CLASSIFICATION THEOREMS FOR
PARAMETERIZED FAMILIES OF SMOOTH
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RESPECTING A SUBMANIFOLD

BY
RONALD J. STERN!

Let M be a topological manifold with N a locally flat submanifold. In [15],
C. Rourke and B. Sanderson relativized the main diagram of R. Kirby and
L. Siebenmann [2] to get stable classification theorems for PL structures on M
with N a PL submanifold. Kirby and Siebenmann [4], [6] and Burghelea and
Lashof [1] exploit the ideas of immersion theory to get unstable parameterized
classification theorems for smooth or PL manifold structures on M. In this
paper, we observe that this immersion theoretic approach can be relativized to
yield unstable parameterized classification theorems for smooth or PL manifold
structures on M with N a smooth or PL submanifold.

R. Miller [10] has given a codimension 4 fiber preserving equivalence theorem
which implies that if (K, K;) is a polyhedral pair, f: K, — N a PL embedding,
where N is a PL manifold, and dim N — dim (K\K,) = 4, then the inclusion
Emb* (K, N; f) - Emb™F (K, N; f) is a weak homotopy equivalence, with
all homotopies as small as desired. Here Emb®AT (K, N; f), CAT = TOP or
PL, is the semisimplicial complex of CAT embeddings of K into N extending f.
The primary motivation for this paper is to prove in Section 5 a codimension 3
fiber preserving equivalence theorem and then to prove the above result in co-
dimension 3, but with the further requirement that K be a PL manifold and
dim N > 5. This codimension 3 result then has its subsequent applications to
topological embedding spaces (see [8], [11], [17]).

0. Notation and definitions

In this paper we will be concerned with three categories, namely the category
TOP of topological manifolds and continuous maps, the category PL of piece-
wise linear manifolds and piecewise linear maps, and the category DIFF of C*®
manifolds and C* maps. We denote the boundary of a CAT manifold N by
oM. For the objects of DIFF we allow C* manifolds with corners, namely we
allow coordinate charts which are diffeomorphic to open subsets of

R} = {(x45..., X)€R" | x, 20,x, 20,...,x, > 0}.
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We let 0 € R" denote the origin of R", and we let A" denote the standard »-
simplex in R".

A CAT manifold pair (M, N) is a pair of CAT manifolds M and N with N a
CAT locally flat submanifold of the CAT manifold M and M N N = ON.
We refer to Milnor [14] and Kuiper-Lashof [7] for the theory of CAT micro-
bundles. Let M be a CAT manifold and let ©(M) denote the CAT tangent
microbundle of M. If M is unbounded, then 7(M) is the microbundle with total
space M x M, zero section the diagonal map A: M - M x M given by
A(x) = (x, x), and projection the projection map on the second factor. If M is
bounded, we let

©(M) = (tM v open collar of M) | M.

A CAT (n, m)-microbundle pair is a pair of CAT microbundles (&%, n) over a
CAT object X such that #™ is a subbundle of &, i.e., E(™) = E(£") in some
neighborhood of the zero section, and for each x € X, there exists microbundle
charts i: U x R™ - E(y), g: U x R* —» E(&), where U is a neighborhood of

x, such that
U x R" -2 E(n)
N N
U x R E§)

commutes.

Let (&g, no) and (&, n,) be CAT microbundle pairs over CAT objects X,
and X,, respectively. A CAT morphism 0: (&g, o) = (£, #,) consists of a
neighborhood U of the zero section of (&;, #,) in E(&,), a CAT map of pairs

H: (U, U n E(no)) - (Ey), E(ny),

and a CAT map 4: X, — X, such that p,H = hp,, Hi, = i;h, and for each
xekX

HlUnpo"(x): Un pa‘(x), Un P(;l(x) N E(no))

= (p1 '(h(x)), p1 '(h(x)) N E(,))

is a CAT open embedding of pairs. Here p; and i;, j = 0, 1, are the projections
and zero-sections of (&,, 7o) and (&,, n,).

1. Relative CAT submersions are CAT bundle pairs

In this section we relativize the ‘“CAT submersions are CAT bundles”
theorem of Burghelea and Lashof [1] and of Kirby and Siebenmann [4]. A
relative CAT submersion (CAT = TOP, PL, or DIFF) is a CAT map
p: (E, E") > (B, B) of CAT manifold pairs such that p: E — B is a CAT sub-
mersion and for each point y € E’, there is an open neighborhood N of p(y) in
B and an open embedding f: (V, V') x N — (E, E’) of CAT pairs, where V is
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an open subset of p~!(p(»)) containing y and V' = V n E’, such that the com-
position pf'is the projection (V, V') x N — N and f(u, p(»)) = u. The map f
is called a relative CAT product chart about (V, V’). Note that if p: (E, E’') -
(B, B) is a relative CAT submersion, thenp | E’': E' - Bis a CAT submersion.

A CAT bundle pair is a relative CAT submersion p: (E, E’') — (B, B) such
that p: £ — B is a locally trivial CAT bundle, and p | E’: E’ — B is a locally
trivial CAT subbundle.

Let (M, N) be a TOP manifold pair. By a relative CAT structure on the mani-
fold pair A* x (N, M) sliced over A* we mean a CAT structure I' on the product
A¥ x M such that the projection (A* x (M, N))r — (A%, A¥) is a relative CAT
submersion. Note that for each t € A¥, I' | t x (M, N) is a CAT structure on
M inducing a CAT structure on N making N a CAT (locally flat) submanifold.

Let X be a CAT structure on N. By a relative CAT structure on A* x (M, N)
rel X sliced over A* we mean a relative CAT structure I" on A* x (M, N) sliced
over A with " | A¥ x N = A* x Z.

The first goal of this section is to prove:

THEOREM 1.1. Let (M, N) be a TOP manifold pair and let T be a CAT
structure on N. Suppose T is a relative CAT structure on A* x (M, N) sliced
over A*. If either

(i) dim N %= 4 &= dm oNanddim M = 6 (= 5if OM = 0), or
(i) dmM > 6(=5ifoM = 0)andT' | A* x N = A* x X, then the pro-
Jjection p,: (A¥ x (M, N))p — (A%, A¥) is a CAT bundle pair.

By local applications of (1.1) we have:

COROLLARY 1.2. Let p: (E, E') — (B, B) be a relative CAT submersion of
CAT manifold pairs such that p is a TOP bundle pair. If either

(i) dim(p~'(x) N E) *+ 4 % dim d(p~}(x) n E") and dim (p~1(x)) =
6 (= 5ifdp~'(x) = 0), for all x € B, or
(i) p| E': E' > B is a locally trivial CAT bundle and dim (p~'(x)) =

6 (= 5ifop~(x) = 0) for all x € B,
then p: (E, E'Y — (B, B) is a CAT bundle pair.

Remark 1.3. Itis an easy exercise, using the CAT isotopy extension theorem
for isotopies respecting a submanifold, to show that if p: (E, E') - (B, B) is a
relative CAT submersion then there exists a relative CAT product chart for a
neighborhood of a compact subset of the fiber of p. (cf. Corollary 6.9 of [16].)
Thus, if p is a proper relative CAT submersion, i.e., for each compactum K in B,
(p~YK), p~1(K) n E’) is a compact pair, then p: (E, E') - (B, B) is a CAT
bundle with no dimension restrictions on p~*(x).

Our proof of (1.1) is just a relativized version of the corresponding submer-
sions are bundles proof of Kirby and Siebenmann (cf. Essay II, Theorem 1.8

of [4]).
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To prove (1.1) we require the following two lemmas,
LEMMA 1.4. Let (M, N) be a connected CAT manifold pair and let
h: (M, N) > (P, P’) x R

be a homeomorphism, where (P, P') is a TOP manifold pair.
(i) Ifdim N % 4 & dim ON and dim M > 6, then (M, N) has the following
engulfing property:

E(M, N). For any pair of integers a < b, there exists a CAT isotopy
he:(M,N)-> (M,N), 0<t<1,
of id | M, with compact support in h™*(P x (a — 1, b + 1)), such that
hih™ (P, Py x (=00, a))  h™}((P, P') x (— o0, b]).

(i) If dim N # 4, dim M > 5 and property E(OM, ON) is verified, then
property E(M, N) holds true.

(i) Ifdim M > 6 and property E(N, 0) is verified, then property E(M, N)
holds true.

(iv) Ifdim M > 5 and properties E(N, Q) and E(OM, ON) are verified, then
property E(M, N) holds true.

Proof. To verify (i) when dim N < 3, note that P’ has a CAT structure and
hence N is CAT isomorphic to P’ x R by Moise’s 3-dimensional Hauptver-
mutung, so that property E(¥, 0) holds true. Then, the CAT isotopy extension
theorem and CAT engulfing verify property E(M, N).

