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Let M be a topological manifold with N a locally flat submanifold. In I-15,1,
C. Rourke and B. Sanderson relativized the main diagram of R. Kirby and
L. Siebenmann I-2] to get stable classification theorems for PL structures on M
with N a PL submanifold. Kirby and Siebenmann [4-1, I-6] and Burghelea and
Lashof [1] exploit the ideas of immersion theory to get unstable parameterized
classification theorems for smooth or PL manifold structures on M. In this
paper, we observe that this immersion theoretic approach can be relativized to
yield unstable parameterized classification theorems for smooth or PL manifold
structures on M with N a smooth or PL submanifold.

R. Miller l-10] has given a codimension 4 fiber preserving equivalence theorem
which implies that if (K, Ko) is a polyhedral pair, f: Ko N a PL embedding,
where N is a PL manifold, and dim N dim (K\Ko) > 4, then the inclusion
EmbPL (K, N; f) EmbxP (K, N; f) is a weak homotopy equivalence, with
all homotopies as small as desired. Here EmbcAT (K, N; f), CAT TOP or
PL, is the semisimplicial complex of CAT embeddings of K into N extendingf.
The primary motivation for this paper is to prove in Section 5 a codimension 3
fiber preserving equivalence theorem and then to prove the above result in co-
dimension 3, but with the further requirement that K be a PL manifold and
dim N > 5. This codimension 3 result then has its subsequent applications to
topological embedding spaces (see [8], [11], [17]).

0. Notation and definitions

In this paper we will be concerned with three categories, namely the category
TOP of topological manifolds and continuous maps, the category PL of piece-
wise linear manifolds and piecewise linear maps, and the category DIFF of Coo
manifolds and C OO maps. We denote the boundary of a CAT manifold N by
0M. For the objects of DIFF we allow C manifolds with corners, namely we
allow coordinate charts which are diffeomorphic to open subsets of

/,] {(Xl,..., x,) e/" x >_ O, xz >_ 0,..., x >_ 0}.
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We let 0 R" denote the origin of R, and we let A denote the standard n-
simplex in R.
A CAT manifold pair (M, iV) is a pair of CAT manifolds M and N with N a

CAT locally flat submanifold of the CAT manifold M and 0M c N ON.
We refer to Milnor [14] and Kuiper-Lashof [-7] for the theory of CAT micro-
bundles. Let M be a CAT manifold and let z(M) denote the CAT tangent
microbundle of M. IfM is unbounded, then z(M) is the microbundle with total
space M x M, zero section the diagonal map A: M- M x M given by
A(x) (x, x), and projection the projection map on the second factor. If M is
bounded, we let

z(M) (zM w open collar of OM) M.

A CAT (n, m)-mierobundle pair is a pair of CAT microbundles (", r/’) over a
CAT object X such that r/" is a subbundle of ", i.e., E(r/’) = E(") in some
neighborhood of the zero section, and for each x X, there exists microbundle
charts h: U x R" E(rl), #: U x R" E(O, where U is a neighborhood of
x, such that

U m ()

v R"

commutes.
Let (o, r/o) and (x, r/a) be CAT microbundle pairs over CAT objects Xo

and Xx, respectively. A CAT morphism 0: (o, r/o) (o, r/i) consists of a
neighborhood U of the zero section of (o, r/o) in E(o), a CAT map of pairs

H: (U, U c E(r/o)) - (E(l), E(r/1)),

and a CAT map h: Xo --* Xx such that pxH hpo, Hio ih, and for each
xX

Hluo-,: (U c pff (x), U c pff (x)c E(r/o))

"* (P7 (h(x)), p? (h(x)) c E(rl))

is a CAT open embedding of pairs. Here pj and s, j 0, 1, are the projections
and zero-sections of (o, r/o) and

1. Relative CAT submersions are CAT bundle pairs

In this section we relativize the "CAT submersions are CAT bundles"
theorem of Burghelea and Lashof [1] and of Kirby and Siebenmann [4]. A
relative CAT submersion (CAT TOP, PL, or DIFF) is a CAT map
p: (E, E’) - (B, B) of CAT manifold pairs such that p: E B is a CAT sub-
mersion and for each point y E’, there is an open neighborhood N ofp(y) in
B and an open embeddingf: (V, V’) x N - (E, E’) of CAT pairs, where V is
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an open subset ofp-l(p(y)) containing y and V’ V c E’, such that the com-
position pf is the projection (V, V’) x N --. N and f(u, p(y)) u. The mapf
is called a relative CAT product chart about (V, V’). Note that ifp: (E, E’)
(B, B) is a relative CAT submersion, then p E" E’ B is a CAT submersion.
A CAT bundle pair is a relative CAT submersion p: (E, E’) (B, B) such

that p" E B is a locally trivial CAT bundle, and p E" E’ --. B is a locally
trivial CAT subbundle.

Let (M, N) be a TOP manifold pair. By a relative CAT structure on the mani-
foMpair Ak x (N, M) sliced over Ak we mean a CAT structure F on the product
Ak x M such that the projection (Ak x (M, N))r - (Ak, Ak) is a relative CAT
submersion. Note that for each Ak, F x (M, N) is a CAT structure on
M inducing a CAT structure on N making N a CAT (locally flat) submanifold.

Let E be a CAT structure on N. By a relative CAT structure on Ak x (M, N)
rel X sliced over Ak we mean a relative CAT structure F on Ak x (M, N) sliced
over Ak with F[ Ak N Ak Z.
The first goal of this section is to prove"

THEOREM 1.1. Let (M, N) be a TOP manifold pair and let Z be a CAT
structure on N. Suppose F is a relative CAT structure on Ak (M, N) sliced
over Ak. If either

(i) dimN4:4 4: dim SN and dim M >_ 6(>_ 5/ftgM= 0),or
(ii) dimM > 6(>_ 5/ftgM= 0) andF[Ak x N= Ak x X, then the pro-

jection pl (Ak x (M, N))r (Ak, Ak) is a CAT bundle pair.

By local applications of (1.1) we have:

COROLLARY 1.2. Let p: (E, E’) - (B, B) be a relative CAT submersion of
CAT manifoldpairs such that p is a TOP bundle pair. Ifeither

(i) dim (p-(x) c E’) 4:4 4: dim (p-t(x) c E’) and dim (p-l(x)) >_
6 ( >_ 5 ifp- (x) 0), for all x B, or

(ii) p[ E’: E’ B is a locally trivial CAT bundle and dim (p-(x)) >_
6 (>_ 5 ifp-l(x) O)for all x B,
then p: (E, E’) (B, B) is a CAT bundle pair.

Remark 1.3. It is an easy exercise, using the CAT isotopy extension theorem
for isotopies respecting a submanifold, to show that if p: (E, E’) (B, B) is a
relative CAT submersion then there exists a relative CAT product chart for a
neighborhood of a compact subset of the fiber ofp. (cf. Corollary 6.9 of [-16].)
Thus, ifp is a proper relative CAT submersion, i.e., for each compactum K in B,
(p-i(K), p-(K) c E’) is a compact pair, then p: (E, E’) (B, B) is a CAT
bundle with no dimension restrictions on p-(x).

Our proof of (1.1) is just a relativized version of the corresponding submer-
sions are bundles proof of Kirby and Siebenmann (cf. Essay II, Theorem 1.8
of [4]).
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To prove (1.1) we require the following two lemmas.

LEMMA 1.4. Let (M, N) be a connected CAT manifoM pair and let

h: (M, N) (P, P’) x R

be a homeomorphism, where (P, P’) is a TOP manifold pair.
(i) Ifdim N 4:4 4: dim ON and dim M > 6, then (M, N) has thefollowin9

engulfing property:

E(M, N). For any pair of integers a < b, there exists a CAT isotopy

ht: (M,N) (M,N), 0 < < 1,

of id[ M, with compact support in h-l(p x (a 1, b + 1)), such that

hlh- l((p, p,) x (- oz, a)) = h- l((P, P’) x (- oo, b]).

(ii) If dim N 4: 4, dim M > 5 and property E(OM, ON) is verified, then
property E(M, N) holds true.

(iii) If dim. M > 6 and property E(N, O) is verified, then property E(M, N)
holds true.

(iv) If dim M >_ 5 and properties E(N, O) and E(OM, ON) are verified, then
property E(M, N) holds true.

