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1. Introduction

In this paper we continue the investigation [4], [-5] of the homotopy theory of
pro-spaces indexed over the positive integers. It is known that the homotopy
type of a "nice" pro-space {Xs} is dependent upon (among other things) its
homotopy pro-groups (z.Xs}. We show here that in fact, homotopy groups
n.{X}--defined as the set of homotopy classes of maps from a kind of pro-n-
sphere {S} into {X}--capture the same information as {,Xs}. More generally
we show that pro-groups indexed over the positive integers contain no more
information than groups, by exhibiting a functor P from such pro-groups to
groups, such that a map f between pro-groups is an isomorphism if and only
if Pf is an isomorphism.

In Section 2 we review pro-spaces and define the homotopy groups. The more
general algebraic situation is discussed in Section 3. In Section 4 we show that
n,{X} P{Tr,Xs} and comment on the connection with the proper homotopy
groups of a complex.

2. Pro-spaces

For more details see [4]. Let 5o be the category ofpointed, connected spaces,
i.e., pointed, connected simplicial sets; is the basepoint or a one-point space.
Then tow-5o consists of towers in o,

denoted {X}, and informally called a pro-space, with maps defined by

Hom,ow.o ({Xs}, {Y,}) lim lim Homo (X,, Yj).
j

Similar definitions apply to tow-a and tow-’ where ff is the category of
groups, and a is the category of abelian groups.

For n >_ 1, the nth homotopy pro-group of {X,} is the pro-group {Tr,X,}. We
say that two maps, f and g, from {X,} to { Y,} are homotopic if there is a map
h" {X x I} {Y} such that the diagram

{x, v x,}

{x, i}
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commutes where v denotes pointed union, Xs x I is an abuse of notation for

Xs x I/. x I, I is the standard 1-simplex, and the unlabeled maps are the
natural ones. If {Y} is (isomorphic in tow-5o to) a tower of fibrations, then
[6] "is homotopic to" is an equivalence relation on the set of maps from {X}
to {Y}, and we adopt the usual definitions of and notations for homotopy
classes of maps, homotopy equivalence, etc.
Although homotopy pro-groups do not in general determine homotopy type,

we do have the following result [4-] for fibrant pro-spaces, that is, pro-spaces
which are isomorphic to towers {X} of fibrations such that for each s, there
exists an n such that nkX 0 for k > n. (It is easy to turn a pro-space {X}
into a fibrant pro-space with the same homotopy pro-groups [5, Axiom CM5]
by first making each Xs into a Kan complex X’, then forming {PX’}, where P
denotes the sth Postnikov piece [-7, p. 32-1, and finally turning {PsX’} into a
tower of fibrations.)

THEOREM 1. A map {X} { Y} between twofibrant pro-apaces is a homotopy
equivalence if and only if the induced map {n,X} {n,Y} is an isomorphism
ofpro-groupsfor each n > 1.

Finally we define the pro-n-sphere {S]} by S] V k>_s S", where S" is the
n-sphere, and the tower maps S+ S] are the obvious inclusions. The nth
homotopy group, n > 1, of a tower of fibrations {Xs}, written n,{Xs}, is then
[{S]}, {X}]; the group operation is induced by the usual group operation in
IS", X] and is abelian for n > 2.

3. Pro-groups

In this section we adopt a more concrete point of view of pro-objects. Let
l, be the category of pointed sets, and again consider towers in ’,,

written {X}. A level map from {X} to {Y}, that is, a sequence of maps
{X Y} such that X+ --. X - Y equals Xs+ Y+ rs for each s, is
called a pro-isomorphism if for every s >_ 1, there is an s’ > s and a map Y, --.

