CLASS NUMBER FORMULAE FOR BICUBIC FIELDS

BY
Charles J. Parry

1. Introduction

While the study of biquadratic fields dates back to Dirichlet [4], except for the paper of Cassels and Guy [3], the bicubic fields seem to have been totally ignored. By a bicubic field we shall mean an extension of the rational numbers of degree 9 which is obtained by adjoining the cube roots of two rational integers. We shall also think of the normal closure of such a field as a bicubic field.

The bicyclic biquadratic fields have been studied extensively by Kubota [7], [8], Kuroda [9], Wada [14], and others. In particular it is relatively easy to determine the units and class numbers for such fields when one knows the units and class numbers of its quadratic subfields. In this article we achieve similar results for bicubic fields.

As an application of our results we shall explicitly determine when a bicubic field (and its normal closure) has class number divisible by 3.

2. Notation and terminology

The following notation will be used throughout this article.
$\zeta=e^{2 \pi i / 3}$.
m, n : cube free positive integers $(\neq 1)$ which generate distinct pure cubic fields.
$m_{i}(i=1,2,3,4): \quad m_{1}=m, m_{2}=n, m_{3}$ (respectively $\left.m_{4}\right)$ is the cube free kernel of $m n$ (respectively $m^{2} n$).
$K=Q(\sqrt[3]{m}, \sqrt[3]{n}):$ real bicubic field.
$L=Q(\zeta, \sqrt[3]{m}, \sqrt[3]{n}): \quad$ normal closure of K.
$k_{i}=Q\left(\sqrt[3]{m_{i}}\right)$ for $i=1,2,3,4: \quad$ pure cubic subfield of K.
$K_{i}=Q\left(\zeta, \sqrt[3]{m_{i}}\right):$ normal closure of k_{i} for $i=1,2,3,4$.
$k=Q(\zeta)$.
H, h : class number of L, K respectively.
H_{i}, h_{i} : class number of K_{i}, k_{i} respectively.
$G=G(L / Q): \quad$ Galois group of L / Q.
$\sigma_{i}(i=1,2,3,4)$: nontrivial elements of G chosen so that σ_{i} fixes K_{i} and $\sigma_{3}=\sigma_{1}^{2} \sigma_{2}, \sigma_{4}=\sigma_{1} \sigma_{2}$.
τ : nontrivial element of G which fixes K.
\hat{E} : group of units of L.
$\hat{\varepsilon}$: subgroup of \hat{E} generated by the units of $K_{1}, K_{2}, K_{3}, K_{4}$.
$\hat{\varepsilon}_{0}$: subgroup of $\hat{\varepsilon}$ generated by the units of $k_{1}, k_{2}, k_{3}, k_{4}$ and their conjugates.
$\hat{\varepsilon}_{i}(i=1,2,3,4): \quad$ subgroup of \hat{E} generated by the units of $K, K^{\sigma_{i}}, K_{i}$.
\hat{e} : group of units of K.
$\hat{e}_{0}=\hat{e} \cap \hat{\varepsilon}_{0}$: subgroup of \hat{e} generated by the units of $k_{1}, k_{2}, k_{3}, k_{4}$.
$\hat{U}_{i}(i=1,2,3,4)$: unit group of K_{i}.
$\hat{u}_{i}(i=1,2,3,4)$: subgroup of \hat{U}_{i} generated by the units of k_{i} and its conjugates.
R_{-}: regulator of the field -.
$R_{i}(i=1,2,3,4): \quad$ regulator of the field K_{i}.
χ_{-}: character of G induced by the principal character of $G(L /-)$ where is a subfield of L. (See Lang [11, p. 236] for definitions.)
$\chi_{i}=\chi_{K_{i}}$ for $i=1,2,3,4$.

3. Class number relations

The main goal of this section is to prove the following results.
Theorem I. The following class numbers relations hold:
(1) $3^{5} H=(\hat{E}: \hat{\varepsilon}) H_{1} H_{2} H_{3} H_{4}$,
(2) $3^{2} t_{i} H h_{i}^{2}=\left(\hat{E}: \hat{\varepsilon}_{i}\right) h^{2} H_{i}$,
(3) $3 H_{i}=\left(\hat{U}_{i}: \hat{u}_{i}\right) h_{i}^{2}$,
(4) $3^{3} t_{i} H=\left(\hat{E}: \hat{\varepsilon}_{i}\right)\left(\hat{U}_{i}: \hat{u}_{i}\right) h^{2}$ where $t_{i}=1$ or 3 .

Proof. Equation (3) is proved in Honda [6] and Barrucand and Cohn [2]. Equation (4) is obtained by substituting (3) in (2). We now proceed to prove equations (1), (2), and give an alternate proof of (4). The following relations on the induced characters are readily verified:
(5) $\chi_{L}-\chi_{1}-\chi_{2}-\chi_{3}-\chi_{4}+3 \chi_{k}=0$,
(6) $\chi_{L}-2 \chi_{K}-\chi_{1}+2 \chi_{k_{1}}=0$,
(7) $\chi_{L}-2 \chi_{K}-\chi_{k}+2 \chi_{Q}=0$.

It is an immediate consequence of equation (12) of Kuroda [10] that the following equations hold:
(8) $H R_{L}=H_{1} H_{2} H_{3} H_{4} R_{1} R_{2} R_{3} R_{4}$,
(9) $H h_{i}^{2} R_{L} R_{k_{i}}^{2}=h^{2} H_{i} R_{K}^{2} R_{i}$,
(10) $H R_{L}=h^{2} R_{K}^{2}$.

The theorem now follows from the following results on the regulators.
Theorem II. The following are valid:
(11) $\left(\hat{U}_{i}: \hat{u}_{i}\right) R_{i}=3 R_{k_{i}}^{2}$,
(12) $(\hat{E}: \hat{\varepsilon}) R_{L}=3^{5} R_{1} R_{2} R_{3} R_{4}$,
(13) $\left(\hat{E}: \hat{\varepsilon}_{i}\right) R_{L} R_{k_{i}}^{2}=3^{2} t_{i} R_{K}^{2} R_{i}$ where $t_{i}=3$ or 1 according as the fundamental unit of k_{i} is the cube of a unit of K or not.

Combining equations (11), (12), and (13) with equations (8), (9), and (10) completes the proof of Theorem I. It only remains to prove Theorem II. Equation (11) is proved in Honda [6] and the proof will not be reproduced here.

Before proving equations (12) and (13) we need to obtain some results on the units of L.

Theorem III. If $i=1,2,3$, or 4 and $x \in L$ then $x^{3}=x_{1} x_{2} x_{3}$ with $x_{1} \in K$, $x_{2} \in K^{\sigma_{i}}, x_{3} \in K_{i}$. Also $x^{3}=y_{1} y_{2} y_{3} y_{4}$ with $y_{j} \in K_{j}$. Moreover each x_{i} and y_{j} is a unit whenever x is a unit.