Proof To verify (i) when dim N < 3, note that P’ has a CAT structure and
hence N is CAT isomorphic to P’ x R by Moise’s 3-dimensional Hauptver-
mutung, so that property E(N, 0) holds true. Then, the CAT isotopy extension
theorem and CAT engulfing verify property E(M, N).
To verify the remaining cases of (i), (ii), (iii), and (iv), use CAT engulfing in a

relative collar of (0M, ON) in (M, N), respecting N, to verify property E(OM,
ON). Then engulf with compact support, respecting N, in int M. This respectful
engulfing is achieved by first engulfing in ON or N and then using the CAT iso-
topy extension theorem and CAT engulfing in 0M or M minus the interior of a
regular neighborhood of N in OM or M. []

LEMMA 1.5. Let (M, N) be a compact TOP manifoMpair and let Z, be a CAT
structure on N x R. Suppose F is a relative CAT structure on Ak x (M, N) x R
sliced over Ak. If either

(i) dimN4:3 4: dim ON and dimM > 5(> 4/ftgM= 0),or
(ii) dimM > 5(> 4/f0M= 0) andFIAk x N x R Ak x X,

then for any pair of integers a < b there exists an open set Uab in Ak x M x R
containing Ak x M x [a, b] such that the projection

p:(Uab, Uac(ak x N x R))(Ak,ak)

is a CAT bundle pair.



194 RONALD J. STERN

Proof. Let C be a closed subset of Ak and consider the following engulfing
property:

E,(s, C). For any pair of integers a _< b, there exists a CAT isotopy

ht: (Ak x (M, N) x R)r (Ak x (M, N) x R)r

of idlAk x M x R which commutes with projection to Ak, such that when
[a- s,b + s] c [-r + 2, r- 2],

hl(Ak X M x (-, a)) D C x M x (-, b).

Note that E,(s, C) implies Eu(r, D) if r >_ u, v >_ s, and C D D. Also, one can
easily verify the addition property"

(A) E,(s, C) and E,(t, D) implies E(s + t, C u D).

Fix an integer r < c, and let Ux be an open neighborhood of a point x A
and consider a relative CAT product chart

f: Ux x ((M, N) x (-r, r))rl- ,o,) "* (Ak x (M, N) x R)r

for the relative CAT submersion p. Such a chart exists (for an arbitrary r) by
(1.3) and by noting that (M, N) x I-r, r] is a compact manifold pair.
For xeAk, let F,, Fix x M x (-r,r). Then for any CAT isotopy

aT" ((M, N) x (-r, r))r., ((M, N) x (-r, r))r.,
of id[M x (-r, r) with compact support and for any CAT map " A --.
[-0, 1] with support in U, define a CAT isotopy

h’" (Ak x (M, N) x R)r (Ak x (M, N) x R)r

which commutes with projection to Ak by letting hf(u, s, v) f(u, tT(u),(s, v))
and by letting h be the identity off of the image off.
Note that for fixed r, x, andf, there exists an open neighborhood V of x in

such that if " Ak [0, 1] is a CAT function with support () c U then as
ranges over the isotopies given by (1.4), one for each interval [a, b]
[-r + 2, r 2], the corresponding isotopies h establish property E,(1, -1(1)).
By letting x and fvary, with r fixed, form an open covering { Uj} of Ak by such
sets U.
By taking a fine handle decomposition ofAk, we can decompose Ak into k +

closed sets Co,..., Ck, where each Ci is the disjoint union of closed sets Cij
each contained in some Uk. Now for each C let i" Ak -’ [0, 1] be a CAT
function with (C) 1, with support in some UR, and for a fixed i, the ’s
have disjoint support. Then, for a fixed i, the isotopies corresponding to the

’s compose to establish properties E,(1, C).
By k applications of the addition property (A), we have that property

Er(k + 1, Ak) holds true. But note that in the above argument, r is as large as
we please, so that Eoo(k + 1, Ak) holds true.
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Let

ht: (Ak x (M, N) x R)r- (Ak x (M, N) x R)r

be the CAT isotopy of id Ak M R given by property Eoo(k + l, Ak) for
the integers a < b, and let

Zab hl(Ak x M x (-co, a’])- (Ak x M x (-co, a)).

Then Uab U {hkx(z,b) n 0, +1, +2,... }, where h’ is the n-fold com-
position of hi, is an open subset ofAk x M x R and contains Ak x M x I-a, hi.

Let U’,b U,b c (Ak x N x R). Form the quotient

q: Uab B U.b/{hl(x) x[ x Ak m x R}

and observe that q and

q’ q[ U. U.n
are infinite cyclic covering maps with hi Ua and h U’b infinite cyclic cover-
ing translations of q and q’, respectively. Let g" B Ak be the unique map
such that the composition 9q P U.b. We have thus factored

P" (Uob, U’ b) "-" (A, A)
as

(Ob, V’,b) q___2_, (B, e’) -2--, (Ak, Ak).

Now .q is a proper relative CAT submersion, hence a CAT bundle pair by (1.3).
Using the fact that q" (Ub, U’b (B, B’) is an infinite cyclic covering map of
pairs, it is an easy exercise to verify that gq, hence P Ub, is a CAT bundle
pair.

Proofof Theorem 1.1. Fix a point x Ak and set F’ F x x (M, N) and
identify (M, N) (M, N)r,. Filter (M, N) by compact CAT manifold pairs

(Mo, No) c (M, N) c..., with (mi, mi) (M, N).

Choose disjoint open relative CAT bicollarings (Ui, V3 - (3Mi, SNi) x R of
the frontiers (JMi, fiN3 with the relative collar of (tiM, tSNi) in (Mi, Nl) being
(6MitSNi) x (-co, 0]. By (1.5) there is an open subset Ei of (Ak x iM x R)r
containing Ak x iM x 0, such that

(E, Ei c (A x iNi x R))r - (Ak, Ak)
is a CAT bundle pair. Let E[ E c (Ak x JN x R). Then, by the relative
CAT bundle homotopy theorem, there exists a CAT isomorphism of pairs

h: Ak x (Fi, F[) (Ei, E’)

which commutes with projection to Ak and is the identity over x. Let

(M’, N[) (F c (6M x (-co, 0]), F[ c (6N’ x (-co, 0])).
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Let the CAT compact manifold pair (Xi, Yi) c (Ak x (M, N)r be given by

(X, Yi)= {Ak x ((M,- Ei, N,- El))w h,(Ak x (M[, N/)))r.

Then (Xi, Yi) c (Xi+l, Yi+l)and (Xi, Y,) (Ak x (M, N))r. Note that

p: (X, Y3 - A, A)
is a proper relative CAT submersion, hence a trivial CAT bundle pair by (1.3).
Let fi: Ak x (M, N)- (X, Y) be CAT isomorphisms which commute with
projection to Ak and are the identity over x given by the relative CAT bundle
homotopy theorem. By the Ak parametered CAT isotopy extension theorem
respecting a submanifold, we can arrange inductively that

f+ Ak x (M, N) =f.
Then limfi f: Ak x (M, N)- (AR x (M, N))r is a CAT isomorphism
respecting projection to Ak, so that (Ak (M, N))r- (Ak, Ak) is a (trivial)
CAT bundle pair.
We now wish to refine (1.1), for applications in Section 5, so that the triviali-

zation of the bundle pair in (1.1) can be realized by a small ambient isotopy of
Ak (M, N) respecting projection to Ak.

Let Fo be a relative CAT structure on (M, N) and let F be a relative CAT
structure on Ak (M, N) sliced over Ak. Finally, suppose that C M is a
closed subset such that F Ak Fo near Ak C, and e: Ak M
is continuous map.

THEOREM 1.6. (SLICED CONCORDANCE RESPECTING A SUBMANIFOLD IMPLIES

ISOTOVY RESVECTIqG A SUBMANIFOLD). If CAT PL let A Ak be any con-
tractible subpolyhedron, and if CAT DIFF let A be some face of Ak or BAk

minus the interior of some principal face. Assume that F IA x M A x Fo.
Then if dim N : 4 dim (cON- C), dim M >_ 5, and dim (cOM- C) > 5
if BM C O, there exists an e isotopy ht, [0, 1], of idl Ak x M sliced
over Ak and respecting Ak N, to a CAT isomorphism oJ’pairs

h:Ak x (M, N)ro -o (Ak x (M, N))r,

so that ht fixes A x M and a neighborhood ofAk C.

