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1. Introduction

In [3], Furstenberg showed by example that a minimal distal flow (X, T)
need not be uniquely ergodic. One might ask whether such flows still have
"measure-theoretic invariants." For example, consider the measure-theoretic
structure groups (see 2.3) J(w), where w ranges over Mr(X), the set of T-
invariant probability measures on X. It follows from an unpublished result of
Ellis that, if (X, T) is a compact group extension of a uniquely ergodic flow,
then J(wl) and J(w2) are canonically isomorphic (see 2.4) for all wl, w2 Mr(X).
For such flows, then, J(w) is independent of w. We are led to the following:

1.1 Conjecture. Let (X, T) be a minimal distal flow, wl, w2 Mr(X). Then
J(wt) and J(w2) are canonically isomorphic.
We will show by constructing a counterexample that this conjecture is false.

2. Preliminaries

2.1 DEFINITION. If (X, T) is a flow with T-invariant measure w, we can map
T into the set of bounded linear operators on L2(X, w). Let S(w) be the closure
of (the image of) T in the weak operator topology. Let L2ap(w) (the "L2-
almost periodic functions") be {f L2(w) {t "fl T} has compact closure
in L2(w)} then L2ap(w) is a closed T-invariant subspace of L2(w).

2.2 THEOREM. S(w) is compact, and contains a unique minimal two-sided ideal,
J(w), which is a compact topological group. IfPw is the identity in J(w), then Pw
is the projection of L2(w) onto L2ap(w).

For the proof of 2.2 see I-5, 2.6, 2.31-33, 2.36, and 2.45-46].

2.3 DEFINITION. The measure-theoretic structure group of (X, T) with respect
to w is the group J(w).

2.4 DEFINITION. Let wt, w2 be T-invariant measures on X. Say that J(wt)
and J(w2) are canonically isomorphic if the mapping t Pt - t p extends
to an isomorphism and homeomorphism of the compact topological groups
J(wl) and J(w2).

2.5 Conventions. From now on, all flows will be discrete; the notation
(X, T) will refer to a compact T2 space X together with a homeomorphism T of

Received October 7, 1975.

178



THE MEASURE-THEORETIC STRUCTURE GROUP 179

X. Let K be the unit circle in the complex plane, Kn the n-torus; will denote
normalized Haar measure on K. We sometimes suppress y and write, for
instance, dw for dy(w). The word "measurable" will always mean Borel
measurable.

3. The example

3.1. Let o (0, 1) be irrational, e2i. In Section 4, we will construct
a homeomorphism T ofKa of the form (w, Pl, P2) "- (WtX, g(W)Pl, PlP2), where
(i) g: K - K is continuous; (ii) g(w) r(w)/r(w) -a.e. for a measurable func-
tion r" K --. K having the property that rm is not equal -a.e. to a continuous
function for any integer m # 0; Off) there is a measurable function f: K - K
such r(w) f(w)/f(w-1) -a.e. In this section, we show that (Ka, T) is a
counterexample to 1.1; in outline, the proof is as follows. We first verify
minimality and distality. Then, for each fl K, we define

Sa {(w, pl, p2) eKalpl =fl,(w)}, and Qa: K2 K2:(w,p)(w,pfl)"

It is shown (roughly) that each Sa is T-invariant, and supports a T-invariant
probability measure wa. Moreover, the process (Sa, T, wa) is measure-
theoretically isomorphic to (g2, Q/, )’ )’). Known results now imply that,
if fix and f12 differ mod {n n Z}, then J(wa,) and J(wa2) are not canonically
isomorphic.

3.2 LEMMA. Suppose (fl, So) is minimal with D compact metric. Let
S: X x K - X be given by S(w, p) (Sow, h(w)p) where h: [’1 K is
continuous. Then (X, T) is minimal iff the equation hm(w) So(W)/(w) has
no continuous solution D - Kfor any integer m # O.

For the proof of a more general statement, see [_6, Theorem 1].

3.3 PROPOSITION. TheflOW (K3, T) described in 3.1 is minimal and distal.

Proofi Distality holds because (K3, T) is constructed by means of two
K-extensions of the almost periodic flow w - w on K.