Proof.

$$
x^{3}=\frac{\left(x x^{\tau}\right)\left(x x^{\sigma_{1} \tau}\right)\left(x x^{\sigma_{1}{ }^{2} \tau}\right)}{\left(x x^{\sigma_{1}} x^{\sigma_{1} 2}\right)^{\tau}}
$$

where $y=x x^{\sigma_{1}{ }^{2} \tau} \in K^{\sigma_{1}{ }^{2}}$. But

$$
y=\frac{y^{1+\sigma_{1}+\sigma_{1}{ }^{2}}}{y^{\sigma_{1}} y^{\sigma_{1}{ }^{2}}}
$$

with $y^{1+\sigma_{1}+\sigma_{1}{ }^{2}} \in K_{1}$ and $y^{\sigma_{1}} \in K, y^{\sigma_{1}{ }^{2}} \in K^{\sigma_{1}}$. This proves the first result for $i=1$ and replacing σ_{1} with σ_{i} proves the result for $i=2,3$, and 4. The second result is clear because

$$
x^{3}=\frac{x^{1+\sigma_{1}+\sigma_{1}{ }^{2}} x^{1+\sigma_{2}+\sigma_{2}^{2}} x^{1+\sigma_{1} \sigma_{2}+\sigma_{1}{ }^{2} \sigma_{2}{ }^{2}}}{\left(x^{\sigma_{1}} x^{\sigma_{1} \sigma_{2}}\right)^{1+\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{2}^{2}}}
$$

The assertion about units is immediate.
Corollary I. $\hat{E}^{3} \subset \hat{\varepsilon}$ and $\hat{E}^{3} \subset \hat{\varepsilon}_{i}$ for $i=1,2,3,4$.
Proof. Immediate by applying Theorem III to the elements of \hat{E}.
Corollary II. There exist fundamental units e and $e^{\sigma_{j}}$ of the fields K and $K^{\sigma_{j}}(j=1,2,3,4)$ such that e$/ e^{\sigma_{j}}$ is a root of unity.

Proof. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be a system of fundamental units of K and ε_{i} be a fundamental unit of $k_{i}(i=1,2,3,4)$. It follows from Theorem III that

$$
e_{i}^{3}=\varepsilon_{1}^{a_{i 1}} \varepsilon_{2}^{a_{12}} \varepsilon_{3}^{a_{i 3}} \varepsilon_{4}^{a_{i 4}} .
$$

Now we may triangulate the matrix $A=\left(a_{i j}\right)$ to obtain a new set of fundamental units for K which we shall continue to denote by $e_{1}, e_{2}, e_{3}, e_{4}$; i.e., we may assume from the beginning that A is a triangular matrix. Thus $e_{1}^{3}=\varepsilon_{1}^{a_{11}}$ and we may adjust e_{1} so that $a_{11}=1$ or 3 . Setting $e=e_{1}$ we have $\left(e^{\sigma_{1}}\right)^{3}=\varepsilon_{1}^{a_{11}}$. Thus $e / e^{\sigma_{1}}$ is a root of unity. The same proof holds for $j=2,3,4$.

We now return to Theorem II.

Proof of Theorem II. Let E_{1}, \ldots, E_{8} be a system of fundamental units of L and $\varepsilon_{2 i-1}, \varepsilon_{2 i}$ be fundamental units for $K_{i}(i=1,2,3,4)$. Let the automorphisms

$$
1, \sigma_{1}, \sigma_{1}^{2}, \sigma_{2}, \sigma_{2}^{2}, \sigma_{1} \sigma_{2}, \sigma_{1}^{2} \sigma_{2}^{2}, \sigma_{1}^{2} \sigma_{2}
$$

be denoted by $\alpha_{1}, \ldots, \alpha_{8}$ respectively. Set $E_{i j}=\left|E_{i}^{\alpha_{j}}\right|$ for $1 \leq i, j \leq 8$, and similarly define $\varepsilon_{i j}$. Now $E_{i}^{3}=\varepsilon_{1}^{a_{11}} \cdots \varepsilon_{8}^{a_{18}}$ and $\left|\left(a_{i j}\right)\right|=\left(\hat{\varepsilon}: \hat{E}^{3}\right)$ by Lemma VIII of [12]. Thus

$$
\begin{aligned}
3^{8} R_{L} & =\left|\left(2 \log E_{i j}^{3}\right)_{8 \times 8}\right|=\left|\left(a_{i j}\right)\right|\left|\left(2 \log \varepsilon_{i j}\right)\right| \\
& =\left(\hat{\varepsilon}: \hat{E}^{3}\right)\left|\left(2 \log \varepsilon_{i j}\right)\right| \\
& =\left(\hat{\varepsilon}: \hat{E}^{3}\right) 3^{5} R_{\mathbf{1}} R_{\mathbf{2}} R_{\mathbf{3}} R_{\mathbf{4}} \quad \text { (computation omitted). }
\end{aligned}
$$

Thus

$$
R_{L}=\left(\hat{\varepsilon}: \hat{E}^{3}\right) 3^{-3} R_{1} R_{2} R_{3} R_{4}=(\hat{E}: \hat{\varepsilon})^{-1} 3^{5} R_{1} R_{2} R_{3} R_{4}
$$

or $(\hat{E}: \hat{\varepsilon}) R_{L}=3^{5} R_{1} R_{2} R_{3} R_{4}$.
To prove (13) (when $i=1$) take $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ as a basis for the units of K where $\varepsilon_{1}=e$ in Corollary II and $\varepsilon_{5}=\varepsilon_{2}^{\sigma_{1}}, \varepsilon_{6}=\varepsilon_{3}^{\sigma_{1}}, \varepsilon_{7}=\varepsilon_{4}^{\sigma_{1}}$, and $\varepsilon_{1}^{t}, \varepsilon_{8}$ form a system of fundamental units for K_{1}, where $t=1$ or 3 according as ε_{1} is in k_{1} or not. It follows from results of Barrucand and Cohn [2] that such an ε_{8} exists. Thus $\varepsilon_{1}, \ldots, \varepsilon_{8}$ form a basis for the unit group $\hat{\varepsilon}_{1}$. With notation as above,

$$
\begin{aligned}
3^{8} R_{L} & =\left(\hat{\varepsilon}_{1}: \hat{E}^{3}\right)\left|\left(2 \log \varepsilon_{i j}\right)_{8 \times 8}\right| \\
& =\left(\hat{\varepsilon}_{1}: \hat{E}^{3}\right) 18 R_{K}^{2}\left(\log \varepsilon_{8}+2 \log \varepsilon_{8}^{\sigma_{2}}\right) / \log \varepsilon_{1}
\end{aligned}
$$

Thus if $\varepsilon_{0}=\varepsilon_{1}^{t}$ then

$$
\left(\hat{E}: \hat{\varepsilon}_{1}\right) R_{L} \log \varepsilon_{1} \log \varepsilon_{0}=18 R_{K}^{2} \log \varepsilon_{0}\left(\log \varepsilon_{8}+2 \log \varepsilon_{8}^{\sigma_{2}}\right)=9 R_{K}^{2} R_{1}
$$

so $1 / t\left(\hat{E}: \hat{\varepsilon}_{1}\right) R_{L} R_{k_{1}}^{2}=9 R_{K}^{2} R_{1}$. Hence

$$
\left(\hat{E}: \hat{\varepsilon}_{i}\right) R_{L} R_{k_{i}}^{2}=3^{2} t_{i} R_{K}^{2} R_{i} \quad \text { for } i=1,2,3,4
$$

We conclude this section by giving necessary and sufficient conditions for the class numbers H of L and h of K to be divisible by 3 .