THEOREM 1.7. (SLICED CONCORDANCE REL A SUBMANIFOLD IMPLIES ISOTOPY REL
A SUBMANFOLD). In addition to the data of (1.6) assume that F IAk x N
Ak x Fo N. Then the conclusion of(1.6) holds under the weaker hypothesis that
dim M >_ 5 and if M- C O, then dim (0M- C) > 5. Furthermore, ht
also fixes Ak x N.

We list some corollaries of these two theorems.

COROLLARY 1.8. Let (M, N) be a TOP manifold pair with dim N 4:4 :l:
dim ON and dim M >_ 6 (>_ 5 ifOM 0). Let F be a relative CAT structure on
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Ag x (M, N) sliced over Ag and let F’ be a relative CAT structure on Ag x
(M’, M’ N) sliced over Ag, where M’ is an open subset of M. Suppose that
F’ F on A M’. Then F’ extends to a relative CAT structure F" on Ag

(M, N) sliced over Ag and is equal to F on A x M.

Proof Let cr F * x (M, N), where 6 A. Theorem 1.6 yields a sliced
CAT isomorphism of pairs F: Ag (M’, N M’), --. (Ag x (M’, M’ c N)r,.
Then F-I(F) equals A x cr on A M’, so Theorem 1.6 gives a sliced CAT
e-isomorphism of pairs G: Ag x (M’, M’ c N), (Ag x (M’, M’ c N)v-,(r)
equal to the identity on A M’. For small e, FGF-1 Ag M’ extends via
the identity to a sliced automorphism H of the pair Ag x (M, N). Then let
r"= H(r). []

Using Theorem 1.7, one can similarly prove"

COROLLARY 1.9. Let (M, N) be a TOP manifold pair with dim M >_ 6
(> 5 if OM 0). Let E be a CAT structure on N and let F be a relative CAT
structure on Ak (M, N) rel sliced over Ak. Suppose F’ is a relative CAT
structure on Ak (M’, M’ f) N) rel sliced over Ak, where M’ is an open subset
of M. If F’ F on A x M’, then F’ extends to a relative CAT structure on
Ak (M, N) rel E sliced over Ak and is equal to F on A x M.

By arguments that are now standard (see Essay I of [4]) and the "sliced con-
cordance implies isotopy" theorem of Kirby and Siebenmann (Theorem 2.1,
Essay II of [4]) it suffices, in order prove Theorems 1.6 and 1.7, to prove the
following handle lemmas.

THEOREM 1.10. In addition to the data of Theorem 1.6 assume that

(M, N)= B’ (Rn, Rrn), C OBp x (R", Rm),

and that Fo/s the standard structure on B x R". Ifp + m 4:4 andp + n > 5,
then there exists a sliced ambient isotopy ht, [0, 1], ofAg x Bp x R" respect-
ing Ak x B x Rm,fixing A x B x R"w Ak x OB x (R", Rm), such that

h:Ak x B x (R", Rm) (Ak x B x (R", Rm))r

is a CAT embedding on

and over
Ak Bp x (int B", int Bm)

(Ak x Bp x (int B", int Bm))r.

THEOREM 1.11. In addition to the data of Theorem 1.10 assume that

FI Ag x Bp x Rm

is standard. Then the conclusion of Theorem 1.10 holds under the weaker hypoth-
esis that p + n >_ 5. Furthermore,.hfixes Ak x B’ x Rm.
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Remark. Theorems 1.6, 1.7, 1.8, and 1.9 are respectful versions of Theorems
2.1 and 2.6 in Essay II of [4]. Also, Theorems 1.10 and 1.11 only yield versions
of Theorems 1.6 and 1.7, respectively, for relative structures near Ak IV.
However, the case of Theorem 1.6 with N 0 (which is Theorem 2.1 in Essay
II of [4]) allows us to extend these isotopies to all of Ak M with the desired
properties.

Proof of Theorems 1.10 and 1.11. Step 1. Theorem 1.1 yields a CAT iso-
morphism tk:Ak x Bp x (R",Rm)(Ak x B x (R",Rm))r, where in the
case of (1.1 l) tk is the identity on Ak Bp Rm. As every CAT automorphism
of A x (M, N) respecting A x N (fixed on A x N) which commutes with
projection to A, extends to a CAT automorphism of Ak (M, N) respecting
Ak N (fixed on Ak N) which commutes with projection to Ak, we can
assume that b A B (Rn, Rm) iS the identity.

Step 2. We wish to alter b so that b is actually the identity near

Ak x cOBp x (Rn, Rm).

To accomplish this just stretch out the relative sliced collars.

Step 3. We now have a sliced CAT isomorphism of pairs

C: Ak (Bt’ (Rn, nm) -+ (Ak Bp (gn, gm))r

equal the identity on A x B x (R",Rs) and near Ak x cOBp x (R",Rm),
and in the case of (1.11) b is the identity on Ak B Rs. Using the TOP
isotopy extension theorem respecting or rel a submanifold, we get a TOP iso-
morphism with compact support

C’: Ak Bp (R, Rm) - (Ak Bp x (R", Rm))r

sliced over Ak, respecting or rel Ak Bp Rm, equal to b on and over

Ak Bt’ x (Bn, Bm),

and equal to the identity near Ak 6Bp (Rn, Rm) and on A x Bp x (R, Rm).
Then define the required ambient isotopy ht, t 6 [0, 1], of Ak Bt (Rn, Rm)
by

ht(u x) (u, t’(r _t(u), x)) for (u, x) Ak x B x R"

and G: Ak Ak a deformation retraction of Ak onto A. []

2. Classification of relative CAT structures by CAT structures
on microbundle pairs

Let (M, N) be a TOP manifold pair with cOM cON 0. Our goal in this
and the next section is to analyze the s.s. complex CAT (M, N) (and if E is a
preferred CAT structure on N, the s.s. complex CAT (M, N; )) of relative
CAT structures (respectively of relative CAT structures on (M, N) rel E). A
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typical k-simplex of CAT (M, N) (respectively, CAT (M, N; X)) is a relative
CAT structure on A x (M, N) sliced over Ak (respectively a relative CAT
structure on Ak x (M, N) rel E sliced over Ak).

PROPOSITION 2.1. The s.s. complex PL (M, N) and, if dim N 4:4 and
dim M > 5, the s.s. complex DIFF (M, N) are Kan complexes.

Proof. For the complex PL (M, N), the Kan condition is verified by using
a PL retraction Ak Ak, (= dAk minus the interior of the face opposite the th
vertex) to pull back a relative PL structure on Ak, x (M, N) to one on Ak x
(M, N).
For CAT DIFF we will need Theorem 1.1. Let F be a relative CAT

structure on (M, N). Define AUtcAx (M, N)r to be the s.s. group of CAT auto-
morphisms of (M, N)r and let Autxoe (M, N) be the s.s. group of TOP auto-
morphism of (M, N). There is a natural s.s. map Autxov (M, N)--, CAT
(M, N) given by H H(A x F), which induces an injective s.s. map

F: AUtToP (M, N)/AUtcAT (M, N)r CAT (M, N).

The domain of F is a Kan complex as AUtcAT and AUtTo, are group complexes,
hence Kan complexes [see [9], Section 17.1, Section 18.2]. But Theorem 1.1
says that if dim N 4= 4 and dim M > 5, the image of F is the component of
CAT (M, N) containing F. The Kan property of CAT (M, N) is then verified
by varying F. []

Using Theorem 1.3 we similarly prove"

PROPOSITION 2.2. The s.s. complex PL (M, N; Z) and,/fdim M > 5, the s.s.
complex DIFF (M, N; E) are Kan complexes.

To study CAT (M, N) and CAT (M, N; Z) we introduce local versions of
these complexes. A relative CAT structure on Ak x (M, N) near Ak x N
(rel Z) sliced over Ak is a relative CAT structure on a neighborhood of Ak x N
in Ak x M (rel Z) sliced over Ak. Two relative CAT structures F and F’ on
Ak x (M, N) near Ak x N (rel Z) sliced over Ak have the same germ if F F’
on a neighborhood of Ak x N in Ak x M. Let CAT (M near N) (respectively
CAT (M near N; Y)) be the s.s. complex of germs of relative CAT structures on
Ak x (M, N) near Ak x N (respectively rel Z).

PROPOSITION 2.3. With the hypothesis of Proposition 2.1, CAT (M near N)
is a Kan complex, and with the hypothesis ofProposition 2.2, CAT (M near N; Z)
is a Kan complex.