Define To:/(2
_
K2 by To(w, p) (w, g(w)p); observe that (Ka, T) is a

K-extension of (g2, To). We show first that (g2, To) is minimal. Suppose

gm(w) ra(w)/r(w) -a.e.

where r:K- K is continuous. Then r(w)/rm(w) r(w)/rm(w) v-a.e., so
by ergodicity of rotation by ct, r(w)/rm(w) const, v-a.e. This contradicts our
assumption on r. By 3.2 (with (f, So) (K, w w)), (K2, To) is minimal.
We now seek to apply 3.2 to (Ka, T). Suppose for contradiction that

To(w, ,,) m#0,
(w, )
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for a continuous " K2 K2. Note that if C is the cycle {(1, Pl) Pl K} c

K2, then To(C) and C are homologous. It follows easily that the induced map
on homology ( To/). takes the class of C to zero. Since (w, pl) -* P’ takes
this class to m, a contradiction is obtained.

3.4 DEFINITION. We fix actions of K on K2 and Ka as follows"

/. (w, p,) (w,/. p,); /. (w, p,, p) (w, ,ap, p).

There are then induced actions of K on M(K2) and M(K3), the spaces of Borel
regular probabilities on K2 and K3. These actions are the ones referred to below.

Recall To" K2 K2 was defined by (w, Pl) -* (w, #(w)pl).

3.5 LEMMA. There is a measure Oo on K2, er#odic with respect to T0, such that

Oo{(W, Pl) IPl r(w)} 1.

Proof. The function r(w)pl is To-invariant. Let 01 be any To-ergodic
probability on K2. Then there exists fll K such that 01(A1) 1, where

A1 {(w, Pl) lr(w)Pl ill} {(w’ Pl) IPl [31r(w)}.

Let Oo fl "ol.
Let o be the Haar lift of Oo to Ka" o(f) r’- (K f(w, Pl, P2) dp2) doo(w, p).

Then o($1) 1, where $1 {(w, p, P2) P r(w)}. Also, if fl K, then
fl" o is the Haar lift of ft. Oo, and flo(Sa) 1, where Sa {(w, Pl, P2) Pl
fir(w)} fl’S1. The measures [3o0 are To-ergodic and the measures [3o are
T-invariant (fl K).

Recall we defined Qa" K2 --, K2 by (w, p) --, (w, pfl) (see (3.1)).

3.6 PROPOSITION. For each fl K, the set Sa contains a T-invariant Borel set

S such that flo(S) 1. The processes (S, T, flo) and (K2, Qa, x ) are
measure-theoretically isomorphic.

Proof It is convenient to prove the two statements simultaneously. Fix
fl K. We will show that there are Borel sets B c K2 and S c Sa and a map
$t" B S such that" (i) x (B) 1 and QaB B; (ii) flo(S) 1 and
TS[j S; (iii) $1 is a Borel isomorphism; (iv) St Qa o$-1 T; (v)
1( x )= flo. Observe that, if (i)-(v) are satisfied, then automatically
k?’(v) x .

Begin by defining " K2 --, Sa" (w, p) --. (w, fir(w), f(w-)p). Then $ is
measurable and bijective. Let h be a bounded Borel function on Ka. Since flOo
is concentrated on {(w, Pl) IPl fir(w)}, one has

=r,_(rh(w’flr(w"p2’dp2) d(flO0)"
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Now, since flOo is To-invariant, one has rc.(flOo)= y, where n: K2--+ K:
(w, P l) -’+ w. Also, J’r h(w, fir(w), P2)@2 depends only on w. Thus the last
multiple integral equals

r, fr h(w, fir(w), P2) dp2 dw,

which equals j’2 h(w, flr(w),f(w- a)p2) @2 dw (V x )(h). Hence $(V x )
flo.
We now find the Borel sets B and S. Consider A {(w, fir(w)) w K).

There is a Borel set A2 c A such that oo(A2) 1 and To" A2 A2. By the
Kuratowski theorem !-2, 2.2.10-1, the projection .43 {w K (w, r(w)) A2}
is Borel. Let B .43 K, S if(B) fl’.42 K, x [n. Clearly B
and S are Borel. Also, QaB B, (B) 1, and flo(S) 1. We prove
(iv).

Toni(w, p) (w, flr(w), flr(w)f(w-l)p) (w, flr(wx), f(w) (pfl)),

so To$l(W, p) (w, pfl) Qa(w, p). The equality TS S now follows
from the definition of S, completing (ii). Part (v) follows from the preceding
paragraph.

Part (iii) remains; we must show that $t takes Borel sets to Borel sets. So,
let A, c .43 be Borel, V K open. Write

a(x) (’(x), "(x)) where ’(x) e fl. A2, "(x) K.