To verify the remaining cases of (i), (ii), (iii), and (iv), use CAT engulfing in a
relative collar of (0M, dN) in (M, N), respecting N, to verify property E(0M,
dN). Then engulf with compact support, respecting N, in int M. This respectful
engulfing is achieved by first engulfing in N or N and then using the CAT iso-
topy extension theorem and CAT engulfing in M or M minus the interior of a
regular neighborhood of Nin M or M. m

Lemma 1.5. Let (M, N) be a compact TOP manifold pair and let X be a CAT
structureon N x R. SupposeT is a relative CAT structureon A* x (M, N) x R
sliced over A*. If either

(i) dm N % 3 + dimdNanddim M > 5(= 4 if oM = 0), or
(i) dmM = 5(= 4ifoM = 0)andT | A* x N x R = A* x %,
then for any pair of integers a < b there exists an open set U, in A* x M x R
containing A* x M x [a, b] such that the projection
p: (Uaba Uab N (Ak X N x R)) - (Ak’ Ak)

is a CAT bundle pair.
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Proof. Let C be a closed subset of A* and consider the following engulfing
property:

E (s, C). For any pair of integers a < b, there exists a CAT isotopy
h: (A* x (M, N) x Ry - (A* x (M, N) x R);

of id | A* x M x R which commutes with projection to A%, such that when
[a-s,b+s]c[-r+2r-2]

hy(A* x M x (—00,a)) > C x M x (—o0, b).

Note that E,(s, C) implies E,(r, D)ifr = u,v > s, and C o> D. Also, one can
easily verify the addition property:

(A) E/(s, C)and E,(t, D) implies E(s + ¢, C v D).

Fix an integer r < oo, and let U, be an open neighborhood of a point x € A
and consider a relative CAT product chart

f: Ux X ((M’ N) X (—ra r))l"lp“(x)_’ (Ak X (M’ N) X R)l'

for the relative CAT submersion p. Such a chart exists (for an arbitrary r) by
(1.3) and by noting that (M, N) x [—r, r] is a compact manifold pair.
For xeA* letT,,=T|x x M x (—r, r). Then for any CAT isotopy

gtx: ((M$ N) X ('—ra r))I‘x,,._) ((M’ N) X (_r’ r))r,‘,,

of id | M x (—r, r) with compact support and for any CAT map a: A¥ —
[0, 1] with support in U,, define a CAT isotopy

BY: (A% x (M, N) x R - (A* x (M, N) x R);

which commutes with projection to A* by letting 47 f(u, s, v) = f(U; Guquy(s, )
and by letting /7 be the identity off of the image of f.

Note that for fixed r, x, and f; there exists an open neighborhood V of x in U,
such that if «: A* — [0, 1] is a CAT function with support (x) = U then as g*
ranges over the isotopies given by (1.4), one for each interval [a, b] =
[—r + 2, r — 2], the corresponding isotopies 4, establish property E,(1, a~(1)).
By letting x and f vary, with r fixed, form an open covering {U;} of A* by such
sets U.

By taking a fine handle decomposition of A¥, we can decompose A* into k + 1
closed sets C,. .., C, where each C; is the disjoint union of closed sets C;;
each contained in some U,. Now for each C; let «;;: A* > [0, 1] be a CAT
function with «(C;;) = 1, with support in some Uy, and for a fixed 7, the «;;’s
have disjoint support. Then, for a fixed i, the isotopies corresponding to the
a;;’s compose to establish properties E,(1, C)).

By k applications of the addition property (A), we have that property
E/(k + 1, A¥) holds true. But note that in the above argument, r is as large as
we please, so that E(k + 1, A¥) holds true.
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Let
h: (A% x (M, N) x R)p — (A* x (M, N) x R);
be the CAT isotopy of id | A* x M x R given by property E(k + 1, A*) for
the integers a < b, and let
Zy = h(A* x M x (=0, a]) — (A* x M x (=0, a)).

Then U, = |J {h}(Z,) | n =0, £1, £2,...}, where hf is the n-fold com-
position of /,, is an open subset of A¥ x M x R and contains A* x M x [a, b].
Let U, = U, N (A* x N x R). Form the quotient
q: Uy = B = Uy/{h(x) = x| xeA* x M x R}
and observe that ¢ and
"=q| Uy Uy~ B = Up/{h(x) = x| xe A x N x R}

are infinite cyclic covering maps with 4, | U,, and k, | U, infinite cyclic cover-
ing translations of ¢ and gq’, respectively. Let g: B — A* be the unique map
such that the composition gg = p | U,,. We have thus factored

p: (Uap, Uy p) = (A%, A
as

Uy, Uly) = (B, B') 2 (A%, AY).

Now g is a proper relative CAT submersion, hence a CAT bundle pair by (1.3).
Using the fact that ¢q: (U,,, U.,) — (B, B’) is an infinite cyclic covering map of
pairs, it is an easy exercise to verify that gq, hence p | Uy, is a CAT bundle
pair. m

Proof of Theorem 1.1. Fix a point x € A¥andsetI" = I' | x x (M, N) and
identify (M, N) = (M, N)r.. Filter (M, N) by compact CAT manifold pairs

(MOs NO) < (Ml, Nl) < Y Wlth U (Mi’ Ni) = (M$ N)

Choose disjoint open relative CAT bicollarings (U, V) =~ (6M,, 6N;) x R of
the frontiers (6M;, dN;) with the relative collar of (M, N,) in (M;, N,) being
(M 6N)) x (—o0, 0]. By (1.5) there is an open subset E; of (A¥ x dM; x R)p
containing A¥ x dM; x 0, such that

(E;, E; 0 (A¥ x 6N; x R))p = (Ak, A%

is a CAT bundle pair. Let E; = E;, n (A* x 6N; x R). Then, by the relative
CAT bundle homotopy theorem, there exists a CAT isomorphism of pairs

h: A* x (F,, F) > (E;, E})
which commutes with projection to A* and is the identity over x. Let

(M{, N}) = (Fy 0 GM; x (=0, 0]), F{ A (6N* x (=00, O]).
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Let the CAT compact manifold pair (X;, Y;) = (A* x (M, N)r be given by
(X5 Y) = {A* x (M; — E;, N; — E))) U h(A* x (M{, N)))}.
Then (X;, ¥)) © (Xi+1, Yivq) and |J (X, Y) = (A* x (M, N)). Note that
P (X, Y) = (&% AY

is a proper relative CAT submersion, hence a trivial CAT bundle pair by (1.3).
Let f;: A* x (M, N) — (X;, Y;) be CAT isomorphisms which commute with
projection to A* and are the identity over x given by the relative CAT bundle
homotopy theorem. By the A* parametered CAT isotopy extension theorem
respecting a submanifold, we can arrange inductively that

Ji+1 |Ak X (M, N) = f.

Then lim f; = f: A* x (M, N) —» (A* x (M, N))r is a CAT isomorphism
respecting projection to A*, so that (A* x (M, N)) — (A, A*) is a (trivial)
CAT bundle pair. m

We now wish to refine (1.1), for applications in Section 5, so that the triviali-
zation of the bundle pair in (1.1) can be realized by a small ambient isotopy of
A* x (M, N) respecting projection to A,

Let Iy be a relative CAT structure on (M, N) and let I be a relative CAT
structure on A* x (M, N) sliced over A*. Finally, suppose that C = M is a
closed subset such that I' = A* x Iy near A* x C, and &: A* x M — (0, 0)
is continuous map.

THEOREM 1.6. (SLICED CONCORDANCE RESPECTING A SUBMANIFOLD IMPLIES
ISOTOPY RESPECTING A SUBMANIFOLD). If CAT = PL let A = A* be any con-
tractible subpolyhedron, and if CAT = DIFF let A be some face of A* or dA*
minus the interior of some principal face. Assume that I' |A x M = A x T,,.
Then if dim N % 4 & dim (0N — C), dim M > 5, and dim (0M — C) = 5
if OM — C # 0, there exists an ¢ isotopy h,, t € [0, 1], of id | A* x M sliced
over A* and respecting A* x N, to a CAT isomorphism of pairs

hI: Ak X (Ma N)l"o - (Ak X (Ma N))l"a
so that h, fixes A x M and a neighborhood of A* x C.

THEOREM 1.7. (SLICED CONCORDANCE REL A SUBMANIFOLD IMPLIES ISOTOPY REL
A SUBMANIFOLD). In addition to the data of (1.6) assume that T | A* x N =
A* x T’y | N. Then the conclusion of (1.6) holds under the weaker hypothesis that
dim M = 5 and if OM — C % 0, then dim (OM — C) = 5. Furthermore, h,
also fixes A¥ x N.

