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Introduction

We study the asymptotic expansion of the heat kernel for the second variation
operator [,] which arises in the theory of minimal submanifolds. Specifically
the first two terms in the expansion are calculated. If a manifold M is isometri-
cally immersed in a manifold of constant curvature then there is a spectral con-
dition determining whether or not M is totally geodesic. A similar result holds
for complex submanifolds in a manifold of constant holomorphic sectional
curvature.

1. Asymptotic expansion for the heat equation

In this section we summarize some known results concerning the asymptotic
expansion of the heat kernel for Riemannian manifolds. The reader is referred
to [1] for more details.

Let V --. M be a smooth real r-dimensional vector bundle over the compact
Riemannian manifold M of dimension m. For D: F(V)--. F(V) a second
order differential operator with leading order symbol given by the metric tensor,
exp (-tD) is well defined when t > 0. Furthermore

(-tD)(f)(x) .I K(t, x, y, D)(f) dvol(y),cxp

where K(t, x, y, D) is an endomorphism from Vr, the fiber of V over y, to Vx.
When K(t, x, y, D) is restricted to the diagonal y x it has an asymptotic

expansion as t O, of the form

K (t, x, x, D) ., E,(x, D)t("-)/2

The endomorphisms E,,(x, D) are local invariants determined in any coordinate
patch by the derivatives of the coefficients of D. Let B,(x, D) denote the trace
of E.(x, D).
The asymptotic expansion is particularly interesting when V has an inner

product and D is self-adjoint with respect to this inner product. Let {2,, ,} be
a spectral resolution into smooth orthonormal eigensections cv Then

K(t, x, y, D) exp (-tX,)c/h(x) (R)
i-’l
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and consequently

)exp (-t2i) o B,(x, D) dvol (n-m)

i--1

This formula shows that the integrals i’M B,(x, D) dvol are determined by the
spectrum. The calculation of these invariants for the second order operators D
arising in Riemannian geometry is a topic of current research activity. McKean
and Singer [2] studied the heat equation for the Laplace operator A acting on
functions and obtained in particular the following"

THEOREM 1.1 (McKean-Singer). Let A denote the Laplace operator of M
acting on functions. Then

Bo(x, A) (4r0 -"/2, B2(x, A) (4r0-’/2(z]6),

where Y., Rii is the scalar curvature ofM and rn is the dimension ofM.

Gilkey [1] developed a systematic method for calculating local spectral in-
variants. Suppose we are given a connection V on V; V: F(V) F(V (R) T’M).
Since M is a Riemannian manifold there is a natural connection V* on T*M.
Denote by Dv the second order operator defined by the composition:

F(V) F(V (R) T’M)
v(R)x + (R)v.., F(V (R) T*M (R) T’M)

-1(R)0 r(v),

where g" T*M (R) T*M - R is contraction via the Riemannian metric of M.
Now suppose that D Dv E, where E: F(V) F(V) is an endomorphism.
Then one has:

THEOREM 1.2 (Gilkey), Let D" F(V) F(V) be of the form D Dv E
for some connection V on V. Then

Bo(x, D) (4n)-=/2r, "B2(x, D) (4n)-’/2(rz/6 + Tr (E)),

where r dim V and Tr (E) denotes the trace of the endomorphism E.

2. Second variation operator

This section is devoted to some preliminaries involving Riemannian immer-
sions. A fuller account may be found in [3].
Suppose M is a Riemannian manifold of dimension m isometrically immersed

in the Riemannian manifold of dimension . The normal bundle NM is then
a real r m dimensional vector bundle with inner product induced by the
metric on M.
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If is the Levi-Civita connection on then induces a connection V on
NM via

xY (VxY)N, X TM, Y F(NM)

where (V) is the normal component of V. Let Dr" F(NM) --. F(NM) denote
the second order differential operator associated to V via the construction in
Section 1.
The second fundamental form is a map from TM (R) TM - N(M) defined

by

B(X, Y) (xY), X TM, Y F(TM).

B is a symmetric tensor on M with values in the normal bundle. Now define a
map A: N(M) T(M) (R) (T(M))* by the equation

(Aw(X), Y) (B(X, Y), W), X, Y T(M), W N(M).

Here ( ) denotes the inner product on T. Let S(M) denote the fiber
bundle over M whose fiber at p is the symmetric linear transformations
(TM),--+ (TM)e. Then, since B(X, Y) B(Y, X), we may regard A as a
linear map A N(M) --+ S(M). Let ’A S(M) -+ N(M) denote the transpose
of A.
The following lemma I-3, p. 70-1 is well known:

LEMMA 2.1. Let R and , be the curvature tensors in M and respectively.
Then for X, Y, Z, W TM,

(Rx, rZ, W) (x, rZ, W) + (B(X, W), B(Y, Z)) (B(X, Z), B(Y, W)).