Since $’(w, p) (w, r(w)), $’(A, x V) is Borel (use the Kuratowski theorem).
Also,

$"(A4 x V) U {f(w0c-x) V lw e A,}

is open. Thus a(A, x V) is Borel; hence $1(B’) is Borel whenever B’ = B is.
To see that (K, T) does not satisfy 1.1, define the spectrum of (K3, T, fly) by

Sp (flo) {2 e K there exists a Borel function h such that

h(Tx) 2h(x) flo-a.e.}.

Then [4, Theorem 2.17] J(fllo) and J(fl2v) are canonically isomorphic iff
Sp (flxO) Sp (f12o) (set equality). Now, by 3.6 and standard properties of Q,
one obtains Sp (fly) {.flm n, m Z}. Hence if fix # f12 mod {"i n Z},
then flto and f120 have distinct J’s.

4. Construction of f

n oo ofpositive integers such that:There is a sequence ( t)t=4.1 LEMMA.

(i) n+l > nt,

(ii) n= lmod4,

(iii)
1

< nto- [nto] <
2nl

/>1.
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Here o is as in 3.1, and [ ] refers to the yreatest inteyer function.

Proof. An easy consequence of the irrationality of o.
nFix such a sequence ( )t=

Let F be a square-integrable Borel function on [0, 1) such that

1F =x / cos 2rtnO.

Let R(O) F(O) F(O CZo) (F, and all other functions defined on [0, 1), are
assumed extended to R by periodicity). Then

1
R(O) l-gig {11 cos 2rtn,o] cos 2nn,O sin 2rn,o sin

l=

We agree that a function defined on [0, 1) is continuous iff its periodic extension
to R is continuous.

4.2 PROr’OSIVION. R(O) is Borel, but is not equal/,-a.e, to a continuousfunction.

Proof. Fix e in (0, 1). Let X 2rt(no [nto]); by 4.1(iii), 1//l < X <
2//1. Hence we can find an lo such that

one has

Let

1 e 1 cos Xt 1
> Io= < <-"

2 X 2’

1- 21 e< X < 1 cosX < 1/2X2 <

1 [1 cos2nn0o] [1 cosX]"

then (1 e)]21 s/4 < fit < 2]ls/*. These inequalities imply that

fit cos 2rcnfl
/=1

converges uniformly to a continuous function h(O). Now

R h sin 2rno sin 2rondO.
/=1

Changing lo if necessary, we may assume I > lo = 1 e < (sin Xl)/Xv So if

1
p / sin 2rcnzo =/- sin X,

then (1 e)/l < pt. Since n 1 mod 4, Pt sin 2zrnOlo=,m P; we see that

Pt sin 2znO
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is not C6saro summable at 0 1/4, hence I-7, Theorem 8.1, p. 57-1 the series
cannot be that of a continuous function. Thus R h is not equal #-a.e. to a
continuous function, so R is not.

Let G(O) R(O + ao) R(O). Then

G(O) ,= [2 2 cos 2rtntao] cos 2nnO ,=,X 2 at cos 2nn,O

where 6 is as in the proof of 4.2. The bounds on 6 stated there imply that this
series is that of a continuous function, so"

4.3 PROPOSITION. G(O) is equal/-a.e, to a continuous function.
Let rn e Z. The proof of 4.2 applies equally well to mR(0). By [1, Proposition

A1, p. 83], the set A= {2 e R e2ni -+ e2iam() is not equal ?-a.e. to a con-
tinuous function} is residual in R. Pick 2 e r]=-oo A=, and let f(e2)
e2=iaF(O). Define

r(w)-- f(w) 0(e2,,o) e2,i,,(o
f(wo- )

where G(O)= G(O) /-a.e. and G is continuous; the corresponding flow
(K3, T) meets all requirements of 3.1.

4.4 Remarks. (1) Observe that o (0, 1) may be any irrational number.

(2) Letf(w, Px, P2) f(w)pp2. It may be checked that, on Sa,
]o T(w, p,, P2) fir(w, p,, P2).

For each fl, then, the class of f in L2(K, flo) is a T-eigenfunction with
eigenvalue ft.

4.5 Questions. (1) The map T constructed here is continuous. Are there
examples (K, T)with T C? C? analytic?

(2) Can anything general be said about the "map" from invariant measures
/z on a minimal distal flow to the corresponding groups J00? Specifically, let
(K, T) be given by

T: (w, p, P2) (wa, g(w)p, h(w, P)P2)

where g(w) r(wa)/r(w) -a.e. and r is Borel but not equal -a.e. to a con-
tinuous function. Define the measures flo(fl K) as above. How does d(flo)
vary with fl?

(3) What are some other candidates for measure-theoretic invariants of
minimal distal flows?
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