We list some corollaries of these two theorems.

COROLLARY 1.8. Let (M, N) be a TOP manifold pair with dim N + 4 *
dim ONanddim M = 6 (= 5if OM = 0). Let T be a relative CAT structure on



CLASSIFICATION THEOREMS 197

A* x (M, N) sliced over A* and let T’ be a relative CAT structure on A* x
(M', M' ~ N) sliced over A*, where M’ is an open subset of M. Suppose that
I"=TonA x M'. ThenT' extends to a relative CAT structure T" on A* x
(M, N) sliced over A* and is equal to T on A x M.

Proof. Leto =T |x* x (M, N), where * € A. Theorem 1.6 yields a sliced
CAT isomorphism of pairs F: A* x (M', N M"), —» (A*¥ x (M', M' A N)p..
Then F~}(I') equals A x ¢ on A x M’, so Theorem 1.6 gives a sliced CAT
e-isomorphism of pairs G: A* x (M’, M' n N), = (A* x (M', M’ n N)p-1)
equal to the identity on A x M’. For small ¢, FGF~! | A* x M’ extends via
the identity to a sliced automorphism H of the pair A¥ x (M, N). Then let
I'"=HT). =u

Using Theorem 1.7, one can similarly prove:

COROLLARY 1.9. Let (M, N) be a TOP manifold pair with dim M > 6
(= 5if oM = 0). Let X be a CAT structure on N and let T be a relative CAT
structure on A* x (M, N) rel T sliced over A*. Suppose T is a relative CAT
structure on A* x (M', M’ ~ N) rel X sliced over A¥, where M’ is an open subset
of M. If T'" =T on A x M’', then I extends to a relative CAT structure on
A* x (M, N) rel X sliced over A* and is equal to T on A x M.

By arguments that are now standard (see Essay I of [4]) and the “sliced con-
cordance implies isotopy” theorem of Kirby and Siebenmann (Theorem 2.1,
Essay II of [4]) it suffices, in order prove Theorems 1.6 and 1.7, to prove the
following handle lemmas.

THEOREM 1.10. In addition to the data of Theorem 1.6 assume that

(M, N) = B? x (R", R™), C = 0B? x (R", R™),
and that T is the standard structure on B> x R". If p + m £ 4andp + n = 5,
then there exists a sliced ambient isotopy h,, t € [0, 1], of A* x BP x R" respect-
ing A* x B x R™, fixing A x B? x R" U A* x 0B? x (R", R™), such that

hy: A¥ x BP x (R", R™) - (A* x BP x (R", R™);
is a CAT embedding on

A* x BP? x (int B", int B™)
and over
(A* x BP x (int B", int B™)..

THEOREM 1.11. In addition to the data of Theorem 1.10 assume that
I'| A* x B x R™

is standard. Then the conclusion of Theorem 1.10 holds under the weaker hypoth-
esis that p + n > 5. Furthermore, h, fixes A* x BP x R™
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Remark. Theorems 1.6, 1.7, 1.8, and 1.9 are respectful versions of Theorems
2.1 and 2.6 in Essay II of [4]. Also, Theorems 1.10 and 1.11 only yield versions
of Theorems 1.6 and 1.7, respectively, for relative structures near A* x N.
However, the case of Theorem 1.6 with N = @ (which is Theorem 2.1 in Essay
11 of [4]) allows us to extend these isotopies to all of A* x M with the desired
properties.

Proof of Theorems 1.10 and 1.11. Step 1. Theorem 1.1 yields a CAT iso-
morphism ¢: A*¥ x B? x (R", R") - (A* x BP x (R", R™);, where in the
case of (1.11) ¢ is the identity on A* x B? x R™. Asevery CAT automorphism
of A x (M, N) respecting A x N (fixed on A x N) which commutes with
projection to A, extends to a CAT automorphism of A* x (M, N) respecting
A* x N (fixed on A*¥ x N) which commutes with projection to A, we can
assume that ¢ | A x B? x (R", R™) is the identity.

Step 2. We wish to alter ¢ so that ¢ is actually the identity near
A* x 0BP x (R", R™).
To accomplish this just stretch out the relative sliced collars.
Step 3. 'We now have a sliced CAT isomorphism of pairs
¢: A* x (B? x (R", R™) - (A* x B? x (R", R™)r

equal the identity on A x B? x (R", R") and near A* x 0B? x (R", R™),
and in the case of (1.11) ¢ is the identity on A* x B? x R™, Using the TOP
isotopy extension theorem respecting or rel a submanifold, we get a TOP iso-
morphism with compact support

¢': A¥ x B® x (R", R™) - (A* x BP x (R", R™)
sliced over A, respecting or rel A* x BP x R™ equal to ¢ on and over
A* x B? x (B", B™),
and equal to the identity near A* x 0B? x (R", R")and on A x B? x (R", R™).
Then define the required ambient isotopy 4,, t € [0, 1], of A* x B? x (R", R™)
> hu, x) = (u, ¢'(r,-(u), x)) for (u, x) e A* x B> x R"

and r,: A¥ > A¥ a deformation retraction of A* onto A. m

2. Classification of relative CAT structures by CAT structures
on microbundle pairs

Let (M, N) be a TOP manifold pair with 0M = 0N = 0. Our goal in this
and the next section is to analyze the s.s. complex CAT (M, N) (and if X is a
preferred CAT structure on N, the s.s. complex CAT (M, N; X)) of relative
CAT structures (respectively of relative CAT structures on (M, N) rel X). A
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typical k-simplex of CAT (M, N) (respectively, CAT (M, N; X)) is a relative
CAT structure on A* x (M, N) sliced over A* (respectively a relative CAT
structure on A¥ x (M, N) rel X sliced over A*).

PropPOSITION 2.1. The s.s. complex PL (M, N) and, if dim N =+ 4 and
dim M = 5, the s.s. complex DIFF (M, N) are Kan complexes.

Proof. For the complex PL (M, N), the Kan condition is verified by using
a PL retraction A* —» A, ; (= 0A* minus the interior of the face opposite the ith
vertex) to pull back a relative PL structure on A,,; x (M, N) to one on A* x
(M, N).

For CAT = DIFF we will need Theorem 1.1. Let I" be a relative CAT
structure on (M, N). Define Autcar (M, N)r to be the s.s. group of CAT auto-
morphisms of (M, N)r and let Autyop (M, N) be the s.s. group of TOP auto-
morphism of (M, N). There is a natural s.s. map Autpop (M, N) > CAT
(M, N) given by H — H(A* x T'), which induces an injective s.s. map

F: Aut'l-op (M, N)/AutCAT (M, N)r — CAT (M, N).

The domain of Fis a Kan complex as Autc,r and Autpop are group complexes,
hence Kan complexes [see [9], Section 17.1, Section 18.2]. But Theorem 1.1
says that if dim N + 4 and dim M > 5, the image of F is the component of
CAT (M, N) containing I'. The Kan property of CAT (M, N) is then verified
by varyingI". m

Using Theorem 1.3 we similarly prove:

PROPOSITION 2.2. The s.s. complex PL (M, N; X) and, if dim M > 5, the s.s.
complex DIFF (M, N; X) are Kan complexes.

To study CAT (M, N) and CAT (M, N; X) we introduce local versions of
these complexes. A relative CAT structure on A* x (M, N) near A* x N
(rel X) sliced over A* is a relative CAT structure on a neighborhood of A¥ x N
in A¥ x M (rel X) sliced over A*. Two relative CAT structures I and I"” on
A¥ x (M, N) near A* x N (rel Z) sliced over A* have the same germ if ' = I
on a neighborhood of A* x N in A* x M. Let CAT (M near N) (respectively
CAT (M near N; X)) be the s.s. complex of germs of relative CAT structures on
A* x (M, N) near A* x N (respectively rel I).

PROPOSITION 2.3.  With the hypothesis of Proposition 2.1, CAT (M near N)
is a Kan complex, and with the hypothesis of Proposition 2.2, CAT (M near N; X)
is a Kan complex.

We now relate CAT (M near N) and CAT (M near N; X) to s.s. complexes of
CAT structures on microbundle pairs. A CAT structure on a TOP microbundle
pair

& H): (EQ), EN) == (X, X)
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over a CAT manifold X is a CAT manifold structure I" on an open neighborhood
U of i(X) in E(&) such that p: (U, U n E(N/))r = (X, X) is a relative CAT
submersion. If, in addition, i: (X, X) — (U, U n E(//)) is a CAT map, we
call " a CAT microbundle structure on the microbundle pair (¢, A7). Two CAT
(microbundle) structures I' and I"” on the microbundle pair (£, A") have the
same germ if ' = I'’ on an open neighborhood of i(X) in E(£). We then define
a k-simplex of CAT (&, A7) (respectively CAT (&, A)) to be the germ of a CAT
structure (respectively microbundle structure) on the microbundle pair

idxp
A % (€ H): A x (EQ), () == & x (X, X).

