -)v

(6.19) R,(x, ; E, 9) ., N(m, x; E, 9).
m>(1 +)v

Now, it is possible to derive theorems on the sizes of L(x, ; E, 9) and
Rl(X, ; E, 9) directly from the corresponding theorems in Section 5, using
(6.5). However, this process is awkward because E(x) is not exactly

2qS(k)- log2 x (= v),

and the results are in some cases not quite as strong as one would wish. Thus
it seems preferable to follow the same path as in Section 5, using (6.18), (6.19),
the lemmas of Section 4, and the following analogue of Lemma (3.3):
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(6.20) LEMMA.
subject to (6.11). Let O < fl < 6 < 2. lfx > 3and

(6.21)

then

(6.22)

Let g(n) o9(n; E) (for all n) or g(n) f(n; E) (for all n),

)m
N(m, x; E, g) <_ 31(fl)X e-v+(1-6)w+c3zy.

m!

Furthermore, if x >_ 33(fl, k) and (6.21) holds, then

1)
(6.23) N(m, x; E, g) + N(m + 1, x; E, g) >_ C34(fl)X e v-w-c35y.

m!

Proof By Lemma (6.3),

(6.24) v + W- c36Y E(x) + w + c36Y for x 2 3,

where we may assume c36 1. We first note that (6.22) is easy to prove if the
hypothesis that x 2 3 is replaced by

(6.25) x 2 exp exp {6C36fl- log (3k)}.

For by (6.24) and (6.25), E(x) v c36Y 4c36fl- ly, so E(x)(1 + /4),
and hence (6.21) implies m (2 /2)E(x). Thus (3.5) yields

N(m, x E, g) < c6(fl/2)x ’m(x) -E(x)

m
and (6.22) follows easily from this with the use of (6.24) and (6.21).

If c33(fl, k) is suciently large, then the inequality x ca3(fl, k) implies
(6.25) and x 2 c7(fl/2, E) (cf. Lemma (3.3)), and (6.23) follows easily from
(6.21), (3.6), and (6.24).

It remains to be shown that (6.22) holds under the assumptions (6.21) and

(6.26) 3 N x < exp exp {6C36fl-1 log (3k)}.

If m 0, then (6.22) follows directly from (3.5) and (6.24). Assume from now
onthatm 1. It may not be true that m N (2- e)E(x)forsomee > 0, so
we can no longer use Lemma (3.3). However, if z > 0, then

nNx m=0

so by (3.15) and (3.9) (we could use Lemmas (3.10) and (3.11) in place of (3.9)),

N(m, x; .E, g) c37(fl)x exp {(z- 1)E(x)- m log z}

for 0 < z N 2 ft. Using (6.24) and taking z m/v to get an approximate
minimum, we obtain

m
N(m, x; E, 9) e38(fl)m/zx e-+1-)w+39r

ml

0 < m < (2- 6)v,
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by Stirling’s formula. Since (6.21) and (6.26) imply m < 12c36fl-ly, we get
(6.22). Q.E.D.
Using Lemma (6.20) instead of Lemma (3.3), we can prove the next four

theorems in the same way as the corresponding theorems in Section 5. The
introduction of the parameter fl in Lemma (6.20) makes possible the uniform
estimates given in Theorems 6.27 and 6.28, since we can take fl 1, 6 +
in the proofs.

(6.27) TrORWM. lf x > 3 and O < < l, then

LI(x, 0; E, f) <_ LI(X z; E, 09) << -(1 )-l/2xl)-l/2eQ(-)v-w+c32y.

(6.28) THEORZra. There is a number C4o(k) such that if x > C4o(k and
v- /2 < < 3v- then

L(x, ; E, co) >_ L(x, ; E, ) >> -(1 o03/2xv-/2eQ(-)v-w-c35r.

(6.29) THEOREM. Suppose x > 3 and O < o < fl < 1. Then

R(x, o; E, 09) <_ R(x, o; E, f) < c41(fl)-lxl)-l/2eQ()v+w+ca2r.

(6.30) THEOREM. Let 0 < fl < 1. Then there is a number c43(fl, k) such
that ifx > c43(fl, k) and v-1/2 < o < fl, we have

RI(X (; E, ’)) Rl(X ; E, 09) 44()(z-1xl)-l/ZeQ()v-w-c35y.

Finally, we note that these results yield some obvious corollaries about the
functions A(x, ; E, 9) defined by (6.17), including a generalization of
Theorem (1.13). We shall not state these here.

7. Concluding remarks

It should be pointed out that the methods used in this paper depend heavily
on the properties of the particular functions co(n; E) and f(n; E). It appears
difficult to extend these methods so as to deal with more general additive func-
tions, or even to use similar ideas to deal with problems on the distribution of
co([f(n)l E) and f(If(n)[ E), wherefis a polynomial with integral coefficients.
(Tur/tn [38] was apparently the first to attack the latter problem (when E is the
set of all primes), and much work has since been done on it; we shall not attempt
to discuss it here. See Kubilius [23, Theorems 3.3, 3.4, 4.6, and 4.7], where
further references are listed. For more recent work and some additional refer-
ences, see Elliott [12, Section 6], where a generalization of (1.4) is proved.) In
addition, we have nothing to offer on the problem ofjoint distribution of several
functions of the type co(n; E) or f(n; E), nor on the problem of the distribution
of sums of such functions. (See Kubilius [23] for discussion of certain problems
of these types.)
Concerning Theorems (1.5), (1.13), and (1.20), and the corresponding results

in Sections 5 and 6, it is natural to ask whether the stated inequalities can be
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replaced by asymptotic formulas. It turns out that the answer is affirmative if
a o(1) as x + . This was shown by Kubilius [23, Theorem 9.2] for the
function og(n) (cf. (1.17) and (1.18) above), and we shall generalize his results
(by a method quite different from his) in a forthcoming paper [31]. If a - o(1)
as x +, the problem remains open.

Finally, it should be emphasized that although our results on the distribution
of o9(n; E) and f(n; E) are quite sharp in relatively small neighborhoods of
E(x), the same methods yield only weaker upper bounds for the frequency of
relatively large values of these functions. Thus, for example, we have little
information about the precision of (5.15) and (5.16) when a > 1, since we have
obtained no lower bounds in this case. This seems to be a difficult problem, and
it may also be difficult to get sharp results on the frequency of large values of
dm(rt).
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