We now relate CAT (M near N) and CAT (M near N; Z) to s.s. complexes of
CAT structures on microbundle pairs. A CAT structure on a TOP microbundle
pair

(, dl/’)" (E(), E(M:)) (X, X)
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over a CAT manifold X is a CAT manifold structure F on an open neighborhood
U of i(X) in E() such that p: (U, U c E(r))r - (X, X) is a relative CAT
submersion. If, in addition, i: (X, X) (U, U c E(.A/’)) is a CAT map, we
call F a CAT microbundle structure on the microbundle pair (, r). Two CAT
(microbundle) structures F and F’ on the microbundle pair (, ./V’) have the
same yerm if F F’ on an open neighborhood of i(X) in E(). We then define
a k-simplex of CAT (, .Ar) (respectively CAT (, )) to be the germ of a CAT
structure (respectively microbundle structure) on the microbundle pair

id p
Ak (X, X).Ak x (, ,A/’)" Ak x (E(), E(vV)): x

idxi

If the microbundle .A/" has a preferred CAT structure (respectively micro-
bundle structure) F’, then a k-simplex of CAT (, V’; F’) (respectively
CAT (, V F’)) is a germ of a CAT structure (respectively microbundle struc-
ture) on the bundle pair Ak (, ,A/’) such that F E(Ak V’) Ak [".

Let (M, N) be a TOP manifold pair, OM ON . As N is locally flat in
M,

(z(M) N, z(N))" (M x N, N x N) (N, N)

is a TOP microbundle pair, where P2 is projection on the second factor and
A: N - M x N is the diagonal map A(x) (x, x). Suppose that N has a CAT
structure E. Then there are s.s. maps

d: CAT (M near N) - CAT (z(M) IN, z(N))
and

d: CAT (m near N; E) CAT (z(M) IN, x(N); X; x Z)

defined as follows. For F CAT (M near N)(k) let dF CAT (z(M) IN, z(N))
be the CAT structure (F x E, F N x E) on

Ak x (M x N, N x N) (E(Ak x z(m) lm), E(Ak x z(N))).

The s.s. map d is similarly defined.
If N does not possess a CAT structure we remedy the situation as follows.

Embed N in Rq, q > n, and 1.et r: Q N be a retraction of an open neighbor-
hood of N in Rq onto N. Consider the pull-back pair

((M) Q, (Q))

(r*(z(M) N), r*(z(N)))" (M x Q, N x Q) (Q, Q)

where j(y) (r(y), y).

Then, as Q has a CAT structure,

CAT (t(M) Q, t(Q)) and CAT ((M) Q, (Q))

are defined and the rule (F, F N) - (F x Q, FIN x Q) determines a s.s.
map

d: CAT (M near N) - CAT ((M) Q, (Q))
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and passage to germs determines a s.s. map

d: CAT (M near N) - CAT ((M) N, (N))

inj lim {CAT ((M) U, (U))" N c U open in Q).

Our goal in this section is to show that in most instances, d and d are homotopy
equivalences.

PROPOSITION 2.4. The s.s. complexes PL ((M) N, (N)), PL ((M) N, (N))
and, if dim N :1:4 and dim M >_ 5, the s.s. complexes DIFF ((M) N, (N))
and DIFF ((M) N, (N)) are Kan complexes.

Proof. The two PL complexes are Kan by using a PL retraction r: A
A, to pull back the PL (microbundle) structures.
To verify the Kan conditions for the DIFF complexes, it suffices to show that

the s.s. complex BDIFF (, A/’) is a Kan complex for a TOP (Rn, Rm)-bundle
pair (, 1/’) over a CAT manifold X. A k-simplex of BDIFF (, ff) is a relative
DIFF manifold structure F on A x ((E(O, E(V’)) such that the projection

A x (E(0, E())--, (A X, A x X)

is a relative CAT submersion. This suffices, as every TOP-microbundle pair
contains a TOP (Rn, R’)-bundle pair, by the relative coring theorem [7]. To
verify the Kan condition for BDIFF (, V’), note that Theorem 1.1(i) implies
that if F e BDIFF (, ,.//’)(k) then there is a CAT isomorphism

h: (Ak x (E(), E(V’))r (Ak x (E(O, E(V’))

sliced over Ak for some relative CAT structure . An application of Theorem
1.6 yields that for any 0-simplex ? A x V of BDIFF (, dl) we have a Kan
fibration

AUtDIFF (, dff)r -’ AUtToP (, rift) -- BDIFF (,

where BDIFF (, V) is the component of BDIFF (, ;V) containing 7.
Varying yields the result.

By a similar application of Theorems 1.1(ii) and 1.7 we have:

PROPOSITION 2.5. The s.s. complex

PL ((M) IN, z(N); d(Y)) PL (z(M) N, z(N);d(X))

and, if dim M > 5, the s.s. complex

DIFF (z(M) N, z(N); d()) DIFF (z(M) N, z(N); d())
are Kan complexes.

PROPOSTOr, 2.6. With the hypothesis ofProposition 2.4 the natural inclusion

CAT ((M) N, (N)) CAT ((M) N, (N))
is a homotopy equivalence ofKan complexes.
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Proof. It suffices to show that if (, .40 is a TOP microbundle pair over a
CAT manifold X and assuming CAT (, V’) and CAT (, M/’) are Kan, then

ZCk (CAT (, V’), CAT (, 4r)) 0 for all k.

For then CAT (, V) CAT (, V’) is a homotopy equivalence, and then by
taking injective limits we obtain our result.
A typical element of rrk (CAT (, V), CAT (, r)) is a CAT structure F on

the microbundle

ak x (E(), E(V’)) ak x (X, X)

such that i" OAk x X --. (gAk x E(40)rt oak E(.’) is a CAT embedding. In the
microbundle

id p
/kI x Ak x E(’)I x x X

idxi

approximate id x by a section i’ such that

i’10 x A x X:0 x A x X-(0 x A x

is a CAT embedding and ionI x (OAk) x Xw x Ak x X. We then
have a new TOP microbundle pair

(’, ")" I x Ak x (E(), E(V)) ,.__ I x Ak x (X, X).
i’

By the relative microbundle homotopy theorem, there exists a TOP morphism

H: (’, all/") I x Ak x (, V’)

over the identity map of the base I x Ak x X and with H equaling the identity
over

I x (gAk) x Xw x Ak x X.

Then F’ H(I x F) is a CAT structure on I x Ak x (, t/’) with

r’l(0 x a x (, w))

a CAT microbundle structure on Ak x (, .A/’).
We are now in a position to state and prove the main theorem of this section.

THORnM 2.7. For every TOP manifoMpair (M, N) with OM ON O, the
followin s.s. maps are homotopy equivalences of Kan complexes:

(i) d: CAT (M near N) CAT ((M) N, (N)), if dim N 4:4 and
dim M > 5;

(ii) dz: CAT (M near N; X) CAT (z(M) N, (N); d(2))/fdim M > 5.

Proof. This theorem follows routinely from the immersion theory machinery
given the following six, easily verified facts.
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Fact 1. The rules

U CAT (M near U) U CAT (M near U, El U)

U CAT ((M) U, (U)) and U CAT (z(M) U, ,(U); d(X U))

are contravariantly functorial on inclusions of open subsets of N. They convert
monotone union to projective limits and finite union to fiber products.

Fact 2. The rules U CAT (M near U) and U CAT (M near U; X; U)
are naturally contravariantly functorial on open TOP embeddings between open
subsets of N. Two open embeddings that are isotopic through open embeddings,
induce homotopic maps.
For any subset A c N, let

CAT (M near A) inj lim {CAT (M near U)" A U open in N},

CAT (M near A; X A) inj lim {CAT (M near U; Y: U)" A c U open in N}

CAT ((M) A, (A)) inj lim {CAT ((M) U, (U))" A U open in N},

CAT (z(M) I.A, (A); d(X A))

inj lim {CAT (,(M) U, z(U); d(X U))" A U open in N}.

We also have s.s. maps

dA" CAT (M near A) --, CAT ((M)I A, (A))
and

dl A" CAT (M near A; X A) --, CAT (z(M) A, z(A); d(Z A)).

Fact 3. If A B is a homotopy equivalence of compacta in N, then the
restriction maps

(i) CAT (z(M)[ B, (B)) --, CAT ((M)I A, $(A))
(ii) CAT (z(M) B, z(B); d(Z B)) --, CAT (z(M) A, z(A); d(Z A))

are homotopy equivalences.