If the microbundle 4" has a preferred CAT structure (respectively micro-
bundle structure) I'', then a k-simplex of CAT (&, A7; I’) (respectively
CAT (&, #7; T")) is a germ of a CAT structure (respectively microbundle struc-
ture) on the bundle pair A* x (&, A7) such that ' | E(A* x 4) = A* x T,

Let (M, N) be a TOP manifold pair, )M = 0N = (. As N is locally flat in
M )

@(M) | N, (N)): (M x N, N x N)==(N, N)
is a TOP microbundle pair, where p, is projection on the second factor and

A: N - M x Nisthe diagonal map A(x) = (x, x). Suppose that N hasa CAT
structure £. Then there are s.s. maps

d: CAT (M near N) - CAT (z(M) | N, ©(N))
and
dz: CAT (M near N; ) - CAT (t(M) | N, t(N); £ x X)

defined as follows. For I' € CAT (M near N)® let dI" € CAT (z(M) | N, ©(N))
be the CAT structure (I' x X, " | N x X)on

A* x (M x N, N x N) = (E(A* x o(M) | N), E(A* x ().

The s.s. map dy is similarly defined.

If N does not possess a CAT structure we remedy the situation as follows.
Embed Nin R% g > n, and let r: Q — N be a retraction of an open neighbor-
hood of N in R? onto N. Consider the pull-back pair

@(M) | Q. 4Q))
= (M) | N), r*GV): (M x O, N x Q) == (Q, Q)
where j(y) = (r(»), »)-
Then, as Q has a CAT structure,
CAT (2(M) ] 0, %(Q)) and CAT (¢(M) | 0, #(@))

are defined and the rule (I, T |N) » (T x Q,'| N x Q) determines a s.s.
map
d: CAT (M near N) —» CAT (¢:(M) | Q, %(Q))
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and passage to germs determines a s.s. map
d: CAT (M near N) » CAT (M) | N, 2(N)) =
inj lim {CAT (¢(M) | U, #(U)): N = U open in Q}.

Our goal in this section is to show that in most instances, d and dg are homotopy
equivalences.

PROPOSITION 2.4. The s.s. complexes PL (2(M) | N, #(N)), PL (£(M) | N, %(N))
and, if dim N = 4 and dim M = 5, the s.s. complexes DIFF (#(M) | N, 2(N))
and DIFF (#(M) | N, £2(N)) are Kan complexes.

Proof. The two PL complexes are Kan by using a PL retraction r: A* —
Ay, ; to pull back the PL (microbundle) structures.

To verify the Kan conditions for the DIFF complexes, it suffices to show that
the s.s. complex BDIFF (&, A7) is a Kan complex for a TOP (R", R™)-bundle
pair (¢, &) over a CAT manifold X. A k-simplex of BDIFF (&, A") is a relative
DIFF manifold structure T on A* x ((E(£), E(/")) such that the projection

A* x (E(©), E(/)) > (A* x X, A* x X)

is a relative CAT submersion. This suffices, as every TOP-microbundle pair
contains a TOP (R", R™)-bundle pair, by the relative coring theorem [7]. To
verify the Kan condition for BDIFF (&, A4"), note that Theorem 1.1(i) implies
that if I e BDIFF (¢, A)® then there is a CAT isomorphism

h: (A x (E@©), E()r = (A x (EQ), E(A),

sliced over A* for some relative CAT structure y. An application of Theorem
1.6 yields that for any O-simplex y = A® x y of BDIFF (&, A4") we have a Kan
fibration

Autppr (&, A), = Autrop (&, #7) = BDIFF (¢, A),

where BDIFF (¢, ), is the component of BDIFF (£, #") containing y.
Varying y yields the result. m

By a similar application of Theorems 1.1(ii) and 1.7 we have:
PROPOSITION 2.5. The s.s. complex
PL (z(M) | N, ©(N); d(Z)) = PL («(M) | N, o(N); d(Z))
and, if dim M > 5, the s.s. complex
DIFF (t(M) | N, ©1(N); d(2)) = DIFF («(M) | N, ©(N); d(Z))
are Kan complexes.

PROPOSITION 2.6. With the hypothesis of Proposition 2.4 the natural inclusion
CAT (#(M) | N, 2(N)) = CAT (#(M) | N, 2(N))

is a homotopy equivalence of Kan complexes.
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Proof. 1t suffices to show that if (¢, #") is a TOP microbundle pair over a
CAT manifold X and assuming CAT (¢, 4") and CAT (£, A") are Kan, then

m, (CAT (£, &), CAT (&, /) = 0 for all k.

For then CAT (¢, /) —» CAT (&, A) is a homotopy equivalence, and then by
taking injective limits we obtain our result.

A typical element of 7, (CAT (&, A7), CAT (&, &) is a CAT structure I' on
the microbundle

A x (EQ), () == &* x (X, X)

such that i: 0A* x X — (0A* x E(AN))r|oaxx k) is @ CAT embedding. In the
microbundle

idxp
IxA“xE(ﬂ)TﬁlekxX
approximate id x i by a section i’ such that
i/IO X Ak X X:O X Ak X X—’(O X Ak X E(‘M))F|AkXE(I)

is a CAT embedding and i’ = ion I x (0A¥) x X U 1 x A* x X. We then
have a new TOP microbundle pair

&, /") I x A x (E©), E(.A/))i—di—*._:l x A% x (X, X).
By the relative microbundle homotopy theorem, there exists a TOP morphism
H: (@, N > I x A x (&, A)

over the identity map of the base / x A* x X and with H equaling the identity
over
Ix (0AY) x XUl x A* x X.

Then I = H(I x T)isa CAT structure on I x A* x (¢, A") with
' (0 x A* x (&, A))
a CAT microbundle structure on A* x (&, A47). m
We are now in a position to state and prove the main theorem of this section.
THEOREM 2.7. For every TOP manifold pair (M, N) with OM = ON = 0, the
JSollowing s.s. maps are homotopy equivalences of Kan complexes:

(i) d: CAT (M near N) - CAT (#(M) | N, #(N)), if dim N * 4 and
dim M > 5;
(ii) dg: CAT (M near N; X) - CAT (t(M) | N, ©(N); d(Z)) if dim M > 5.

Proof. This theorem follows routinely from the immersion theory machinery
given the following six, easily verified facts.
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Fact 1. The rules
U — CAT (M near U) U- CAT (M near U, T | U)
U-> CAT (M) | U, 2(U)) and U — CAT (M) | U, 7(U); d(X | U))

are contravariantly functorial on inclusions of open subsets of N. They convert
monotone union to projective limits and finite union to fiber products.

Fact2. Therules U - CAT (M near U) and U - CAT (M near U; | U)
are naturally contravariantly functorial on open TOP embeddings between open
subsets of N. Two open embeddings that are isotopic through open embeddings,
induce homotopic maps.

For any subset 4 < N, let

CAT (M near A) = inj lim {CAT (M near U): 4 = U open in N},
CAT (M near A; X | A) = inj lim {CAT (M near U; £| U): A = Uopen in N}
CAT (3(M) | 4, 2(4)) = inj lim {CAT (M) | U, 2(U)): A = U open in N},
CAT (x(M) | 4, #(4); d(Z | 4))
= inj lim {CAT (=(M) | U, ©(U); d(Z | U)): A = U open in N}.
We also have s.s. maps

d,: CAT (M near A) - CAT (#(M) | 4, 2(A4))
and

ds) 4: CAT (M near 4; X | A) - CAT (v(M) | 4, ©(4); d(Z | 4)).

Fact3. If A = Bis a homotopy equivalence of compacta in N, then the
restriction maps

(i) CAT (1(M) | B, ©(B)) » CAT (#(M) | A4, £(A4))

(i) CAT («(M) | B, ©(B); d(Z | B)) » CAT (1(M) | 4, ©(4); d(Z | 4))
are homotopy equivalences.

Fact4. If A is a point of N, then the following maps are homotopy
equivalences:

(i) d: CAT (M near A) » CAT (#(M) | 4, 2(4));
(i) dy)4: CAT (M near 4; X | A) - CAT (v(M) | 4, ©1(4); d(Z | A)).
Corollaries 1.8 and 1.9 imply:

Fact 5. For any compact pair 4 = B in N, the restriction maps

(i) CAT (M near B) — CAT (M near A) and
(ii) CAT (M near B; | B) - CAT (M near 4; X | A)
are Kan fibrations.
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Fact 6. For any compact pair 4 = B in N, the restriction maps

(i) CAT (¥(M) | B, 2(B)) » CAT (#(M) | 4, 2(4)) and
(i) CAT («(M) | B, ©(B); d(X | B)) » CAT (v(M) | 4, 1(4); d(Z | A))
are Kan fibrations.