X such that the following diagram commutes:

XS’ "-’)" YS’

It is not hard to see that any map in tow-///, can be represented by a level map,
and that a level map represents an isomorphism in tow-’, if and only if it is a
pro-isomorphism. Therefore it suffices to consider level maps. These defini-
tions and remarks also apply, of course, to tow-aJ and tow-.
Now let X be a pointed set or a group. Let I(X) be the direct product of a

countable number of copies of X, modulo their direct sum. This I(X) consists
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of sequences (x l, x2,...) of elements of X, where two sequences that agree
almost everywhere are identified. Obviously I is functorial.
For {X,} e tow-J/,, define P{Xs} lim I(X,). Clearly P is a functor from

tow-’, to A,; it is equivalent to Hom ({T,},), where Ts LIk>_s T, with
the obvious injections Ts+ + T,, and T is a fixed set with two elements. We
can similarly define

P’tow-ff a3 and P’tow-s’;

they are both equivalent to Horn ({Z,},), where Z,
infinite cyclic group.

LIk>_Zand Zis the

LEMMA 1. Let {f,’X, Y} be a level map between towers of pointed sets
[resp. groups]. Then {f,} is a pro-isomorphism if and only if P{f} is an
isomorphism.

COROLLARY 1. A map {X} {Y} of pro-groups is an isomorphism if and
only if the induced map P{X} P{ Y} is an isomorphism.

Proof of Lemma 1. By [2, Proposition 111.2.2], {f} is a pro-isomorphism
of towers of pointed sets if and only if it is a pro-isomorphism of towers of
groups, so we only need to work with pointed sets. By definition, if {f X
Y} is not a pro-isomorphism, then for some s either there are elements Y+k e

Y+k for each k >_ 1 such that the image of Ys+k in Y is not in the image of X
in , or there are pairs of distinct elements X,+k, X’+k X+k for each k _> 1
such that f+k(X+k) fs+k(X’+k) but the images of X+k and X’+k are distinct
in X. In the former case we claim that P{f} is not surjective. Indeed, elements
of P{ Y} are sequences of sequences (ai, j) such that at, j e Y and the image of

ai,+ in Y is equal to ai, for almost all i. For k 1, 2,..., let ak+ ,+k
Y+k, and let a,s and a,+k be arbitrary elements of Y and Y+k for < k,
respectively. Let ak, be the image in Yj of ak,+k- for j < s + k 1, for
k 1, 2,.... Then by the choice ofY+k, this element (a, ) is not in the image
of P{f}. Similarly in the latter case we can show that P{f,} is not injective.

We shall also need the following observation for the proof of Theorem 2.

LEMMA 2. Let {G} be a tower of abelian groups. Then lim I(Gs) O.

Proof For a tower of abelian groups {H}, lirn H is defined [8] as the
cokernel of the map 4 from I-I H to itself which sends (h, h2,...) to (h ph2,
hz ph3,...), where p denotes each of the bonding maps H+ - H. In the
present case, if (at, j) represents an element of I-I I(G), then it is the image
under of (bi, j) defined inductively by bi, 0 if j > i, bi, a,, and
b, a,j + p(b,+l) if./ < i. Hence lim I(G) O.
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4. Main theorem

THEOREM 2. Let {Xs} be a tower of fibrations. Then r,{Xs} is naturally
isomorphic to P{rc,Xs}. A map {Xs} {Y} between two fibrant pro-spaces is a
homotopy equivalence if and only if the induced map n,{Xs} n,{Ys} is an
isomorphism ofgroups for each n >_ 1.

Proof It was shown in [4] that if {Xs} is a tower of fibrations, then there
is a natural short exact sequence

--, lim lim [SA,, X] --, [{As}, {Xs}] --* lim lim [A,, Xj] --,

j

where SAt is the reduced suspension of A i. Letting {As} (S"}, we easily
obtain a natural exact sequence of groups

-, lim I(t,+ Xs) -+ n,{Xs} --+ P{,Xs} --,

for each n > 1. The first conclusion now follows from Lemma 2, and the
second follows from Theorem 1 and Corollary 1.

Remark. E.M. Brown [3] first defined P in an equivalent way on the cat-
egory of towers of groups and level maps. What he called the nth proper
homotopy group of a complex is essentially the nth homotopy group of a pro-
space representing the tower of inclusions of complements of an exhausting
increasing sequence of compact subcomplexes. Brown proved Theorem 2 in
this setting.
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