Theorem IV. $3 \mid H$ if and only if $3 \mid h$ if and only if $3 \mid h_{i}$ for some $i=$ $1,2,3$, or 4. Moreover H and h are relatively prime to 3 precisely when $m=$ $p \equiv 2,5(\bmod 9)$ is prime and $n=3$.

Proof. It is proved in Honda [6] that $3 \mid H_{i}$ if and only if $3 \mid h_{i}$. Thus if 3| H_{1} then $3 \mid h_{1}$ and so there exists an abelian unramified extension M of k_{1} of degree 3. Now K is a nonnormal extension of k_{1} of degree 3 so $M \cap K=k_{1}$. Thus $M K$ is an abelian unramified extension of K of degree 3 and since $(L: K)=2$ it follows $M K L=M L$ is an abelian unramified extension of degree 3 over L. Thus 3 divides both h and H. Moreover the above argument shows that $3 \mid h$ implies $3 \mid H$.

Conversely if $3 \mid H$ and $3 \nmid H_{i}(i=1,2,3,4)$ then it follows from Honda $[6, \mathrm{p} .8]$ that $m=p \equiv 2,5(\bmod 9), n=3, m n=3 p$, and $m n^{2}=9 p$. Under these conditions, the number of ambiguous classes, $\mathscr{A}_{L / K_{1}}$, of L over K_{1} is given by

$$
\mathscr{A}_{L / K_{1}}=3^{q^{*}-3} H_{1} .
$$

where $q^{*}=1,2$, or 3 (see Hasse [5, p. 98]). Since this number must be an integer we must have $q^{*}=3$ and $\mathscr{A}_{L / K_{1}}=H_{1}$ is relatively prime to 3 . By decomposing the ideal class group of L into orbits under σ_{1} it is easy to see this implies $3 \nmid H$. This contradicts our hypothesis so $3 \mid H_{i}$ for at least one $i=1,2,3$, or 4 .

Finally we note that the explicit conditions for H and h to be relatively prime to 3 are now immediate from the result of Honda mentioned above.

The following corollary is now easy to obtain.
Corollary I. If $H \not \equiv 0(\bmod 3)$ then $(\hat{E}: \hat{\varepsilon})=3^{5}$ and $\left(\hat{E}: \hat{\varepsilon}_{i}\right)=3^{2} t_{i}$.
Proof. Immediate from equations (1) and (2) since all class numbers are relatively prime to 3 .

4. Units

In this section we obtain considerable information about the unit groups \hat{E} of L and \hat{e} of K.

Theorem V. $(\hat{E}: \hat{\varepsilon})=3^{a}$ and $\left(\hat{E}: \hat{\varepsilon}_{i}\right)=3^{b}$ with $a \leq 6$ and $b \leq 4$.
Proof. As was noted in Corollary I to Theorem III, $\hat{E}^{3} \subset \hat{\varepsilon}$ and $\hat{E}^{3} \subset \hat{\varepsilon}_{i}$. Thus we need only prove the inequalities on a and b. If necessary we may change notation so that some prime of K_{1} which does not divide (3) will ramify in L. If the equation $E^{3}=\varepsilon$ has a solution with $E \notin K_{1}$ and $\varepsilon \in K_{1}$ then $L=$ $K_{1}(E)$ and so no prime of K_{1} not dividing (3) can ramify in L. Thus no such E can exist. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{8}$ be a basis for $\hat{\varepsilon}$ where $\varepsilon_{1}, \varepsilon_{2} \in K_{1} ; \ldots ; \varepsilon_{7}, \varepsilon_{8} \in K_{4}$ and E_{1}, \ldots, E_{8} be a basis for \hat{E}. (Here we are interested in only nontorsion units so we ignore roots of unity as much as possible). Since $\hat{E}^{3} \subset \hat{\varepsilon}$ we have

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{8}\right)=\left(E_{1}, \ldots, E_{8}\right) A
$$

where A is an 8×8 integral matrix. Now elementary row operations on A correspond to a change of basis for \hat{E}, thus we may assume A is in upper triangular form with positive diagonal entries which must be either 1 or 3 . As already observed no noncube unit of K_{1} is in \hat{E}^{3} so that $a_{11}=a_{22}=1$. Thus $(\hat{E}: \hat{\varepsilon})=\operatorname{det}(A)=3^{a}$ with $a \leq 6$.

To prove the second inequality we first show that the equation

$$
\begin{equation*}
E^{3}=\omega \varepsilon \tag{14}
\end{equation*}
$$

has no solution with $E \in \hat{E}, \varepsilon \in \hat{\varepsilon}_{i}, \varepsilon \notin \hat{\varepsilon}_{i}^{3}$ and $\omega \in L$ a root of unity. If (14) has a solution, then multiply the equation by its complex conjugate to obtain

$$
\begin{equation*}
(E \bar{E})^{3}=\varepsilon^{2} \tag{15}
\end{equation*}
$$

which contradicts the assumption $\varepsilon \notin \hat{\varepsilon}_{i}^{3}$. As in the proof of Theorem II we may choose a basis $\varepsilon_{1}, \ldots, \varepsilon_{8}$ for the group $\hat{\varepsilon}_{1}$ with $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ as a fundamental set of units of $K, \varepsilon_{5}=\varepsilon_{2}^{\sigma_{1}}, \varepsilon_{6}=\varepsilon_{3}^{\sigma_{1}}, \varepsilon_{7}=\varepsilon_{4}^{\sigma_{1}}$, and $\varepsilon_{1}, \varepsilon_{8}$ a set of fundamental units for K_{1}. Using a matrix argument as above we see that $a_{11}=a_{22}=a_{33}=$ $a_{44}=1$. Thus $\left(\hat{E}: \hat{\varepsilon}_{i}\right)=\operatorname{det}(A)=3^{b}$ with $b \leq 4$.