Proof of Fact 6. For CAT = PL, (i) and (ii) are verified for open neighbor-
hoods, U = V of A = Bin N by considering a PL map

riA*x U-> A x VUA x U

respecting projection to A* and fixing (A;,; x V) U A* x W where W is a
neighborhood of 4 in N with W < U. Now use r to pull back a CAT structure
on a microbundle over A,,; X V U A* x U to a CAT structure on the pull
back bundle over A* x V.

For CAT = DIFF the proof of Proposition 2.4 shows that for any (R", R™)
bundle pair (¢, A7) over a CAT manifold X BCAT (¢, #7) — BCAT (&|y, A y)
is a Kan fibration for every U open in X. By taking injective limits and recalling
that every microbundle pair contains a (R", R™)-bundle pair, for some (n, m),
we observe that (i) and (ii) are Kan fibrations. m

These six facts imply our theorem as follows. For 4 < N let S(4) be the
statement that d, and dy | , are homotopy equivalences.

Step 1. S(A) holds for any simplex 4 by Facts 2, 3, and 4, as any such 4 can
be isotopically shrunk into small neighborhoods of a point in the interior of 4.

Step 2. If S(A), S(B), and S(4 n B) are true for compact 4 and B, then
S(A4 v B) is true by Facts 1, 5, and 6.

Step 3. S(A) is true for 4 any finite simplicial complex by Steps 1 and 2 and
induction.

Step 4. S(A) is true for any compactum A is a coordinate chart of N, as 4
is the intersection of finite simplicial complexes.

Step 5. S(A) is true for any compactum 4 <= N by Steps 2 and 4 as 4 is the
finite union of compactum in coordinate charts of N.

Step 6. S(N) is true, as N is the union of compactum N, =« N, < -+ and
Fact 1 implies that d and dy are the projective limit of equivalences dy,, dy,,. . .,
and dy |y, dg| N, - - - » Tespectively. Thus d and d; are equivalences by Facts
Sand 6. m

3. Classification theorems

Our goal in this section is to show that the Kan complexes CAT (M, N) and
CAT (M, N; X) are homotopy equivalent to Kan complexes of liftings of appro-
priate unstable classifying spaces.
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Let BCAT, (CAT = TOP, PL, or DIFF) denote the classifying space for
CAT n-microbundles and y¢,r the universal CAT n-microbundle over BCAT,.
Also, let BCAT;},, , denote the classifying space for CAT (n + ¢, n)-microbundle
pairs and (y¢i{, y2a1) the universal CAT (n + g, n)-microbundle pair over
BCAT;,,,. There are natural maps

r..s: BCAT,,, — BCAT,

n,q*
which restrict (Y214, y2a1) to YEar. Also, there are natural maps
Jn,q: BCAT,,, » BTOP;,, and  j,: BCAT, » BTOP,.

We extend these maps to maps

BCAT:,, =% BTOP,,

"mql l’n-q

BCAT, -I*. BTOP,

so that j, , and r, , are Hurewicz fibrations and the above diagram commutes.
Let (¢, /') be a TOP (n + g, n)-microbundle pair over a CAT manifold X
and choose a fixed classifying morphism ¢: (&, &) — (Pi8, Y4op) such that ¢
covers a map f: X - BTOP;,, and ¢ | A" covers r, ,f. Also, choose a fixed
classifying morphism W: (y¢i{, year) = (Viof, Yiop) covering j, . A typical
k-simplex ¢ of L(fto BCAT}, ) is a map o: A* x X — BCAT;,, such that

i = fP2: A* x X > BTOP!, .

In addition, suppose that there exists a map g: X - BCAT, such that j,g =
r,..f- Then a typical k-simplex of L(fto BCAT;, ,; g) is a k-simplex

o: A* x X - BCAT;,,
of L(f'to BCAT,, ) with r, .0 = gp,: A* x X —» BCAT,.

THeoreM 3.1. If CAT (&, A") is Kan, then there is a canonical homotopy
equivalence
0: CAT (&, #) - L(fto BCAT;, )
of Kan complexes.

THEOREM 3.2. Let X be a CAT microbundle structure on A°. If CAT (&, N
X) is Kan, then there is a canonical homotopy equivalence

0s: CAT (¢, #'; X) » L(f to BCAT;, ; 6(%))
of Kan complexes.

Proof of Theorem 3.1. We introduce several new Kan complexes. If X and
Y are spaces, a typical k-simplex of {X, Y} is a map A* x X - Y. If X and
Y are CAT objects, then {X, Y }car is the subcomplex of {X, Y} of CAT maps.
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If X is a CAT object a typical k-simplex of MCAT,, ,(X) is a CAT (n + ¢, n)-
microbundle pair (¢, A4°) over A¥ x X together with a CAT morphism

g: (& A) = (Y&t yean)-

Two such triples (&, 47, g) and (&, A, g') represent the same simplex if they
coincide on a neighborhood of their respective zero sections. A typical k-simplex
of BCAT;,, (X) is a CAT (n + g, n)-microbundle pair (£, A7) over A* x X,
with two such microbundle pairs (£, #7) and (&, &) representing the same
k-simplex, if they agree on a neighborhood of their respective zero sections.
For CAT = PL or DIFF a typical k-simplex of LCAT;, (X) is a k-simplex
& A,g) of MCAT,, (X) together with a morphism A: 1 x (§, A) —
(Y58, viop) Of CAT microbundle pairs such that

Wg = hl: 0 x (& A) = (158 Yior)-
One easily verifies that the map LCAT;,, (X) - MTOP;, (X) which selects
@& ) =1 x (& )= (16h Yior)
CAT

is a Kan fibration. Also, using the universality property of (yo4:, ys*") one
can show that there are canonical maps

BCAT},, (X) ——~ MCATY,, (X) 2~ {X, BCATL, Jear

which are homotopy equivalences.
Now consider the commutative diagram

BCAT",, (X) —— LCAT", (X) -2 {X, BCAT", Jear —— {X, BCAT", }

BTOP;,, (X) —— MTOP:,, (X) - {X, BTOP}, Jexr — {X, BTOP}, }

where the vertical maps are Kan fibrations and the horizontal maps are hom-
otopy equivalences. For the point (£, 4/, ¢) of MTOP;. , (X) we know that
a(é, N, @) = (&, N)and if(, N, ¢) = f. Passing to fibers, we have canonical
homotopy equivalences of fibers.

CAT (¢, /) — L(fto BCAT.,,). ®

Proof of Theorem 3.2. Define the Kan complexes BCAT, (X), MCAT, (X),
and LCAT, (X) as in the proof of Theorem 3.1 except, rather than considering
(n + g, n)-microbundle pairs, consider n-microbundles. We similarily obtain
homotopy equivalences

BCAT, (X) —— MCAT, (X) —— {X, BCAT,}
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and a Kan fibration
LCAT, (X) - MCAT, (X).

Consider the commutative diagram

BCAT;,'+,, (X) & LCAT",, (X) -2 {X, BCAT", }
V2

( )«—MTOP:+q X) -2 {X, BTOP.)\}

BTOP:+,,
\ ,,(X)«—— LCAT, (X) —— {X\BCAT,}

BTOP,, (X) <~ MTOP, (X) — {X, BTOP,}

where the vertical maps are Kan fibrations, the horizontal maps are homotopy
equivalences, and the slanted maps are the natural restriction maps.