Fact 4. If A is a point of N, then the following maps are homotopy
equivalences"

(i)
(ii)

d" CAT (M near A) --, CAT ((M) A, $(A));
dzla" CAT (M near A; X A) --, CAT (z(M) A, z(A); d(Xl A)).

Corollaries 1.8 and 1.9 imply"

Fact 5. For any compact pair A c B in N, the restriction maps

(i) CAT (M near B) CAT (M near A) and
(ii) CAT (M near B; Z IB) CAT (M near A; X; A)

are Kan fibrations.
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Fact 6. For any compact pair A c B in N, the restriction maps

(i) CAT (t(M) B, (B)) CAT ((M)[ A, (A)) and
(ii) CAT (z(M)[ B, z(B); d(Z B)) -, CAT (z(M)[ A, z(A); d(Z A))

are Kan fibrations.

ProofofFact 6. For CAT PL, (i) and (ii) are verified for open neighbor-
hoods, U c V of A = B in N by considering a PL map

r: Ak x U--* Ak, x V w Ak x U

respecting projection to A* and fixing (A,, V)w A* W where W is a
neighborhood of A in N with W U. Now use r to pull back a CAT structure
on a microbundle over A,, x V w A* x U to a CAT structure on the pull
back bundle over A V.
For CAT DIFF the proof of Proposition 2.4 shows that for any (R

bundle pair (, ,’) over a CAT manifold X BCAT (, ./V) BCAT (lv, V’lv)
is a Kan fibration for every U open in X. By taking injective limits and recalling
that every microbundle pair contains a (R", Rm)-bundle pair, for some (n, m),
we observe that (i) and (ii) are Kan fibrations. []

These six facts imply our theorem as follows. For A N let S(A) be the
statement that dA and d:lA are homotopy equivalences.

Step 1. S(A) holds for any simplex A by Facts 2, 3, and 4, as any such A can
be isotopically shrunk into small neighborhoods of a point in the interior of A.

Step 2. If S(A), S(B), and S(A B) are true for compact A and B, then
S(A w B) is true by Facts 1, 5, and 6.

Step 3. S(A) is true for A any finite simplicial complex by Steps 1 and 2 and
induction.

Step 4. S(A) is true for any compactum A is a coordinate chart of N, as A
is the intersection of finite simplicial complexes.

Step 5. S(A) is true for any compactum A N by Steps 2 and 4 as A is the
finite union of compactum in coordinate charts of N.

Step 6. S(N) is true, as N is the union of compactum N1 c N2 and
Fact implies that d and dr are the projective limit of equivalences dN,, dN2,...,
and dzl,, dl,_,..., respectively. Thus d and dz are equivalences by Facts
5 and 6.

3. Classification theorems

Our goal in this section is to show that the Kan complexes CAT (M, N) and
CAT (M, N; Z) are homotopy equivalent to Kan complexes ofliftings of appro-
priate unstable classifying spaces.
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Let BCATn (CAT TOP, PL, or DIFF) denote the classifying space for
CAT n-microbundles and ?:Aa" the universal CAT n-microbundle over BCATn.
Also, let BCAT."+q denote the classifying space for CAT (n + q, n)-microbundle
pairs and r,n/q

WCAX, :Ar) the universal CAT (n + q, n)-microbundle pair over
BCAT." /q. There are natural maps

r,,, q" BCAT."+ q BCAT.
which restrict t,n / q

WCAX, :AT) to :AT" Also, there are natural maps

j,q" BCAT."+q BTOP+q and j.’ BCAT. BTOP.
We extend these maps to maps

CAT+q TOPT,+

CATn --- BTOPn
so tat., an r.,. are Hurewicz nbrations an te above iagram commutes.

Let (, t") be a TOP (n + q, n)-microbunle pair over a CAT manifold X"
[n + qand choose a fixed classifying morphism tk" (, A/’) wroP, oP) such that b

covers a map f: X - BTOP."+ and tkl V" covers r,,,qf. Also, choose a fixed
classifying morphism q" t’"+q [,n+q

wcAx, )’:AX) WXOP, VOP) covering j.,q. A typical
k-simplex tr of L(fto BCAT."+q) is a map a" Ak x X ]CAT+q such that

j.,qtr fP2" Ak x X TOP,+.
In addition, suppose that there exists a map #" X CAT. such that j.t7
r.,f. Then a typical k-simplex of L(fto BCAT.", q; #) is a k-simplex

tr" Ak x X ICAT."+q
of L(fto BCAT."+q) with r.,qtr #P2" Ak x X CAT..
THEOREM 3.1. If CAT (, .A/’) is Kan, then there is a canonical homotopy

equivalence
0" CAT (, ff) - L(f to BCAT,+q)

of Kan complexes.

THEOREM 3.2. Let X be a CAT microbundle structure on 4/’. ff CAT (, .A;
E) is Kan, then there is a canonical homotopy equivalence

0" CAT (, V’; E) - L(fto BCAT+; 0(X))

of Kan complexes.

Proof of Theorem 3.1. We introduce several new Kan complexes. If X and
Y are spaces, a typical k-simplex of {X, Y} is a map Ak x X Y. If X and
Y are CAT objects, then {X, Y }CAX is the subcomplex of {X, Y } of CAT maps.
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If X is a CAT object a typical k-simplex of MCAT+q(X) is a CAT (n + q, n)-
microbundle pair (, V) over Ak X together with a CAT morphism

(,,,n + qa (’ dr/") gCAT’ AT)"

Two such triples (, V, #) and (’, 4/’’, g’) represent the same simplex if they
coincide on a neighborhood of their respective zero sections. A typical k-simplex
of BCAT+q(X) is a CAT (n + q, n)-microbundle pair (, dl/’) over Ak x X,
with two such microbundle pairs (, vV’) and (, W’) representing the same
k-simplex, if they agree on a neighborhood of their respective zero sections.
For CAT PL or DIFF a typical k-simplex of LCAT+(X) is a k-simplex
(,dV, g) of MCAT+q(X) together with a morphism h" I x (, W)-o

+ q
rToe, Yoe) of CAT microbundle pairs such that

[,.n + qq’t/"- hi’0 (, W) --, ,TOP’ )’OP)"

One easily verifies that the map LCAT+q (X) MTOP+q(X) which selects

(, V’) 1 x (, V) _h rvo, ro)

is a Kan fibration. Also, using the universality property of .,,t.CAT+q, ,"CAX,) one
can show that there are canonical maps

BCAT+ (X) MCAT+ (X) _a {X, BCAT+}CAT
which are homotopy equivalences.
Now consider the commutative diagram

BCAT+ (X) LCAT+q (X) {X, CAT+q}CAT {X, ICAT+}

BTOP+a (X) MTOP+a (X) (X, BTOP+a}CAT {X, BTOP,+q}

where the vertical maps are Kan fibrations and the horizontal maps are hom-
otopy equivalences. For the point (, dr’, b) of MTOP+a (X) we know that
a(, ./V, b) (, W) and ifl(, vV, b) f. Passing to fibers, we have canonical
homotopy equivalences of fibers.

CAT (, r) L(fto BCAT,+). []

Proofof Theorem 3.2. Define the Kan complexes BCAT (X), MCAT (X),
and LCAT (X) as in the proof of Theorem 3.1 except, rather than considering
(n + q, n)-microbundle pairs, consider n-microbundles. We similarily obtain
homotopy equivalences

BCAT. (X) MCAT. (X) {X, BCAT.}
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and a Kan fibration

LCATn (X) MCATn (X).

Consider the commutative diagram

BCAT+q (X) LCAT+q (X) {X, I)CAT+}

BTOPn+q (() MTOP+qX) {X, TOPn}

(X) d--\LCAT (X)

MTOP, (X) {X, BTOP,}

where the vertical maps are Kan fibrations, the horizontal maps are homotopy
equivalences, and the slanted maps are the natural restriction maps.