Theorem VI. A basis for \hat{e} can be chosen in one of four possible ways. If $e_{1}, e_{2}, e_{3}, e_{4}$ is a basis for \hat{e} and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ is a basis for \hat{e}_{0} with $\varepsilon_{i} \in k_{i}$ then the four possibilities are characterized as follows:
(1) ($\left.\hat{e}: \hat{e}_{0}\right)=27$ and $e_{1}=\varepsilon_{1}, e_{2}^{3}=\varepsilon_{1}^{a_{1}} \varepsilon_{2}, e_{3}^{3}=\varepsilon_{1}^{b_{1}} \varepsilon_{3}, e_{4}^{3}=\varepsilon_{1}^{c_{1}} \varepsilon_{4}$.
(2) ($\left.\hat{e}: \hat{e}_{0}\right)=9$ and $e_{1}=\varepsilon_{1}, e_{2}=\varepsilon_{2}, e_{3}^{3}=\varepsilon_{1}^{a_{1}} \varepsilon_{2}^{a_{2}} \varepsilon_{3}, e_{4}^{3}=\varepsilon_{1}^{b_{1}} \varepsilon_{2}^{b_{2}} \varepsilon_{4}$.
(3) ($\left.\hat{e}: \hat{e}_{0}\right)=3$ and $e_{1}=\varepsilon_{1}, e_{2}=\varepsilon_{2}, e_{3}=\varepsilon_{3}, e_{4}=\varepsilon_{1}^{a_{1}} \varepsilon_{2}^{a_{2}} \varepsilon_{3}^{a_{3}} \varepsilon_{4}$.
(4) ($\left.\hat{e}: \hat{e}_{0}\right)=1$ and $e_{1}=\varepsilon_{1}, e_{2}=\varepsilon_{2}, e_{3}=\varepsilon_{3}, e_{4}=\varepsilon_{4}$.

Here a_{i}, b_{i}, c_{i} are nonnegative integers less than 3 for each i.
Finally we shall give examples to show that the first three "kinds" of unit structure actually exist in nature. We expect the fourth kind exists also, but no such example exists with all of $m_{1}, m_{2}, m_{3}, m_{4}$ less than 100 .

Proof. It follows from Theorem III that $\hat{e}^{3} \subset \hat{e}_{0}$ so ($\left.\hat{e}: \hat{e}_{0}\right)=3^{a}$ with $a \leq 4$. Now we have $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) A$ where A is an integral 4×4 matrix. As in the previous theorem we may assume that A is an upper triangular matrix with 1's and 3's on the diagonal. If ($\hat{e}: \hat{e}_{0}$) $=3^{4}$ then $a_{11}=3$ and $\varepsilon_{1}=$ e_{1}^{3}. Thus $K=k_{1}\left(e_{1}\right)$ and so only prime divisors of (3) in k_{1} can ramify in K. But we may renumber the fields $k_{1}, k_{2}, k_{3}, k_{4}$ so this is not true. Thus $a \leq 3$.

We may also assume the entrees of A satisfy $-a_{i i}<a_{j i} \leq 0$ for $j \neq i$. If $\left(\hat{e}: \hat{e}_{0}\right)=27$ then $e_{2}^{a_{23}}$ is in \hat{e}_{0} which implies $a_{23} \equiv 0(\bmod 3)$, so $a_{23}=0$. Similarly $a_{24}=a_{34}=0$. Thus Kind 1 conditions are satisfied. If ($\left.\hat{e}: \hat{e}_{0}\right)=9$ then we may assume $a_{11}=a_{22}=1$. As above $a_{34}=0$, so Kind 2 conditions are fulfilled. If ($\hat{e}: \hat{e}_{0}$) $=3$ then we may take $a_{11}=a_{22}=a_{33}=1$ and Kind 3 obviously holds. Finally if ($\hat{e}: \hat{e}_{0}$) $=1$ then Kind 4 is clearly satisfied.

We shall later give examples to show that the first three kinds of fields actually exist.

In [2] Barrucand and Cohn give a classification of pure cubic fields k_{1} and K_{1}. They classify these fields into four "types" in Theorem 15.6 and conjecture that Type II fields do not exist. We shall first give a simple proof of this conjecture and then proceed to relate the "kind" of K (see Theorem VI above) to the type of the subfields $k_{1}, k_{2}, k_{3}, k_{4}$. We establish the following notation for the remainder of this section.
ε_{i} : fundamental unit of $k_{i}(i=1,2,3,4)$.
B_{i} : unique primitive integer of K_{i} such that $\varepsilon_{i}=B_{i} / B_{i}^{\sigma}$ where $\sigma=\sigma_{1}$ for $i \neq 1$ and $\sigma=\sigma_{2}$ for $i=1$.
$N\left(B_{i}\right)=N_{K_{i} / k}\left(B_{i}\right)$.
A_{i} : unique primitive integer of K_{i} such that $B_{i}=A_{i} / A_{i}^{\sigma}$ (only defined when $\left.N\left(B_{i}\right)=1\right)$.

For the moment we shall only be concerned with the fields k_{1} and K_{1} so we shall write ε, B, A instead of $\varepsilon_{1}, B_{1}, A_{1}$. Now k_{1} is of Type II if and only if $N(B)=1$ and $A \bar{A}=e \beta^{3}(\sqrt[3]{m})^{t}$ where e is a unit of $K_{1}, \beta \in K_{1}$, and $t=0,1$, or 2 (see [2, p. 235]).

Theorem VII. Type II fields do not exist.
Proof. Suppose K_{1} is a Type II field; then

$$
\varepsilon=B / B^{\sigma}=\frac{A A^{\sigma^{2}}}{\left(A^{\sigma}\right)^{2}}=\frac{N(A)}{\left(A^{\sigma}\right)^{3}} .
$$

Taking complex conjugates and multiplying the two equations together we obtain

$$
\varepsilon^{2}=\varepsilon \bar{\varepsilon}=\frac{N(A \bar{A})}{\left(A^{\sigma} \bar{A}^{\sigma}\right)^{3}}=\frac{N(A \bar{A})}{\gamma^{3}}
$$

where $\gamma \in k_{1}$. Thus

$$
\varepsilon=\frac{(\varepsilon \gamma)^{3}}{N(A \bar{A})}=\frac{\alpha^{3}}{N(A \bar{A})}
$$

with $\alpha=\varepsilon \gamma \in k_{1}$. Now by Type II hypothesis $A \bar{A}=e \beta^{3}(\sqrt[3]{m})^{t}$ so

$$
\varepsilon=\frac{\alpha^{3}}{N\left(e \beta^{3} \sqrt[3]{m^{t}}\right)}=\frac{\alpha^{3}}{N\left(\beta^{3} \sqrt[3]{m^{t}}\right)}=\left(\frac{\alpha}{N(\beta) \sqrt[3]{m^{t}}}\right)^{3}
$$

since $N(e)=1$ by Type II hypothesis. Thus $\sqrt[3]{\varepsilon} \in K_{1}$ which is impossible since ε is the fundamental unit of k_{1} and $\left(K_{1}: k_{1}\right)=2$.

In view of this result the classification given in [2] can be considerably simplified. We restate their Theorem 15.6 as:

Theorem VIII. Cubic fields k_{1} and K_{1} can be classified into three types depending only on B.

Type I. $\quad N(B)=1$.
Type III. $N(B)$ is not a unit.
Type IV. $N(B)=\zeta^{a}$ with $a=1$ or 2.
We now proceed to investigate the relationship between the "kind" of K and the "type" of the subfields $k_{1}, k_{2}, k_{3}, k_{4}$. The main reason for carrying out this
investigation is to obtain more explicit information concerning the structure of the unit group \hat{e} of K. We shall continue to use the notation established earlier in this section.