Let (¢, #°) be a TOP (n + g, n)-microbundle pair with ¥ a CAT microbundle
structure on A". Let

¢: (& N) > (Vich viop) and ¢: AN > yrop

be classifying morphisms such that the point (¢, A", ¢) of MTOP;,, (X) has
the property that B(&, A", ¢) = f, (&, N, ) = (&, N), 1y (&, N, @) = (N, §),
(N, @) = Fyig,nf-and 8(N, ) = A. By passing to fibers we get a homotopy
commutative square

CAT (¢, A) 2, L(fto BCAT;.,)

ry rs
CAT (") —2= L(ry4,nf to BCAT,)
where 0 and 0 are homotopy equivalences and r; is a Kan fibration. Let
A® x £ e CAT (/)@

be a 0-simplex, where X is the preferred CAT microbundle structure on 4", We
then have the following commutative diagram

Autp e Autrop L(fto
(¢ fixing #7) — (& fixing A) P2, CAT (AW 2D LN BCAT,, : (%))

Autppr (& ) Autrop (&, #) L CAT (£, /) —— L(fto BCAT.,,)

rs ra ry rs

Autpiep (W) —— Autrop (#) 2 CAT(N)  —— L(tpsqnfto
BCAT,)
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where p,, p,, and p; are Kan fibrations from the proofs of Propositions 2.4 and
2.5 (actually they are a collection of fibrations over components of their respec-
tive bases, and over each component the fiber is the respective DIFF auto-
morphisms with respect to an element of that component). Also, the restriction
maps r, and rs are Kan fibrations by the CAT isotopy extension theorem. Thus,
as 8 and 0 are homotopy equivalences, we have a homotopy equivalence

CAT (¢, /'3 £) —=+ L(f to BCAT, ; B(Z))

of Kan complexes. m
Let (M"*9, N9 be a TOP manifold pair with 6M = N = 0, and fix a

classifying morphism

¢: (x(M)ly, ©(N)) = (V158 Yior)
covering a map f: N — BTOP;,,. Extend these to

¢: R(M)y, £(N)) = (168 Vior)

over a map f: Q - BTOP", o If N has a preferred CAT structure X, then
% x X is a CAT microbundle structure on 7(N) and let g: N — BCAT, be the

lift corresponding to £ x X under CAT (z(N)) LR L(r,4+4,,f to BCAT,).
Combining the results of this and the last section we have:

CLASSIFICATION THEOREM 3.3. If dim N % 4 and dim M = 5, there is a
natural homotopy equivalence

0: CAT (M near N) — L(fto BCAT,, )

well defined up to homotopy.
If N has a preferred CAT structure T and dim M > 5, then there is a natural
homotopy equivalence

0z: CAT (M near N; X) - L(fto BCAT},,; 9)
well defined up to homotopy.

Actually, we have shown that for any closed 4 = N, there are natural
homotopy equivalences

04: CAT (M near 4) — L(fto BCAT;,, , near 4)
and

0y, 4: CAT (M near 4; X | A) - L(fto BCAT,, near 4; g | 4).

In the case of 8, one might worry that 8, depends on the embedding of N = R?
and the retraction r: Q - N. We leave it to the reader to verify that the
homotopy class of the homotopy equivalence 6, does not depend on the choice
of embedding N = R? or retraction r: Q — N (see 2.3.2 in Essay V of [4]).
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Let C be a closed subset of N and consider the homotopy commutative
squares

CAT (M near N) — L(fto BCAT;, )

ri r2
oc

CAT (M near C) ——  L(fto BCAT,,,  bear C)

0z

CAT (M near N; &) — L(fto BCAT,.,; 9)

st 52

CAT (M near C; £ | C 'S L(fto BCAT", , near C; g | C)
q

where, with appropriate dimension restrictions, the horizontal maps are homo-
topy equivalences and the vertical maps are Kan fibrations (for r; and s, use
Fact 5 from the proof of Theorem 2.7). Thus, there is a homotopy equivalence
of the fibers of r, and r, and s, and s, over components. So let I';, be a relative
CAT structure (rel ) on an open neighborhood U of C in M and let g, be the
lift corresponding to I'y under 6(0z | y). Then we have

THEOREM 3.4. With the hypothesis of Theorem 3.3, there are natural homotopy
equivalences

(i) CAT (M near N rel T'y) LN L(fto BCAT;,,, rel g,) and

(ii) CAT (M near Nrel I'y; X) =, L(fto BCAT,,, rel go; 9)
of Kan complexes.

We are now in a position to study CAT (M, N) and CAT (M, N; X). Con-
sider the fiber product square

CAT (M, N) - CAT (M)
3.5) i)
CAT (M near N) —» CAT, (N)

where CAT,, (V) is the Kan complex of germs of CAT structures on a neigh-
borhood of Nin M. Letf: M — BTOP,, , classify t(M) and f: N - BTOP},,
classify (z(M) | N, ©(N)). Theorem 3.4 shows that (3.5) is homotopy equivalent
to the fiber product square

F -  L(fto BCAT,,,)
)

)
L(fto BCAT;,,) — L(f to BCAT,,, near N).

If dim N + 4 and dim M > 5, we then have a natural homotopy equivalence

(3.6) CAT (M, N) = L((J, f) to (BCAT,, ,, BCAT., )
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where this latter complex is the Kan complex of lifts of f and f making the
following diagram commute

JBCAT;,, - BCAT,
A !
/" BTQ.7,, - BTOP,,,

There is a relative version of (3.6) using arguments similar to (3.4) which says
the following. Let D be a closed subset of M such that there is a relative CAT
structure I'y on a neighborhood U, of D in M. Let

(Go> 90): (U, U n N) > (BCAT,,,, BCAT},,)

be the lifts associated to this structure. If dim N # 4 and dim M > 5, there is
a natural homotopy equivalence

(3.7) CAT (M, N rel I'g) » L((f, f) to (BCAT,.,, BCAT;, ) rel (go, 9))-

One can analyze the Kan complex CAT (M, N; X) in a similar fashion to
yield that if dim M > 5, there is a natural homotopy equivalence

(3.3 CAT (M, N; Z) - L((f, f) to (BCAT,,,, BCAT,,,); 9)

where g is the lift of 7, , ./ to BCAT, and this latter complex is the complex of
lifts of f and f making the following diagram commute

BCAT, — BCAT;,, ——:'BCAT,,“

7
g l // ///
7/ -~

r ~
J/?QW BTO ny
N &M £ T

Similarly, there is a relative version which states that if D is a closed subset of
M, T, a relative CAT structure rel £ on a neighborhood U of D in M and
(Jo> 90): (U, U n N) > (BCAT,,,, BCAT;, ) is the lift associated to this
structure with 7,,, ,g0 = gly, then if dim M > 5 there is a natural homotopy
equivalence

(3.9) CAT (M, NrelTy; £) - L((f,f) to (BCAT, ., BCAT;, ) rel (o, go): 9)-

We apply (3.7) by taking (M, N) = (R"*%, R") and C = R" — int B", T,
standard, and f, f, g,, and g are constant maps. The left-hand side of (3.7)
becomes

CAT (B" x R%, B" x Orel I'y on 0B" x 0)
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and the right-hand side is equivalent to Q" (TOP;, ,/CAT;,, ), where TOP;, /
CAT;,, is the fiber of j: BCAT,,, — BTOP,,,. By employing the Kan fibra-
tion

Autcar (B" X R, B® x Orel 0B" x 0)
- AutTOP (Bn X .Rq, B” X Ol'el 63" X 0)
— CAT (B" x R%, B" x Orel ', on dB" x 0)

and noting that the total space is contractable by Alexander’s device, we have
thatifn + ¢ > Sand n =+ 4,

(3.10) Autcar (B" x R% B" x Orel 9B" x 0) ~ Q"*!(TOP:, /CAT:, ).
For CAT = PL, the left-hand side is contractible by Alexander’s device so that
@B.11) ifn+q=5n* 4, n,,, (TOP,, /PL,.) = Oforallk > 1.
By employing 3.9, a similar argument yields that if n + ¢ > 5, then
(3.12) Autcay (B® x RIfixed on B x 0) ~ Q"*Y(TOP,.,, ,/CAT,,,.)

where TOP, ., ,/CAT,,,, , is the fiber of BCAT,,, , = BTOP,,, , of classify-
ing spaces for (n + g)-microbundles with trivial n-subbundle. To see that this
complex arises, note that by the CAT isotopy extension theorems the following
is a fibration (up to homotopy):

TOP,,, ./CAT,,, , = TOP:, /CAT:,, — TOP,/CAT,.

For CAT = PL the right-hand side of (3.12) is contractible by Alexander’s
device, so

(.3) ifn + q = 5, then m, 4y (TOP,,, o/PL,y,.) = Oforallk > 1.

THEOREM 3.14. If ¢ < 2 and n + q = 5, then TOP, ., ,/PL,., , is con-
tractible. If ¢ = 3 and n + q > 5, then the natural map

i TOPn+q,n/PLn+q,n - TOPn+q/PLn+q
is a weak homotopy equivalence.

Proof. By [5], m (TOP,, ,/PL,;, ) =0if ¢ <2 and k < n. Also in
[15] it is shown that if ¢ > 3, then i induces an isomorphism on the kth
homotopy groups for k < n. The result now follows from (3.13) and the fact
that TOP, ., /PL,., = K(Z,,3). =
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COROLLARY 3.15. Ifq < 2 and n = 5 then the natural map
] TO +q/PL;:+q - TOPn+q/PLn+q

is a weak homotopy equivalence. If q = 3 and n = 5, then TOP,, [PL;, is
contractible.