Let (, rift) be a TOP (n + q, n)-microbundle pair with a CAT microbundle
structure on dr’. Let

i’,un + qtk" (, t/’) WTOp, op) and " TOe

be classifying morphisms such that the point (, A/’, b) of MTOP+q (X) has
the property that fl(, vl, tk) f, a(, r, tk) (, vl/’), r2(, V’, tk) (1/’, ),
5(vl/’, c) G+q,nf, and 5(’, qS) ff. By passing to fibers we get a homotopy
commutative square

CAT (, r) __2_.0
L(f to BCAT+q)

CAT (ff) L(r + q,fto BCAT)

where 0 and 0 are homotopy equivalences and ra is a Kan fibration. Let

A x X CAT (.#,)(o)

be a 0-simplex, where X is the preferred CAT microbundle structure on V’. We
then have the following commutative diagram

AUtDIFF AUtTol, L(fto

AUtDwF(, ,A/’) AUtToP (, ,/V’) CAT (, W) L(fto BCAT2+)

AUtDFF (,/I/’) Autro (r)

__
CAT (1/’) L(rn+q,,f to

BCATn)
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where p, P2, and P3 are Kan fibrations from the proofs of Propositions 2.4 and
2.5 (actually they are a collection of fibrations over components of their respec-
tive bases, and over each component the fiber is the respective DIFF auto-
morphisms with respect to an element of that component). Also, the restriction
maps r# and rs are Kan fibrations by the CAT isotopy extension theorem. Thus,
as 0 and 0 are homotopy equivalences, we have a homotopy equivalence

CAT (, V’; X) L(fto BCAT,+q; 0(E))
of Kan complexes, m

Let (Mn+q, Nq) be a TOP manifold pair with 0M ON 0, and fix a
classifying morphism

covering a mapf: N BTOPnn+q. Extend these to

/’n + q(" ((M)IN, (N)) --, wxoP, Yov)

over a map f: Q BTOPT,+q. If N has a preferred CAT structure Z, then
X x X is a CAT microbundle structure on z(N) and let g" N [ICAT, be the
lift corresponding to X x E under CAT (z(N)) L(r,+.f to BCAT,).
Combining the results of this and the last section we have"

CLASSIFICATION THEOREM 3.3. If dim N # 4 and dim M >_ 5, there is a
natural homotopy equivalence

0" CAT (M near iV) L(f to BCAT,"+q)

well defined up to homotopy.
IfN has a preferred CAT structure E and dim M >_ 5, then there is a natural

homotopy equivalence

0" CAT (M near N; X;) L(fto BCAT+q; g)

well defined up to homotopy.

Actually, we have shown that for any closed A = N, there are natural
homotopy equivalences

OA" CAT (M near A) - L(fto BCAT,"+q near A)
and

01 a" CAT (M near A; X A) L(fto BCAT,"+q near A g A).

In the case of OA one might worry that 0a depends on the embedding ofN Re

and the retraction r’Q N. We leave it to the reader to verify that the
homotopy class of the homotopy equivalence OA does not depend on the choice
of embedding N Rq or retraction r" Q N (see 2.3.2 in Essay V of [4]).
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Let C be a closed subset of N and consider the homotopy commutative
squares

0CAT (M near N) L(f to BCAT+q)

CAT (M near C) 0.___ L(fto BCAT,+q bear C)

CAT (M near N; E) 0__ L(fto BCAT+q; #)

CAT (M near C; Z C L(fto BCAT+q near C; 0 C)

where, with appropriate dimension restrictions, the horizontal maps are homo-
topy equivalences and the vertical maps are Kan fibrations (for r and sl use
Fact 5 from the proof of Theorem 2.7). Thus, there is a homotopy equivalence
of the fibers of rl and r2 and sl and s2 over components. So let Fo be a relative
CAT structure (rel X) on an open neighborhood U of C in M and let #o be the
lift corresponding to Fo under 0(0z v). Then we have

THEOREM 3.4. With the hypothesis ofTheorem 3.3, there are natural homotopy
equivalences

(i) CAT (M near N rel Fo) L(fto BCAT+q rel #o) and

(ii) CAT (M near N rel Fo; Y) L(fto BCAT+ rel go; #)
ofKan complexes.

We are now in a position to study CAT (M, N) and CAT (M, N; Z). Con-
sider the fiber product square

(3.5)
CAT (M, N) - CAT (M)

CAT (M near N) - CATM (N)

where CATM (N) is the Kan complex of germs of CAT structures on a neigh-
borhood of N in M. Letf: M BTOPn/ classify z(M) andf: N BTOP,+
classify (z(M) N, z(N)). Theorem 3.4 shows that (3.5) is homotopy equivalent
to the fiber product square

F L(f to BCATn+)

L(f to BCAT"+q) - L(f to BCATn+ near N).

If dim N 4:4 and dim M >__ 5, we then have a natural homotopy equivalence

(3.6) CAT (M, N) L((f, f) to (BCATn+, BCAT+))
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where this latter complex is the Kan complex of lifts of f and f making the
following diagram commute

ICAT+ [ICAT, +

BTO/", BTOP+
N’ M

There is a relative version of (3.6) using arguments similar to (3.4) which says
the following. Let D be a closed subset of M such that there is a relative CAT
structure Fo on a neighborhood Uo of D in M. Let

(.o, go): (U, U c N) (i]CAT,+q, I)CAT+q)
be the lifts associated to this structure. If dim N 4= 4 and dim M > 5, there is
a natural homotopy equivalence

(3.7) CAT (M, N rel Fo) L((f, f) to (BCAT,+, BCAT]+) rel (.o, g)).

One can analyze the Kan complex CAT (M, N; X) in a similar fashion to
yield that if dim M > 5, there is a natural homotopy equivalence

(3.8) CAT (M, N; x) L((f, f) to (BCAT.+, BCAT]+); g)

where g is the lift of r,+q.fto BCAT, and this latter complex is the complex of
lifts off andfmaking the following diagram commute

Similarly, there is a relative version which states that if D is a closed subset of
M, Fo a relative CAT structure rel X on a neighborhood U of D in M and
(.o, go)" (U, U c N) (BCAT.+q, BCAT+) is the lift associated to this
structure with rn+q, ngo girl, then if dim M >_ 5 there is a natural homotopy
equivalence

(3.9) CAT (M, N rel ro; X) L((f,f) to (BCAT,+q, BCAT,+) rel (o, go): g).

We apply (3.7) by taking (M, N) (R"+, R") and C R int B, Fo
standard, and f, f, .o, and g are constant maps. The left-hand side of (3.7)
becomes

CAT(B" x Ra,B" x 0relFoon0B" x O)
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and the right-hand side is equivalent to fl" (TOP+/CAT+q), where TOP+/
CAT+q is the fiber ofj: BCAT+ --, BTOP+. By employing the Kan fibra-
tion

AUtcAT (B" x R, B" x 0 rel OB" x O)

AutTop (B" x R, B" x 0 rel OB" x O)

-CAT(B" x R,B" x 0relFoonc0B" x 0)

and noting that the total space is eontractable by Alexander’s device, we have
that ifn + q >_ 5andn 4: 4,

(3.10) AUtcAx (B" x R, B" x 0 rel OB" x 0) - f"+ I(TOP+/CAT+).
For CAT PL, the left-hand side is contractible by Alexander’s device so that

(3.11) /fn + q >_ 5, n 4: 4, ZCn+k (TOP+q/PL,+) O for all k >_ 1.

By employing 3.9, a similar argument yields that if n + q > 5, then

(3.12) AUtcA (B" x Rq fixed on B" x 0)_ f"+I(TOP.+,./CAT.+,.)

where TOP.+,./CAT.+q,. is the fiber of BCAT.+,. BTOP.+,. of classify-
ing spaces for (n + q)-microbundles with trivial n-subbundle. To see that this
complex arises, note that by the CAT isotopy extension theorems the following
is a fibration (up to homotopy)"

TOP.+q,./CAT.+,. c TOP+/CAT".+ TOP./CAT..

For CAT PL the right-hand side of (3.12) is contractible by Alexander’s
device, so

(3.13) /fn + q > 5, then 7r,n+ k (TOP.+,./PL.+q,.)= Ofor all k >_ 1.

THEOREM 3.14. If q <_ 2 and n + q > 5, then TOPn+,./PL.+,. is con-
traetible. If q >_ 3 and n + q > 5, then the natural map

i" TOP.+,./PL.+,. TOP.+/PL.+

is a weak homotopy equivalence.

Proof By [5], k (TOP.+q,./PL.+,.) 0 if q _< 2 and k _< n. Also in
[15] it is shown that if q > 3, then induces an isomorphism on the kth
homotopy groups for k < n. The result now follows from (3.13) and the fact
that TOP.+/PL.+ K(Z2, 3). []
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COROLLARY 3.15. /f q < 2 and n >_ 5 then the natural map

j: TOP,"+/PL,+ --. TOPn+/PLn+
is a weak homotopy equivalence. If q > 3 and n > 5, then TOP+/PL",+ is
contractible.