Theorem IX. The field k_{1} is of Type I if and only if $\varepsilon=\alpha^{3} / r$ with $\alpha \in k_{1}$ and $r \in Z$. Here r must divide $9 m^{2}$.

Proof. If k_{1} is of Type I then as in the proof of Theorem VII, $\varepsilon=\alpha^{3} / N(A \bar{A})$ with $\alpha \in k_{1}$. Now $r=N(A \bar{A})=N_{K / Q}(A) \in Q$ so $\varepsilon=\alpha^{3} / r$ with $\alpha \in k_{1}, r \in Q$.

Conversely if $\varepsilon=\alpha^{3} / r=B / B^{\sigma}$ then

$$
B^{\sigma}=\frac{r}{\alpha^{3}} B \quad \text { and } \quad B^{\sigma^{2}}=\frac{r^{2} B}{\left(\alpha^{1+\sigma}\right)^{3}} B
$$

so that

$$
\begin{equation*}
N(B)=B^{1+\sigma+\sigma^{2}}=\frac{r^{3}}{\left(\alpha^{2+\sigma}\right)^{3}} B^{3} \tag{16}
\end{equation*}
$$

Thus $B^{3} / N(B)=\varepsilon / \varepsilon^{\prime \prime}$ (where $\varepsilon^{\prime \prime}=\varepsilon^{\sigma^{2}}$) is a cube in K_{1}. Hence k_{1} is not of Type III. Now equation (16) shows $N(B)$ is a cube in K_{1} so it can not be a cube root of unity different from 1, i.e., k_{1} is not of Type IV. Thus k_{1} is of Type I.

Finally note that $K_{1}(\sqrt[3]{\varepsilon})=K_{1}(\sqrt[3]{r})$ so only prime divisors of three in K_{1} can ramify in the extension $K_{1}(\sqrt[3]{r}) / K_{1}$. Thus r divides $9 m^{2}$.

Corollary. The fundamental unit ε_{1} of k_{1} can be a cube of a unit of K only if k_{1} is of Type I.

Proof. If $e^{3}=\varepsilon_{1}$ with $e \in K$ then $K=k_{1}(\sqrt[3]{n})=k_{1}(e)=k_{1}\left(\sqrt[3]{\varepsilon_{1}}\right)$. Thus $\varepsilon_{1}=\alpha^{3} n$ with $\alpha \in k_{1}$ so k_{1} is of Type I by Theorem IX.

In the following results we shall let $\varepsilon_{i}^{\prime}=\varepsilon_{i}^{\sigma}$ and $\varepsilon_{i}^{\prime \prime}=\varepsilon_{i}^{\sigma^{2}}$ for $i=1,2,3,4$ where as usual $\sigma=\sigma_{2}$ for $i=1$ and $\sigma=\sigma_{1}$ for $i \neq 1$.

Theorem X. Let k_{1} be a Type III field. Then:
(a) $e^{3}=\zeta^{a} \varepsilon_{1} / \varepsilon_{i}^{\prime}$ has no solution e in L.
(b) $e^{3}=\zeta^{a}\left(\varepsilon_{1} \varepsilon_{2} / \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime}\right)$ has a solution e in L if and only if k_{2} is a Type III and $\zeta^{a} N\left(B_{1}\right)=N\left(B_{2}\right)$.
(c) $e^{3}=\zeta^{a}\left(\varepsilon_{1} \varepsilon_{2} / \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}\right)$ has a solution e in L if and only if k_{2} is of Type III and $\zeta^{a} N\left(B_{1}\right)=\overline{N\left(B_{2}\right)}$.
(d) $e^{3}=\zeta^{a}\left(\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} / \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \varepsilon_{3}^{\prime \prime}\right)$ has a solution e in L if and only if

$$
\alpha^{3}=\frac{\zeta^{a} N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)}
$$

has a solution $\alpha \in k$. Thus either k_{2} or k_{3} is of Type III.
Proof. (a) If $e^{3}=\zeta^{a} \varepsilon_{1} / \varepsilon_{1}^{\prime}=\zeta^{a}\left(N\left(B_{1}\right) /\left(B_{1}^{\sigma}\right)^{3}\right)$ then $L=K_{1}(e)=K_{1}\left(\sqrt[3]{\zeta^{a} N\left(B_{1}\right)}\right)$ so that $\zeta^{a} N\left(B_{1}\right)=\alpha^{3} n$ or $\alpha^{3} n^{2}$ with $\alpha \in K_{1}$. There is little difference in the two
cases so we shall only consider the former. Now $N_{K_{1} / Q}\left(B_{1}\right)=N\left(B_{1}\right) \overline{N\left(B_{1}\right)}=$ $(\alpha \bar{\alpha})^{3} n^{2}$. But it follows from Theorem 15.4 of [2] that $N_{K_{1} / Q}\left(B_{1}\right)$ is the cube of a rational integer. Thus $\sqrt[3]{n}$ is in K_{1} contrary to assumption.
(b) If $N\left(B_{1}\right)=\zeta^{a} N\left(B_{2}\right)$ then

$$
\frac{\varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime}}=\frac{N\left(B_{1}\right)}{\left(B_{1}^{\sigma}\right)^{3}} \frac{B_{2}^{3}}{N\left(B_{2}\right)}=\zeta^{a}\left(\frac{B_{2}}{B_{1}^{\sigma}}\right)^{3} .
$$

Conversely if

$$
e^{3}=\zeta^{a} \frac{\varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime}}=\zeta^{a} \frac{N\left(B_{1}\right)}{N\left(B_{2}\right)}\left(\frac{B_{2}}{B_{1}^{\sigma}}\right)^{3}
$$

then

$$
\left(\frac{B_{1}^{\sigma}}{B_{2}} e\right)^{3}=\zeta^{a} \frac{N\left(B_{1}\right)}{N\left(B_{2}\right)} \in k
$$

If $\beta=\left(B_{1}^{\sigma} / B_{2}\right) e \notin k$ then $k(\beta)=K_{i}$ for some $i=1,2,3$, or 4. Thus $\zeta^{a}\left(N\left(B_{1}\right) / N\left(B_{2}\right)\right)=\alpha^{3} m_{i}$ or $\alpha^{3} m_{i}^{2}$ for some $\alpha \in k$. For convenience assume the former. Taking complex conjugates and multiplying the equations together we obtain

$$
(\alpha \bar{\alpha})^{3} m_{i}^{2}=\frac{N\left(B_{1}\right) \overline{N\left(B_{1}\right)}}{N\left(B_{2}\right) \overline{N\left(B_{2}\right)}}
$$

But $N\left(B_{1}\right) \overline{N\left(B_{1}\right)}$ and $N\left(B_{2}\right) \overline{N\left(B_{2}\right)}$ are cubes of rational integers so m_{i} is a cube in Q contrary to assumption. Thus

$$
\beta=\frac{B_{1}^{\sigma}}{B_{2}} e \in k \quad \text { and } \quad \zeta^{a} \frac{N\left(B_{1}\right)}{N\left(B_{2}\right)}=\beta^{3} .
$$