Proof. This follows from 3.11, 3.14, the fact that TOP,/PL, = K(Z,, 3) for
n > 5 and the fibrations (up to homotopy)

TO n+q n/PLn+q n & TOP:t'+q/PLn+q - TOP»/PLn' u

By using the techniques of (3.15) and the fact that TOP,/PL, is contractible
for k < 3 (Essay V of [4]), we have

(3.16) TOP2/PL2 is contractible,
(3.17) TOP,,/PLY,, ~ TOP,, /PL,,, forq >3

4. Classification theorems for manifold pairs with boundary

Let (M, N) be a TOP manifold pair with M = 0. Using the techniques of
Section 3, we observe that the techniques of Section 4 in Essay V of [4] routinely
generalize to yield that if dim N % 4 # dim 0N and dim M > 5, then there is
a natural homotopy equivalence

(4.1) CAT (M, N) —= L((f, 3, (£, 3]

to [(BCAT,,,, BCAT", ), (BCAT,,,_;, BCAT';1_))]
where f: M — BTOP, ,, classifies 1(M), of: oM — BTOP, ., ,_, classifies t(OM),
f: N > BTOP}, , classifies (t(M)|y, ©(N)), and 9f: N — BTOP;7}_, classifies

(1(0M)| 5, T(ON)). The right-hand side of (4.1) is the complex of lifts of f, df,
f, and 9f such that the following diagram commutes:

BCAT,,M 1 2 BCAT,.,_,
i)

Q 4T !
NE Me——=——" BTOP;M ~ BTOP

Also, if N has a preferred structure X and (g, 09,): (I, ON) - (BCAT,,
BCAT,_,) classifies this structure, then if dim M > 5, there is a natural
homotopy equivalence

(42) CAT (M, N; %) » L((, o), (f, 9]
to [(BCATn+qa BCAT:+q)’ (BCATn+q 1» BCATn+q l)]; (gO’ ago))
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where this latter complex is the complex of lifts of f, df, f, and 9f such that the
following diagram commutes:

BCAT,_, “‘j - BCAT; ;- ——;,13CAT,,+,,_l

/ 7

7 R /
"BTOP, —— BTOP,, ><+ BTOP,,,

(4.1) and (4.2) also have relative versions which the reader can formulate.
Using the techniques of (3.10) and (3.12) these relative versions show that

43) ifn+4andn+ q = 5, then
Autcar (I x (B® x R, B" x 0) rel X)
~ Q"1 (TOP}, /CAT}, ., TOP}7L_,/CAT7L_ )
where X = I x 0B" x 0ul x B" x R4,
and
44) ifn+ q =S5, then
Autear (I X B® x Birel Y)
~ Q! (TOP, 4 4,n/CAT, 4 g, TOPy g 1,0 1/CAT 4 g—1,n-1)
where Y =1 x B" x 0ul x B" x R%.

5. Sliced approximation, equivalence, smoothings, and triangulations

IfF: 4 x N> A x Q is an embedding such that F commutes with projec-
tion to A, then we say F is an embedding sliced over A.

An embedding F: 4 x N" - A x Q""%is a CAT A-locally flat embedding
if Fis a CAT embedding sliced over 4 and for each (a, x) € A X N, there exists
a neighborhood U of a in 4, a neighborhood V of x in N, and a CAT embedding

HUxV xR ->UxQ

slicedover Uand with H| U x V x 0 = F| U x V.

Consider the standard k-simplex A*, Let 0 € A* and let A be a subcomplex
of 0A* of the following type. If CAT = PL, we allow A = 9A¥, the empty set,
or a retract of 0A* — 0. If CAT = DIFF, we only allow A = A,
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THEOREM 5.1. (SLICED APPROXIMATION OF LOCALLY FLAT EMBEDDINGS).  Let
N" and Q"*1 be CAT manifolds with N compact,n + q = 6 (= 5 if oM = Q)
and let A = 0A* be as described above. Suppose F: A* x (N, ON) — A* x
(Q, 0Q) is a TOP A*-locally flat embedding such that

() F(A* x 9Q) = A* x 0N and
(@) F|A x (N, dN) is a CAT A*-locally flat embedding.

Then, given &: Q — [0, 00) with ¢ | p,F(A* x N) > 0, there exists an ambient
isotopy G,: A* x (Q, 0Q) —» A* x (Q, 0Q), t € I, sliced over A* such that

(3) G,F: A* x (N, 0N) — A* x (Q, 0Q) is a CAT A*-locally flat embedding,
@ G,|A x (Q, 00Q) is the identity, and
(5) G, is within ¢ of (id | A%) x id | O

if and only if a sequence of obstructions in

(5) H'(A* x (N, ON)/A x (N, dN); =; (TOP,,,/CAT,,,; TOP,,, ./
CATn+q 1> TC)Pn+q 1,n— I/CATn+q 1,n— I’TOPn+q n/CATn+q n)) {f@M'# 0 or

(6) Hi(Ak x N/Ak X N ut (TOPn+q/CATn+q’ TOPn-l-q n/CATn+q n)) lf
oM =9

vanish.

Proof. We assume for simplicity that dM = 0, as the bounded case follows
from a similar argument. By the TOP isotopy extension theorem, there exists
a TOP ambient isotopy H,: A* x Q — A* x Q, t € I, with H, (id | A* x f;) =
F, where f, = F| 0 x N. Now (Q, fo()) is a TOP manifold pair, with f,(N)
having a preferred CAT manifold structure f,(X), where X is the given CAT
manifold structure on N. Let I' be the given CAT manifold structure on Q and
consider the CAT structure I = Hy*(A* x T') on A* x Q sliced over A*. By
the classification Theorem 3.8,

CAT (@, fo(N); fo(Z)) = L((f, f) to (BCAT,,,, BCAT;,,); 9)

where f: M — BTOP,,, classifies (M), f: fo(N) - BTOP;, 4 Classifies
(M) | fo(N), ©(fo(N)), and g: fo(N) - BCAT, classifies f,(X). However, I
gives a preferred k-simplex g of lifts of f to BCAT,,,, and by our hypotheses,
I | A x Qis a relative CAT structure on A % (Q, fo(IV)) rel fo(Z) sliced over
A. Thus the obstruction to sliced concording rel A x Q the CAT structure I/
on A* x Q to a relative CAT structure I'” on A* x (Q, fo(N)) rel fo(Z) sliced
over A* is the obstruction to the existence of a map §: A* x fo(N) -» BCAT;,,
with i§ | A x fo(N) = g | A x fo(N), making the following diagram commute
up to homotopy rel A x fo(N) =« A x Q:

BCAT, —— BCAT;,, — BCAT,,,

lapz\ l?) ‘\\\ l?l
BTOP, . BTOP;,, — BTy

"><fo(N) =AF x Q.

[ N
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These obstructions lie in the cohomology groups given in (5.1). If these obstruc-
tions vanish, then I'” is sliced concordant rel A x Q to a relative CAT structure

I on A* x (Q, fo(N)) rel fo(X) sliced over A*. But by Theorem 1.6, applied to
the case where (M, N) = (Q, 9) and

(A A) = (A* x A x TuA* x 1),

there exists an e-isotopy R,: A* x Q —» A¥ x Q, t € I, with R, the identity for
tedA* x Tu A* x 0, and with R;: (A* x Q) = (A¥ x Q)r» a CAT iso-
morphism. The required G, is given by G, = H,R,H;'. m

Remark. Let C — N be a closed subset of N and suppose F is CAT near
A* x C. Our proof of (5.1) shows that the resulting G, has the property that G,
is the identity near A* x Cforallte L

COROLLARY 5.2. With the hypothesis of (5.1), if CAT = PL and q > 3, the
resulting G, exists. If q < 2, then G, exists if and only if a well defined obstruction
in H3(A* x (N, ON)/A x (N, ON); Z,) vanishes.

Proof. This follows from (5.1) and (3.14). =

COROLLARY 5.3. With the hypothesis of (5.1), if CAT = DIFF, q > 3 and
k < 2q — n — 3, the resulting H exists.

Proof. This follows from (5.1), (3.14), and the result of K. Millett that
7y (PLyt o/PLys g m 054g/0,) = 0 fori <2g — n — 3 (cf. [13]). m

THEOREM 5.4. Let N" and Q"*? be PL manifolds withn + q > 6 (= 5 if
ON = Q) and q > 3. Let k be a nonnegative integer. Then givene: Q — [0, o)
there exists a 5: Q — [0, ) such that if F = {f,|se A¥}: A* x (N, N) -
A* x (Q, 8Q) is a PL embedding sliced over A* with

(1) F~I(A* x 8Q) = A* x oN,
2) F|oA* x N = (id | 0AY) x f,,
(3) e| F(A* x N) > 0, and

4) f. is within & of f, for all s € A*

then there is a PL ambient isotopy G,, t € I, of A* x Q sliced over A* with

(5) G,F = (id | A% x fo,

(6) G, | 0A* x Q is the identity for all t € I,
(7) G (A* x 8Q) = A* x ON, and

(8) G, is within ¢ of the identity.