Proof. This follows from 3.11, 3.14, the fact that TOP,/PL, K(Z2, 3) for
n > 5 and the fibrations (up to homotopy)

TOP.+../PL.+.. TOP."+/PL+ TOP./PL.. []

By using the techniques of (3.15) and the fact that TOPdPL is contractible
for k < 3 (Essay V of [4]), we have

(3.16) TOp3/pLa is contractible,

(3.17) TOP+/PL+ TOP3+/PLz+ for q > 3

4. Classification theorems for manifold pairs with boundary

Let (M, N) be a TOP manifold pair with M 4= 0. Using the techniques of
Section 3, we observe that the techniques of Section 4 in Essay V of [-4] routinely
generalize to yield that if dim N 4= 4 4 dim tN and dim M _> 5, then there is
a natural homotopy equivalence

(4.1) CAT (M, N) L([(f, }), (f, f)]
to [(BCAT.+, BCAT."+a), (BCAT.+_ , BCAT,t- 1)]

wheref: M BTOPn+q classifies z(M), tgf: tgM BTOPn+q_, classifies z(tgM),
f: N BTOP+q classifies (z(M)IN, z(N)), and tgf: dN --. BTOP’_t classifies
(z(gM)IoN, z(tgN)). The right-hand side of (4.1) is the complex of lifts off, tgf,
f, and tf such that the following diagram commutes:

Also, if N has a preferred structure X and (go, go): (N, t3N) -. (BCATn,
BCAT._t) classifies this structure, then if dim tgM > 5, there is a natural
homotopy equivalence

(4.2) CA’[ (M, N; Z) -. L([(f, f), (f, f)]
to [(BCATn+a, BCAT+), (BCATn+q_ BCAT.n (go,  go))
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where this latter complex is the complex of lifts of]’, 0]’, f, and Of such that the
following diagram commutes"

-CAT gCAT -CAT

/ n-1BTO BTOP BTOP
__in n+q n+q

go

//.-" /flTOP, BTOP+ BTOP+

NcM.......
(4.1) and (4.2) also have relative versions which the reader can formulate.
Using the techniques of (3.10) and (3.12) these relative versions show that

(4.3) /fn 4: 4andn + q > 5, then

AUtcAx(I x (B x Rq,B x 0) relX)

f"+ (TOP,+/CAT+, TOPT,-1 -1+q_I/CATn+_)
where X= l x dB x 0 3 1 x B x R,
and

(4.4) /fn + q > 5, then

AUtcAT (I X B" X Bq rel Y)_
f"+ (TOP.+q,./CAT+q,., TOP.+_ ,._ :/CAT.+_ ,_)

where Y l x B x O 1 x B x R.
5. Sliced approximation, equivalence, smoothings, and triangulations

If F: A x N A x Q is an embedding such that F commutes with projec-
tion to A, then we say F is an embedding sliced over A.
An embedding F: A x N" A x Q"+ is a CAT A-locally flat embedding

if F is a CAT embedding sliced over A and for each (a, x) A N, there exists
a neighborhood U of a in A, a neighborhood V of x in N, and a CAT embedding

H:Ux V x Rq Ux Q

sliced over Uand with H IU x V x 0 FlU x V.
Consider the standard k-simplex Ak. Let 0 cAk and let A be a subcomplex

of cAk of the following type. If CAT PL, we allow A OAk, the empty set,
or a retract of cAk 0. If CAT DIFF, we only allow A tAk.
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THEOREM 5.1. (SLICED APPROXIMATION OF LOCALLY FLAT EMBEDDINGS). Let
Nn and Qn+q be CAT man(folds v,ith N compact, n + q > 6 (> 5 if OM O)
and let A c Ak be as described above. Suppose F: Ak x (N, ON)- Ak x
(Q, 8Q) is a TOP Ak-locally fiat embedding such that

(1) F-I(Ak x 8Q) Ak x ON and
(2) F[A x (N, N) is a CAT Ak-locally fiat embeddine.

Then, yiven " Q [0, ) with e P2F(Ak x N) > O, there exists an ambient
isotopy G" Ak x (Q, 8Q) Ak x (Q, 8Q), L sliced over A such that

(3) GF: Ak x (N, 8N) A x (Q, 8Q) is a CAT Ak-locallyflat embeddiny,
(4) G, A x (Q, OQ) is the identity, and
(5) G, is within of(id Ak) x id Q

and only a sequence of obstructions in

(5) H(Ak x (N, ON)/A x (N, ON); n (TOP+/CAT,+; TOP+_x/
CATn+q- , TOPn+q- ,n- /CATn+q- ,n- TOPn+q,n/CATn+q,n))M # 0; or

(6) H(A x N/A x N; (TOPn+q/CATn+q, TOP,+q,,/CAT+q,))

vanish.

Proof We assume for simplicity that dM 0, as the bounded case follows
from a similar argument. By the TOP isotopy extension theorem, there exists
a TOP ambient isotopy H" Ak x Q Ak x Q, L with H (id Ak x fo)
F, wherefo F[0 x N. Now (Q,./(N)) is a TOP manifold pair, withfo(N)
having a preferred CAT manifold structure fo(E), where Z is the given CAT
manifold structure on N. Let F be the given CAT manifold structure on Q and
consider the CAT structure F’ H(Ak x F) on Ag x Q sliced over Ak. By
the classification Theorem 3.8,

CAT Q, fo(N); fo(Z)) = L((f, f) to (BCAT+, BCAT+); g)

where f: M BTOP,+ classifies z(M), f: fo(N) BTOP+q classifies
(z(m) [fo(N), z(fo(N)), and g" fo(N) BCAT classifies fo(X). However, F’
gives a preferred k-simplex of lifts off to BCAT+, and by our hypotheses,
F’IA x Q is a relative CAT structure on A x (Q, fo(N)) tel fo(E) sliced over
A. Thus the obstruction to sliced concording tel A x Q the CAT structure F’
on Ak x Q to a relative CAT structure F" on Ak x (Q, fo(N)) rel fo(X) sliced
over Ak is the obstruction to the existence of a map" Ak x fo(N) CAT+
with i [A x fo(N) A x fo(N), making the following diagram commute
up to homotopy tel A x fo(N) A x Q"

CATn+qCATn CAT+

BTOP, BTOP+ BTP,+
x fo(N) x’.
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These obstructions lie in the cohomology groups given in (5.1). If these obstruc-
tions vanish, then F’ is sliced concordant rel A x Q to a relative CAT structure
F" on Ak x (Q, fo(N)) rel fo(Z) sliced over Ak. But by Theorem 1.6, applied to
the case where (M, N) (Q, 0) and

(Ak,A) (Ak x /,A x IwA/’ x 1),

there exists an e-isotopy Rt: Ak Q -o Ak Q, t /, with Rt the identity for
t cqAk x I w Ak x 0, and with RI:(Ak x Q)r-- (Ak x Q)r’ a CAT iso-
morphism. The required Gt is given by Gt HRHf-1. I

Remark. Let C c N be a dosed subset of N and suppose F is CAT near
Ak C. Our proof of (5.1) shows that the resulting Gt has the property that Gt
is the identity near Ak C for all I.

COROLLARY 5.2. With the hypothesis of (5.1),/f CAT PL and q >_ 3, the
resulting Gt exists. Ifq < 2, then Gt exists ifand only ifa well defined obstruction
in Ha(Ak x (N, N)/A x (N, cON); Z2) vanishes.

Proof. This follows from (5.1) and (3.14).

COROLLARY 5.3. With the hypothesis of (5.1), /f CAT DIFF, q >_ 3 and
k < 2q n 3, the resulting H exists.

Proof. This follows from (5.!), (3.14), and the result of K. Millett that

r (PL.+/PL.+,., 0.+/0.) 0 for < 2q n 3 (cf. [13]).

THEOREM 5.4. Let N" and Q"+ be PL manifolds with n + q >_ 6 (>_ 5 if
N O) and q >_ 3. Let k be a nonne#ative inte#er. Then #iven
there exists a 6: Q -o [0, oo) such that /f F {fls Ak}: Ak x (N, N)
Ak x (Q, dQ) is a PL embeddin# sliced over Ak with

(1) F-t(Ak x Q)= A x N,
(2) F IAk x N (idldAk) x fo,
(3) el F(Ak x N) > O, and
(4) f is within 6 offo for all s A

then there is a PL ambient isotopy G, t L ofAk x Q sliced over Ak with

(5) G1F (idlAk) x fo,
(6) Gt Ak x Q is the identity for all t I,
(7) GT(Ak x t3Q)= Ak x ON, and
(8) Gt is within e of the identity.