But both $N\left(B_{1}\right)$ and $N\left(B_{2}\right)$ are cube free integers of k so $\beta^{3}=1$ and $\zeta^{a} N\left(B_{1}\right)=$ $N\left(B_{2}\right)$. Thus k_{2} must also be of Type III.
(c) We need only observe that $\overline{N\left(B_{2}\right)}=N\left(\overline{B_{2}}\right)$ and

$$
\varepsilon_{2} / \varepsilon_{2}^{\prime}=\left(\overline{\frac{\varepsilon_{2}}{\varepsilon_{2}^{\prime \prime}}}\right)=\left(\frac{B_{2}^{3}}{N\left(B_{2}\right)}\right)=\frac{\left(\overline{B_{2}}\right)^{3}}{N\left(B_{2}\right)}
$$

so that the proof of part (b) applies.
(d) Suppose $\zeta^{a}\left(N\left(B_{1}\right) N\left(B_{2}\right) / N\left(B_{3}\right)\right)=\alpha^{3}$ for some $\alpha \in k$. Then

$$
\zeta^{a} \frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \varepsilon_{3}^{\prime \prime}}=\zeta^{a} \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{\left(B_{1}^{\sigma} B_{2}^{\sigma}\right)^{3}} \frac{B_{3}^{3}}{N\left(B_{3}\right)}=\left(\frac{\alpha B_{3}}{B_{1}^{\sigma} B_{2}^{\sigma}}\right)^{3} .
$$

Conversely if

$$
e^{3}=\zeta^{a} \frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \varepsilon_{3}^{\prime \prime}}=\zeta^{a} \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)}\left(\frac{B_{3}}{B_{1}^{\sigma} B_{2}^{\sigma}}\right)^{3}
$$

then

$$
\left(\frac{B_{1}^{\sigma} B_{2}^{\sigma}}{B_{3}} e\right)^{3}=\zeta^{a} \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)} \in k
$$

As in part (b),

$$
\alpha=\frac{B_{1}^{\sigma} B_{2}^{\sigma}}{B_{3}} e \in k
$$

Since $N\left(B_{1}\right)$ is a cube free integer of k which is not a unit and

$$
\alpha^{3}=\zeta^{a} \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)}
$$

it is impossible for $N\left(B_{2}\right)$ and $N\left(B_{3}\right)$ to both be units of k. Thus either k_{2} or k_{3} (possibly both) are of Type III.

Corollary I. Let ε be any unit of K_{2}. If $e^{3}=\zeta^{a} \varepsilon_{1} \varepsilon$ has a solution e in L then k_{1} is of Type I.

Proof. If $e^{3}=\zeta^{a} \varepsilon_{1} \varepsilon$ then $\left(e^{\sigma_{2}}\right)^{3}=\zeta^{a} \varepsilon_{1}^{\prime} \varepsilon$ so that $\left(e / e^{\sigma_{2}}\right)^{3}=\varepsilon_{1} / \varepsilon_{1}^{\prime}$. Theorem $\mathrm{X}(\mathrm{a})$ tells us that k_{1} is not of Type III. However

$$
\left(e / e^{\sigma_{2}}\right)^{3}=\varepsilon_{1} / \varepsilon_{1}^{\prime}=\frac{N\left(B_{1}\right)}{\left(B_{1}^{\sigma_{2}}\right)^{3}}
$$

so that $N\left(B_{1}\right)$ is a cube in L and hence k_{1} is not of Type IV either.
Before stating more results we need to clean up a few minor details.
Remark A. If $\varepsilon=B / B^{\sigma}$ then $\varepsilon^{2}=\varepsilon \varepsilon^{\prime} \bar{B} /\left(\varepsilon \varepsilon^{\prime} \bar{B}\right)^{\sigma}$.
Proof. Since $\varepsilon=B / B^{\sigma}$ we have $\varepsilon=\bar{B} / \overline{B^{\sigma}}=\bar{B} /(\bar{B})^{\sigma^{2}}$ and $\varepsilon^{\prime \prime}=\varepsilon^{\sigma^{2}}=$ $(\bar{B})^{\sigma^{2}} /(\bar{B})^{\sigma}$. Thus $\varepsilon \varepsilon^{\prime \prime}=\bar{B} /(\bar{B})^{\sigma}$. Therefore

$$
\frac{\varepsilon \varepsilon^{\prime} \bar{B}}{\left(\varepsilon \varepsilon^{\prime} \bar{B}\right)^{\sigma}}=\frac{\varepsilon \varepsilon^{\prime}}{\varepsilon^{\prime} \varepsilon^{\prime \prime}} \varepsilon \varepsilon^{\prime \prime}=\varepsilon^{2}
$$

The significance of this remark is that if we wish to replace ε_{i} with ε_{i}^{2} in any part of Theorem X then we should replace $N\left(B_{i}\right)$ with $N\left(\varepsilon_{i} \varepsilon_{i}^{\prime \prime} \bar{B}_{i}\right)=\overline{N\left(B_{i}\right)}$.

Definition. If α and β are in k we shall say α and β are equivalent and write $\alpha \sim \beta$ if $\alpha=\beta$ or $\alpha=\bar{\beta}$. Moreover we extend this definition multiplicatively.

Remark B. If any ε_{i} is replaced by ε_{i}^{2} in Theorem X the "only if" statements in parts (b), (c), (d) hold with equality of norms replaced by equivalence.

Corollary II. The equation $e^{3}=\varepsilon_{1}^{a} \varepsilon_{2}^{b}$ with $1 \leq a, b \leq 2$ can have a solution e in K only when k_{1} and k_{2} are of Type I.

Proof. The proof of Corollary I tells us $N\left(B_{1}\right) \sim 1 \sim N\left(B_{2}\right)$. Thus both k_{1} and k_{2} are of Type I.

Corollary III. If the field k_{1} is of Type III then $e^{3}=\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c}$ with $1 \leq a, b$, $c \leq 2$ has no solution e in K unless $N\left(B_{1}\right) \sim N\left(B_{2}\right) \sim N\left(B_{3}\right)$. Thus all of
k_{1}, k_{2}, k_{3} are of Type III and m_{1}, m_{2}, m_{3} must have a common prime divisor $p \equiv 1(\bmod 3)$.

Proof. From the above remarks it is clear that we may take $a=b=c=1$. If $e^{3}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ then $\left(e^{\sigma_{3}}\right)^{3}=\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime} \varepsilon_{3}$ and $\left(e^{\sigma_{2}}\right)^{3}=\varepsilon_{1}^{\prime} \varepsilon_{2} \varepsilon_{3}^{\prime}$ so that both

$$
\frac{\varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime}} \text { and } \frac{\varepsilon_{1} \varepsilon_{3}}{\varepsilon_{1}^{\prime} \varepsilon_{3}^{\prime}}
$$

are cubes of units on L. By Theorem $\mathrm{X}(\mathrm{b}), N\left(B_{1}\right) \sim N\left(B_{2}\right) \sim N\left(B_{3}\right)$ so k_{2} and k_{3} are also of Type III. Moreover Theorem 15.4 of [2] shows m_{1}, m_{2}, m_{3} have a common prime divisor $p \equiv 1(\bmod 3)$.