Proof. We first show that there exists a TOP ambient isotopy G,, ¢ € I, of
A* x Q sliced over A* satisfying (5)-(8).2 First assume that F is the product

2 The author is grateful to the referee for suggesting a simpler proof of the topological
version of (5.4).
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embedding over a product neighborhood 9A* x [0, &] of 0A* in Ak, i.e., we
write A = A* as A = A’ U 0A’ x [0, ¢]. By the isotopy extension theorem
there is a homeomorphism H: A’ x Q —» A’ x Q sliced over A’ such that

H@d| A x fy) = F| A" x (N, dN)

with H close to the identity if Fis close toid | A’ x fy. Then H| 0A’ x Q is
close to the identity and H | A’ x foN = id. Hence H | 0A’ x Q is isotopic
to the identity relative to A’ x f,N by a small isotopy. In other words, we can
extend Hto A x Qsothat H(id x f,) = F, H| 0A x Q = id and H is close
to the identity. Hence, there is a sliced isotopy H, of H = H, to the identity
relative to 0A¥ x Q. Then G, = H,o Hg' satisfies G, = identity and G, F =
H,H;'F = Hy'F = id x f,. Furthermore, G, is close to the identity and
G, | 0A* x Q = identity.

Now, since F is a TOP Ak-locally flat embedding, it may be deformed by a
small sliced isotopy K, fixed over dA* so that K, o F is of the assumed form.
Taking K,, for 0 < ¢ < 1/2 and G,,_,K, for 1/2 <t < 1 gives a new G,
satisfying (5)-(8).

We now modify G, so that G, is a PL automorphism of A* x Q. Let I" be the
given PL structure on Q and X the given PL structure on f,(N). The structures
A* x T and G are sliced concordant rel dA* x Q, hence by the proof of (5.1)
they are sliced concordant rel JA* x Q as relative PL structures on A* x
(Q, fo(N)) rel X sliced over A*. Then, by (1.7), there is a small ambient isotopy

H,: A % (Q, fo(N)) = A x (Q, fo(N), tel,

sliced over A* with H,: (A* x (Q, fo(N))g,-1axx1y = A* X (Q, fo(N))r a PL
isomorphism. We then let G,: A* x Q — A* x Q be given by

Es q) = G, (s, 9) for0 <t <1/2
o Hy_y(s, q) for12 <t < 1.

Then G, is a small TOP ambient isotopy of A* x Q sliced over A¥, satisfying
(5)-(8), and with G, a PL automorphism.

Let G: A* x I x Q » A* x I x Q be given by G(s, t, q) = G(s, q). By
(5.2), we can assume that G | A* x I x N is a PL embedding of A* x I x N
into A* x I x Q sliced over A* x I.

By the construction of the third paragraph of this proof applied to G | A* x
1 x N, there exists a small ambient isotopy J, of A¥ x I x Q sliced over
A* x I such that J, is a PL automorphism of A* x I x Q, J, | A* x 1 x Q
is the identity, and

JIG|A* x I x N=(id|A* x I) x f,.
Let G,: A* x Q — A* x Q be the small PL ambient isotopy of A* x Q sliced

over A* given by G(r, q) = J,(r, 1 — s, q). Then Gy(r, q) = J,(r, 1, q) is the
identity and

G F(r, ) = Gy(r, /@) = J,(r, 0, ££q)) = J,G(r, 0, £()) = (r, 0, fo(q)),



CLASSIFICATION THEOREMS 217

so that G,F = (id | A¥) x f,. Thus G, is the required PL ambient isotopy of
A*x 0. m

COROLLARY 5.5. (SLICED EQUIVALENCE). Let N and Q be as in (5.4). Suppose
g =3 and h: N - Q is a TOP embedding (not necessarily locally flat) with
h™1(@Q) = ON, Let k be a nonnegative integer. Then given &: Q — [0, 00),
with ¢ | A(N) > 0, there exists 6: Q — [0, o) such that if g: N - Q is a PL
embedding within & of h with g~'(0Q) = ON and if G: A* x N - A* x Qisa
PL embedding sliced over A* such that

(1) G-'(A* x Q) = A* x @N,
(2) G is within 6 of (id | A¥) x h and
() G|OoA* x N=(d|AY) x g

then there is a PL ambient isotopy G,, t € I, of A¥ x Q sliced over A* with ‘

4 G,G=(id|AY x g,
(5) G,| 0A* x Q is the identity, and
(6) G, is within ¢ of the identity for all t € I.

Furthermore, the above & works for all TOP embeddings sufficiently near h.

Proof. This follows from (5.4), the fibered general position theorem of
Millett [12], and sliced engulfing (cf. [10, p. 248]). m

COROLLARY 5.6. Let Emb®AT (N, Q"*9) be the s.s. complex of proper CAT
embeddings of N" in Q"*%. If n+ q>6(=5if ON=0) and q = 3 then
Emb®™ (N, Q) is locally p-connected at points of EmbT°? (N, Q) for all p.

COROLLARY 5.7. (SLICED APPROXIMATION). Let N" be a PL submanifold of the
PL manifold Q"*9, withq = 3andn + q = 6 (= 5if ON = 0). Suppose A is a
simplicial complex and B is a subcomplex of A. Leth: A x N— A x Q bea
proper TOP embedding sliced over A with h| B x N a PL embedding. Then
for any &: Q — [0, ©) there is a proper PL embedding g: A x N> A x Q
sliced over A such that

() g|Bx N=h|Bx Nand
(2) g is within ¢ of (id | A¥) x h.

Proof. This is a homotopy result which follows from (5.6) and the fact that
a component of Emb®L (N, Q) is dense in a component of Emb™F (N, Q)
(cf. [10, p. 245]). m

Remark 5.8. By local application of (5.5) and (5.7), (5.5) and (5.7) have
topological analogues. Thus, in (5.5) and (5.7) we can replace N and Q by
TOP manifolds and replace PL embeddings by TOP locally flat embeddings.
A stronger topological analogue of (5.4) is proven in [3].
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Let Emb'F (W, Q) denote the s.s. complex of TOP locally flat embeddings of
N into Q. Then (5.6), (5.7), and (5.8) immediately imply:

COROLLARY 5.9. Let N and Q be as in (5.7). Then the natural inclusions
Emb™ (N, Q) - Emb'F (N, Q) » Emb™ (N, Q)

are homotopy equivalences, with all homotopies as small as desired.

THEOREM 5.10. (SLICED SMOOTHINGS AND TRIANGULATIONS). Let Q"% be a
CAT manifold withn + q > 6 (= 5if 0Q = 0), and let N" be a TOP manifold
with n += 4,5(% 4 if ON = 0). Let A = 0A* be as in the beginning of this
section. Suppose F: A*¥ x (N, ON) — A* x (Q, 6Q) is a TOP locally flat
embedding sliced over A* with F~1(A* x 0Q) = A* x 0N such that F(A x N)
is a proper CAT submanifold of A x Q. Then given &: Q — [0, ) with
e | p,F(A* x N) > 0, there exists an ambient isotopy H,, t € I, of A* x Q sliced
over A* such that

(1) H,F(A* x N) is a proper CAT submanifold of A* x Q,

(2) H,| (A x N) is the identity for all t € I, and

(3) H,is within & of (id|,x x idg
if and only if a sequence of obstructions in

4) H'YA* x (N, 0N)IA x (N, oN); = (TOP,,,/CAT,,,; TOP,,, ./
CAT, 4,1, TOPI;_ [CATI; ;s TOP,, /CAT:, ) if 0N * 0; or

(55 H'(A* x N/JA x N; n (TOP,, ,/CAT,,,, TOP,, /CAT,.)) if ON = 0
vanishes.

Proof. This follows in exactly the same manner as (5.1), using (3.6) in place
of (3.8). m

COROLLARY 5.11. With the hypothesis of (5.10), if CAT = PL, q < 2, and
n = 5, the resulting H exists. If ¢ > 3 andn = 5, the resulting H exists if and
only if a well-defined obstruction in H3(A* x (N, dN)/A x (N, dN); Z,)
vanishes.

Proof. This follows from (5.10) and (3.15). m
Remark 5.13. There are obvious relative versions of (5.1)—(5.11).

Remark 5.14. Note that by (5.10), (3.16), and (3.17), if N is a 3-manifold
without boundary and Q"*? is a PL manifold without boundary, ¢ > 3, then
the resulting H of (5.10) always exist. If ¢ < 2, there is an obstruction in
H (A* x N|A x N; Z,) which vanishes if and only if H exists.
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