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Let B denote the class of" bounded functions w(z) wz + wz2 +
regular in the unit disc U for which Iw(z)l ( 1. If" g(z) B, then by using the
Schwarz lemma we can show that the function w(z) defined by w(z)=
z-1/2 j. g(t)t-/2 dt is also in B. Writing this result in terms of" derivatives we
have

() 11/2w(z) / zw’(z)[ < , z u [w(z)l < , z u,

All of the inequalities considered in this paper hold uniformly in the unit disc
U, and in what follows we will omit the condition z U. Furthermore, if we
let h(u, v) 1/2u + v we can write (1) as

(2) Ih(w(z), zw’(z))] < Iw(z)l < 1.

In this note we will show that (2) holds for functions h(u, v) satisfying the
following definition.

DEFINITION 1. Let H be the set of complex functions h(u, v) satisfying:

(i) h(u, v) is continuous in a domain D of C C,
(ii) (0,0)Dandlh(0,0)] < 1,
(iii) [h(e, ke)l > when (e, ke) D, 0 is real and k _> 1.

Examples. It is easy to check that each of the following functions is in H:

ha(u, v) u + v where is complex with Re > 0,

and D C C,

h2(u,v) u2 + u + v and D C C,

h3(u,v) 1/2(lu] + Iv] + 1) and D C C,

h4(u,v) 2v/(1 u) and D [C- {1}-] C,

hs(u,v) ueIvl and D C C,

h6(U V) UmO where m and n are non-negative integers,

and D C C.
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The class H is closed with respect to multiplication, and if g, h H with either
g(0, 0) 0 or h(0, 0) 0 then g + h H. In addition, if h H with h(0, 0) 0,
and if a is any complex number such that I1 -> then h H.

DEFINITION 2. Let h e H with corresponding domain D. We denote by B(h)
those functions w(z) wlz + w2z2 + which are regular in U and which
satisfy

(i)
(ii)

(w(z), zw’(z)) e D, and
Ih(w(z), zw’(z))l < 1,

when z U.

The set B(h) is not empty since for any h H it is true that w(z) wlz B(h)
for Iwxl sufficiently small (depending on h).

THEOREM 1. For any h H, B(h) B.

In other words, the theorem states that if h H, with corresponding domain
D, and if w(z) wlz + w2z2 + is regular in U and (w(z), zw’(z)) D then
(2) holds.

Proof Let w(z) B(h) and suppose that Zo roei is a point of U such that

maxlzl _<to Iw(z)l Iw(zo)l 1, At such a point, by using a result of I. S.
Jack [1, Lemma 1], we must have ZoW’(Zo) kw(zo), where k > 1. Setting
W(Zo) ei, where 0o is a real number, we have ZoW’(Zo) kei and thus
h(w(zo), ZoW’(Zo))= h(ei, kei). Since h H this implies that ]h(w(zo),
ZoW’(Zo))l > which is a contradiction of the fact that w(z) B(h). Hence
Iw(z)l < for all z U, and thus w(z) B.

If we apply the theorem to hi, we obtain

Iw(z) / zw’(z)l < Iw(z)l < 1,

where is a complex number such that Re > 0. In the special case 1/2 we
obtain (1). Applying the theorem to h2, h3,..., h6 we obtain respectively

Iw2(z) / w(z)/ zw’(z)l < Iw(z)l < 1,

Iw(z)l-4-Izw’(z)l < 2 Iw(z)l < 1,

w(z) # and 21zw’(z)l/ll w(z)l < Iw(z)l < 1,

Iw(z)leI=w’z)l < Iw(z)l < 1,

IW(Z)Imlzw’(z)I < IW(Z)I < 1,

where m and n are non-negative integers.
Theorem 1, moreover, can be used to show that certain first order differential

equations have bounded solutions. The proof of the following theorem follows
immediately from Theorem 1.
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THEOREM 2. Let h H and b(z) be a regular function in U with Ib(z)l < 1.

If the differential equation

h(w(z),zw’(z))=b(z) (w(0) 0)

has a solution w(z) regular in U then Iw(z)l < 1.

An interesting application of this theorem was suggested to the author by
Professor Zeev Nehari and is presented in the following corollary. It is related
to a result of M. S. Robertson [2, Theorem 1].

COROLLARY 2.1. Let zp(z) be regular in U with [zp(z)[ < 1. Let v(z), z U,
be the unique solution of
(3) v"(z) + p(z)v(z) o
with v(O) 0 and v’(O) 1. Then

(4) zv’(z < 1,
v(z)

and v(z) is a starlike conformal map of the unit disc.

Proof. If we set

w(z) zv’(z) 1
(z)

for z U, then w(z) is regular in U, w(0) 0 and (3) becomes

w(z) + w(z) + zw’(z) zp(z),

or equivalently

h(w(z), zw’(z)) -zp(z),

where h2 u2 + u + v. Since h2 H and ]-zZp(z)[ < we can use Theorem
2 to obtain ]w(z)] < 1, and combining this with (5) we obtain (4). In particular
this implies that Re zv’(z)/v(z) > 0 and thus v(z) is a starlike conformal map
of the unit disc.
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