Corollary IV. If k_{1} is Type III and $e^{3}=\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c} \varepsilon_{4}^{d}$ has a solution e in K where $1 \leq a, b, c, d \leq 2$ then at least three of the fields $k_{1}, k_{2}, k_{3}, k_{4}$ are of Type III. If k_{4} is not of Type III then $N\left(B_{4}\right) \sim \zeta^{t}$ with $t=0$ or 1 and $N\left(B_{1}\right) \sim$ $\zeta^{t} N\left(B_{2}\right) \sim \zeta^{t} N\left(B_{3}\right)$. In the latter case m_{1}, m_{2}, m_{3} must have a common prime divisor $p \equiv 1(\bmod 3)$.

Proof. As usual we may assume $e^{3}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}$ so

$$
\left(e^{\sigma_{2}}\right)^{3}=\varepsilon_{1}^{\prime} \varepsilon_{2} \varepsilon_{3}^{\prime} \varepsilon_{4}^{\prime \prime}, \quad\left(e^{\sigma_{3}}\right)^{3}=\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime} \varepsilon_{3} \varepsilon_{4}^{\prime} \quad \text { and } \quad\left(e^{\sigma_{4}}\right)^{3}=e_{1}^{\prime} \varepsilon_{2}^{\prime} \varepsilon_{3}^{\prime \prime} \varepsilon_{4}
$$

Thus all of

$$
\frac{\varepsilon_{1} \varepsilon_{3} \varepsilon_{4}}{\varepsilon_{1}^{\prime} \varepsilon_{3}^{\prime} \varepsilon_{4}^{\prime \prime}}, \frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{4}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime \prime} \varepsilon_{4}^{\prime}}, \text { and } \frac{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \varepsilon_{3}^{\prime \prime}}
$$

are cubes in L. Theorem X tells us that

$$
\frac{N\left(B_{1}\right) N\left(B_{3}\right)}{N\left(B_{4}\right)}, \frac{N\left(B_{1}\right) N\left(B_{4}\right)}{N\left(B_{2}\right)}, \quad \text { and } \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)}
$$

are equal to cubes in k and that at least two of the fields k_{2}, k_{3}, k_{4} are of Type III. If k_{4} is not of Type III then $N\left(B_{4}\right)=\zeta^{t}$ with $0 \leq t \leq 2$. Thus $\zeta^{t} N\left(B_{1}\right)=$ $\alpha_{1}^{3} N\left(B_{2}\right)$ and $N\left(B_{1}\right) N\left(B_{3}\right)=\zeta^{t} \alpha_{2}^{3}$ with $\alpha_{1}, \alpha_{2} \in k$. Since $N\left(B_{1}\right)$ and $N\left(B_{2}\right)$ are cube free we have $\alpha_{1}^{3}=1$ and $\zeta^{t} N\left(B_{1}\right)=N\left(B_{2}\right)$. Also $N\left(B_{1}\right) N\left(B_{3}\right) N\left(\underline{B_{3}}\right)=$ $\zeta^{t} \alpha_{2}^{3} \overline{N\left(B_{3}\right)}$. But $N\left(B_{3}\right) \overline{N\left(B_{3}\right)}$ is the cube of a rational integer and $N\left(B_{1}\right), \overline{N\left(B_{3}\right)}$ are cube free integers of k so that $\alpha_{2}^{3}=N\left(B_{3}\right) \overline{N\left(B_{3}\right)}$ and $N\left(B_{1}\right)=\zeta^{t} \overline{N\left(B_{3}\right)}$. As usual we apply Theorem 15.4 of [2] to prove the last statement.

Theorem XI. Assume all fields k_{1}, k_{2}, k_{3}, and k_{4} are of Type I or IV and that k_{1} is of Type IV. Then:
(a) If $e^{3}=\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c}$ with $1 \leq a, b, c \leq 2$ has a solution e in K then all of k_{1}, k_{2}, k_{3} are Type IV.
(b) If $e^{3}=\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c} \varepsilon_{4}^{d}$ with $1 \leq a, b, c, d \leq 2$ then exactly three of k_{1}, k_{2}, k_{3}, k_{4} are of Type IV.

Proof. (a) As before it suffices to take $a=b=c=1$. As in the proof of Theorem X and its corollaries, $e^{3}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ implies that $N\left(B_{1}\right) / N\left(B_{2}\right)$ and $N\left(B_{1}\right) N\left(B_{3}\right)$ are cubes in L. But these are cube roots of unity and hence are 1. Since $N\left(B_{1}\right)$ is not 1 neither are $N\left(B_{2}\right)$ nor $N\left(B_{3}\right)$.
(b) If $e^{3}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}$ then as in the proof of Corollary IV to Theorem X,

$$
\frac{N\left(B_{1}\right) N\left(B_{3}\right)}{N\left(B_{4}\right)} \text { and } \frac{N\left(B_{1}\right) N\left(B_{2}\right)}{N\left(B_{3}\right)}
$$

are cubes in L and hence are 1. If $N\left(B_{i}\right)=\zeta^{a_{i}}$ for $i=1,2,3,4$ then

$$
a_{1}+a_{3}+2 a_{4} \equiv 0(\bmod 3) \quad \text { and } \quad a_{1}+a_{2}+2 a_{3} \equiv 0(\bmod 3)
$$

Now $a_{1} \not \equiv 0(\bmod 3)$. First suppose $a_{2} \not \equiv 0(\bmod 3)$. If $a_{1} \equiv a_{2}(\bmod 3)$ then $a_{3} \equiv 2 a_{1}$ and $a_{4} \equiv 0(\bmod 3)$. If $a_{1} \equiv 2 a_{2}$ then $a_{3} \equiv 0$ and $a_{4} \equiv a_{1}(\bmod 3)$. If $a_{2} \equiv 0(\bmod 3)$ then $a_{3} \equiv a_{1}$ and $a_{4} \equiv 2 a_{1}(\bmod 3)$. Thus in any case exactly one of the fields $k_{1}, k_{2}, k_{3}, k_{4}$ is of Type I and the remaining three are of Type IV.

We are now in a position to state the relationship between the "kind" of K and the "type" of its subfields $k_{1}, k_{2}, k_{3}, k_{4}$.

Theorem XII. (a) If K is Kind 1 then either all the fields k_{1}, k_{2}, k_{3} and k_{4} are Type I or exactly three, say k_{2}, k_{3}, k_{4}, are of Type I and $k_{1}=Q(\sqrt[3]{3})$.
(b) If K is Kind 2 then the fields $k_{1}, k_{2}, k_{3}, k_{4}$ satisfy one of the following conditions:
(i) at least two are Type I;
(ii) at least three are Type IV and the remaining (if any) is Type I;
(iii) exactly three are Type III and one is Type I.
(c) If K is Kind 3 then $k_{1}, k_{2}, k_{3}, k_{4}$ must satisfy at least one of the following conditions:
(i) at least one is Type I;
(ii) at least three are of the same type.
(d) If K is Kind 4 then there is no apparent restriction on the type of k_{1}, k_{2}, k_{3}, k_{4}.