Proof. We first show that there exists a TOP ambient isotopy , t I, of
hk x Q sliced over Ak satisfying (5)-(8).2 First assume that F is the product

2 The author is grateful to the referee for suggesting a simpler proof of the topological
version of (5.4).
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embedding over a product neighborhood OAk [0, 8] of tgAk in Ak, i.e., we
write A Ak as A A’ W tgA’ [0, 8]. By the isotopy extension theorem
there is a homeomorphism H: A’ x Q - A’ x Q sliced over A’ such that

H (id A’ x fo) F IA’ x (N, tgN)

with H close to the identity if F is close to id A’ fo. Then HI tgA’ x Q is
close to the identity and HI cA’ x foN id. Hence HI A’ Q is isotopic
to the identity relative to tgA’ foN by a small isotopy. In other words, we can
extend Hto A x Q so that H(id x fo) F, HI tgA x Q id and His close
to the identity. Hence, there is a sliced isotopy Ht of H Ho to the identity
relative to cAk x Q. Then Gt Ht H satisfies Go identity and C;xF
HHF HF id fo. Furthermore, C,t is close to the identity and
Gt OAk x Q identity.
Now, since F is a TOP Ak-locally flat embedding, it may be deformed by a

small sliced isotopy K fixed over tAk so that K F is of the assumed form.
Taking K2t for 0 < < 1/2 and G2t-tK for 1/2 < < gives a new Gt
satisfying (5)-(8).
We now modify Gt so that G is a PL automorphism of Ak x Q. Let F be the

given PL structure on Q and E the given PL structure on fo(N). The structures
Ak F and G -1 are sliced concordant rel tgAk Q, hence by the proof of (5.1)
they are sliced concordant rel tgAk Q as relative PL structures on Ak

(Q, fo(N)) rel 12 sliced over Ak. Then, by (1.7), there is a small ambient isotopy

Ht" Ak x (Q, fo(N)) Ak x (Q, fo(N)), I,

sliced over Ak with HI’(Ak x (Q, fo(N))e,-,akxr) Ak x (Q, fo(N))r a PL
isomorphism. We then let t" Ak x Q Ak x Q be given by

at(s, q)= G2t(s, q) for 0 < < 1/2
[.H2t_I(s q) for 1/2 < _< 1.

Then t is a small TOP ambient isotopy of Ak x Q sliced over A*, satisfying
(5)-(8), and with G a PL automorphism.

Let " A* x I {2--’ A I {2 be given by (s, t, q) ,(s, q). By
(5.2), we can assume that A* x I N is a PL embedding ofAk x I N
into A* x I {2 sliced over A* x I.
By the construction of the third paragraph of this proof applied to A* x

1 x N, there exists a small ambient isotopy J, of A* x 1 {2 sliced over
Ak 1 such that dx is a PL automorphism ofA* x I 0, J1 A x Q
is the identity, and

dxlAk x I N (idlAk x I) fo.
Let Gs" Ak Q --* Ak Q be the small PL ambient isotopy of Ak Q sliced
over Ak given by Gs(r, q) J(r, 1 s, q). Then Go(r, q) J(r, 1, q) is the
identity and

Gtf(r, q) (t(r, f(q)) Jl(r, O, fr(q)) Ja(r, 0,f,(q)) (r, O, fo(q)),
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so that G1F (idlAk) x fo. Thus Gt is the required PL ambient isotopy of
AkxQ. []

COROLLARY 5.5. (SLICED EQUIVALENCE). Let N and Q be as in (5.4). Suppose
q > 3 and h: N Q is a TOP embedding (not necessarily locally fiat) with
h-(dQ) dN, Let k be a nonneyative integer. Then #iven e: Q - [-0, ),
with e lh(N) > O, there exists : Q - [0, c) such that if #: N - Q is a PL
embedding within 6 of h with 9-t(OQ) ON and if G: Ak x N Ak x Q is a
PL embedding sliced over A such that

()
(2)
(3)

G-I(Ak x OQ) Ak x ON,
G is within 6 of (id Ak) x h and
G[OAk x N= (idiAk) x y

then there is a PL atnbient isotopy G, L ofAk Q sliced over Ak with

(4)
()
(6)

G1G (idlAk) x y,
Gt OAk Q is the identity, and
Gt is within s of the identity for all L

Furthermore, the above 6 works for all TOP embeddinys sufficiently near h.

Proof This follows from (5.4), the fibered general position theorem of
Millett [12], and sliced engulfing (cf. [10, p. 248]). []

COROLLARY 5.6. Let EmbcAT (Nn, Qn+q) be the s.s. complex ofproper CAT
embeddings of N in Qn+q. If n + q >_ 6(>_ 5 if ON= O) and q >_ 3 then
EmbPL (N, Q) is locally p-connected at points of EmbTP (N, Q)for all p.

COROLLARY 5.7. (SLICED APPROXIMATION). Let N be a PL submanifoM ofthe
PL manifold Qn+, with q >_ 3 and n + q > 6 (>_ 5 fON 0). Suppose A is a
simplicial complex and B is a subcomplex of A. Let h" A x N - A x Q be a
proper TOP embeddin9 sliced over A with bib x N a PL embedding. Then
for any e: Q [0, c) there is a proper PL embedding : A x N- A x Q
sliced over A such that

(1)
(2)

Y B x N hl B x Nand
g is within of (id Ak) x h.

Proof. This is a homotopy result which follows from (5.6) and the fact that
a component of EmbL (N, Q) is dense in a component of EmbT (N, Q)
(cf. [10, p. 245]). []

Remark 5.8. By local application of (5.5) and (5.7), (5.5) and (5.7) have
topological analogues. Thus, in (5.5) and (5.7) we can replace N and Q by
TOP manifolds and replace PL embeddings by TOP locally flat embeddings.
A stronger topological analogue of (5.4) is proven in [3].
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Let EmbLv (N, Q) denote the s.s. complex of TOP locally flat embeddings of
N into Q. Then (5.6), (5.7), and (5.8) immediately imply:

COROLLARY 5.9. Let N and Q be as in (5.7). Then the natural inclusions

EmbpL (N, Q) EmbLv (N, Q) Embr (N, Q)

are homotopy equivalences, with all homotopies as small as desired.

THEOREM 5.10. (SLICED SMOOTHINGS AND TRIANGULATIONS). Let Q"+ be a
CAT manifold with n + q >_ 6 (>_ 5 if OQ 0), and let N be a TOP manifold
with n 4= 4, 5 (4= 4 if ON 0). Let A OAk be as in the beyinniny of this
section. Suppose F: ARx (N, ON)- ARx (Q, OQ) is a TOP locally fiat
embedding sliced over Ak with F-I(Ak dQ)= Ak x ON such that F(A x N)
is a proper CAT submanifold of A x Q. Then .9iven : Q [0, c) with
e p2F(Ak x N) > O, there exists an ambient isotopy H, I, ofAk Q sliced
over Ak such that

(1) HtF(Ak x N) is a proper CAT submanifoM ofAk x Q,
(2) H (A x N) is the identityfor all t e I, and
(3) H, is within e of (idlA,, X idlt

ifand only if a sequence of obstructions in

(4) H(Ak x (N, ON)/A x (N, 0N); zc (TOP,+/CAT,+; TOP,+_/
CAT,,+_ , TOPn"q_/CATnn-l+,_ , TOP+/CAT."+)) ifON # 0", or

(5) n(a N/A N; z (TOP.+/CAT.+, TOP+/CAT.n+)) /f c3N 0
vanishes.

Proof. This follows in exactly the same manner as (5.1), using (3.6) in place
of (3.8). []

COROLLARY 5.11. With the hypothesis of (5.10),/f CAT PL, q < 2, and
n > 5, the resulting H exists. If q >_ 3 and n > 5, the resulting H exists if and
only if a well-defined obstruction in Ha(Ak x (N, ON)/A x (N, ON); Z2)
vanishes.

Proof This follows from (5.10) and (3.15).

Remark 5.13. There are obvious relative versions of (5.1)-(5.11).

Remark 5.14. Note that by (5.10), (3.16), and (3.17), if N is a 3-manifold
without boundary and Q+ is. a PL manifold without boundary, q > 3, then
the resulting H of (5.10) always exist. If q < 2, there is an obstruction in
H (Ak x N A x N; Z2) which vanishes if and only if H exists.
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