There is a second order differential operator [-] called the second variation
operator which is important in the study of minimal submanifolds. It is defined
by

I-IV DvV + .(V) tAA(V), V F(NM),

where : F(NM) F(NM) is the partial Ricci transformation given by

(V) (,,,v.)v, V F(NM),

for e,..., em an orthonormal basis of TM.

3. Spectral invariants and the second variation operator

The second variation operator -] is an elliptic second order differential
operator with leading symbol given by the metric tensor. Since [--] is self-adjoint
with respect to the inner product on NM, it has real pure point spectrum. In
particular the heat kernel theory of Section 1 ,is applicable.
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TI-IOREM 3.1.

Bo(X [--) (4ir)-m/2r,

B2(x, [--]) (4n)-m/(r]6 Tr () + Ilnli),
where r is the codimension ofM in M.

Proof. From Theorem 1.2,

Bo(x, l-q) (4=)-/r,

B2(x ) (4n)-’12(r’c]6 Tr () + Tr (’AA)).

Letting ex,..., e, be an orthonormal basis of (NM) for any p e M, we have

Tr (taA)= <tAAe,, e,> <Ae,, Ae,> Ilall2 llnll
/=1 i=1

at p. Thus B2(x, [--]) (4)-/2(rz/6 Tr (t) + Ilnl12).
There are some interesting applications if the ambient manifold has

constant curvature or if

_
is complex and has constant holomorphic sectional

curvature.

THEOREM 3.2. Let M have constant curvature c. Then

Bo(x [--]) (4rc)-m/2r,

B2(x, [-]) (4r0 -m/2 (+ mrc + rz]6 + IIBll 2)
(4n)-/2 (+ mrc- m(m 1)r(c]6)

/ (r / 6)lIBll=/6- rlIKll2/6),
where K F(NM) denotes the mean curvature vector.

Proof. Since has constant sectional curvature c we have Tr (i) -mrc.
This gives the first formula for B2(x, [-]). Now Lemma 2.1 implies

z m(m 1)c + lib 2 IIKli 2.

This yields the final formula for B2(x, [:]).

COROLLARY 3.3. (i) Let M, M’ be immersed in some with constant cur-
vature c and suppose M, M’ are isospectral with respect to the Laplacian A on

functions and the second variation operator [-]. Then M, M’ have the same co-
dimension. IfM is totally geodesic then so is M’.

(ii) Let M, M’ be minimally immersed in some of constant curvature c. If
M, M’ are isospectral with respect to [-] and M is totally geodesic then M’ is
totally geodesic.

Proof. (i) Since M, M’ are isospectral with respect to A we have rn m’,
j’ 1 J’t’ 1, J’t J’’ x’. Then, because M, M’ are isospectral with respect
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to [-], we have r r’ from Bo(x, [-]). Finally using these results and B2(X [-])
we have J’t liB 2 i’m’ IlB’ll 2. Since M, M’ is totally geodesic if and only if
IIB ll, IIB’ll 0, this completes the proof of (i).

(ii) m m’ from the leading term in the asymptotic expansion. From
Bo(X, [-]), r , r’. Using B2(x, [-]),

(r + 6)
M

[,B[12 (r’ + 6) fM, liB’I[ 2.

This completes the proof of (ii).

THEOREM 3.4. Let M have constant holomorphic curvature c and suppose M
i a complex submanifoM ofM. Then

Bo(X, [-]) (4zc)-m/2r,
B2(x, [-) (4)-/2 (+ mr(c/4) + r(z/6) + [[B[[ 2)

(4)-/2 (+ mr(el4) + -rm(m + 2)(e/4) + (r + 6)llBII2/6).

Proof. Recall that on a manifold of constant holomorphie curvature c we
have

0 on R.X
-R(X, )X c Id onR.JX

c]4 Id on the orthogonal complement of R. X R. JX,

where J is the almost complex structure and R. V denotes real multiples of V.
Since M is a complex submanifold we have Tr (K) -mr(c This gives

the first formula for B2(x, [-]). Now applying Lemma 2.1 we find

z m(m + 2)(c/4) + lIB ll2,
using the well known fact that K 0 for a complex submanifold of a Kaehler
manifold [3, p. 72]. This gives the second formula for B2(x, [-]).

COROLLARY 3.5. Let M, M’ be complex submani.folds of some 1 with con-
stant holomorphic curvature c. IfM, M’ are isospectral with respect to [-] and M
is totally geodesic, then so is M’.

The proof of Corollary 3.5 is similar to that of Corollary 3.3.
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