Proof. (a) It is immediate from Theorem VI and Corollaries I and II to Theorem X that at least three of the fields $k_{1}, k_{2}, k_{3}, k_{4}$ are of Type I and if k_{1} is not of Type I then the equations $e_{i}^{3}=\varepsilon_{i}(i=2,3,4)$ all have solutions e_{i} in K. Thus $K=k_{i}\left(e_{i}\right)$ for $i=2,3,4$ and so only prime divisors of three in k_{i}
can ramify in the extension $K / k_{i}(i=2,3,4)$. If $p \neq 3$ is a prime divisor of m_{1} then p does not ramify in one of the field k_{j} with $j=2,3$, or 4 . Thus the prime divisors of p in k_{j} must ramify in K contrary to the observation above. Thus m_{1} has no prime divisors $p \neq 3$ and so $k_{1}=Q(\sqrt[3]{3})$.
(b), (c), and (d). Follow from analyzing the various possible cases of Theorem VI using the corollaries to Theorem X and Theorem XI.

Finally we conclude this section by considering some examples.
Theorem XIII. Let $p, q \equiv 2$ or $5(\bmod 9)$ be primes.
(a) If $m_{1}=3, m_{2}=p, m_{3}=3 p, m_{4}=9 p$ then K is of Kind 1 and ε_{1}, $\sqrt[3]{\varepsilon_{2}}, \sqrt[3]{\varepsilon_{3}}, \sqrt[3]{\varepsilon_{4}}$ are a system of fundamental units for K.
(b) Let $m_{1}=p, m_{2}=q, m_{3}=p q, m_{4}=p^{2} q$ and if necessary interchange m_{3} and m_{4} so that $m_{3} \equiv \pm 1(\bmod 9)$. Then K is Kind 1 and we may choose a fundamental system of the form $\varepsilon_{1}, \sqrt[3]{\varepsilon_{1}^{a} \varepsilon_{2}}, \sqrt[3]{\varepsilon_{3}}$, and $\sqrt[3]{\varepsilon_{1}^{b} \varepsilon_{4}}$ where $a=1$ or 2 and $b=0,1$, or 2 .

Proof. (a) Here k_{1} is of Type IV and k_{2}, k_{3}, k_{4} are of Type I (see [2, p. 236]). By Theorem IX, $\varepsilon_{i}=\alpha_{i}^{3} / r_{i}$ for $i=2,3,4$ where $\alpha_{i} \in k$ and $r_{i} \in Z$ divides $9 p^{2}$. Thus $\sqrt[3]{ } r_{i} \in K$ and hence $\sqrt[3]{ } \varepsilon_{i} \in K$ for $i=2,3,4$. It is clear from Theorem VI that $\varepsilon_{1}, \sqrt[3]{\varepsilon_{2}}, \sqrt[3]{\varepsilon_{3}}$, and $\sqrt[3]{ } \varepsilon_{4}$ form a fundamental system of units for K.
(b) Here all four cubic subfields are of Type I so Theorem IX tells us $\varepsilon_{i}=$ α_{i}^{3} / r_{i} for $i=1,2,3,4$. Moreover $r_{i} \neq m_{i}, m_{i}^{2}$, and r_{i} is a "principal divisor" of the discriminant of k_{i} for each $i=1,2,3,4$. It follows that 3 is a principal divisor of k_{1} and k_{2}, that p and q are principal divisors in k_{3} and that either $3, p, 3 p$, or $3 q$ is a principal divisor in k_{4}. Thus $\sqrt[3]{\varepsilon_{1}^{a} \varepsilon_{2}}, \sqrt[3]{\varepsilon_{3}}, \sqrt[3]{\varepsilon_{1}^{b} \varepsilon_{4}}$ are in K where $a=1$ or 2 and $b=0,1$, or 2 . Theorem VI again applies to complete the proof.

Corollary. In part (a) above, $(\hat{E}: \hat{\varepsilon})=3^{5}$ and $\left(\hat{E}: \hat{\varepsilon}_{1}\right)=3^{2}$.
Proof. Immediate from Theorem I since all class numbers all relatively prime to 3 .

5. A class number formula for K

Theorem XIV. The class number h of K satisfies the relation

$$
3^{3} h=\left(\hat{e}: \hat{e}_{0}\right) h_{1} h_{2} h_{3} h_{4}
$$

Proof. We may always number our fields $k_{i}(i=1,2,3,4)$ so that $t_{1}=1$ in Theorem I. In fact if one of the fields k_{i} is of Type III then we may take this to be k_{1}. Let $s=0,1,2,3$, or 4 be the number of fields k_{i} of Type III. Letting $t=0$ or 1 according as k_{1} is of Type III or not, we have $\left(\hat{\varepsilon}_{1}: \hat{\varepsilon}_{0}\right)=3^{t}\left(\hat{e}: \hat{e}_{0}\right)^{2}$ and $\left(\hat{\varepsilon}: \hat{\varepsilon}_{0}\right)=3^{4-s}$.

Thus

$$
(\hat{E}: \hat{\varepsilon})=3^{t+s-4}\left(\hat{e}: \hat{e}_{0}\right)^{2}\left(\hat{E}: \hat{\varepsilon}_{1}\right)
$$

Theorem I tell us that $3^{3} H=3^{t}\left(\hat{E}: \hat{\varepsilon}_{1}\right) h^{2}$ and

$$
\begin{aligned}
3^{5} H & =(\hat{E}: \hat{\varepsilon}) H_{1} H_{2} H_{3} H_{4} \\
& =3^{t+s-4}\left(\hat{e}: \hat{e}_{0}\right)^{2}\left(\hat{E}: \hat{\varepsilon}_{1}\right) 3^{-s} h_{1}^{2} h_{2}^{2} h_{3}^{2} h_{4}^{2} \\
& =3^{t-4}\left(\hat{e}: \hat{e}_{0}\right)^{2}\left(\hat{E}: \hat{\varepsilon}_{1}\right) h_{1}^{2} h_{2}^{2} h_{3}^{2} h_{4}^{2} .
\end{aligned}
$$

Thus $3^{6} h^{2}=\left(\hat{e}: \hat{e}_{0}\right)^{2} h_{1}^{2} h_{2}^{2} h_{3}^{2} h_{4}^{2}$ yielding the desired result.
Corollary I. If h is not divisible by three then K is of Kind 1 and so $\left(\hat{e}: \hat{e}_{0}\right)=27$.

Proof. Theorem IV tells us that all of h_{1}, h_{2}, h_{3}, and h_{4} are relatively prime to three. Thus Theorem XIV gives ($\left.\hat{e}: \hat{e}_{0}\right)=27$ and Theorem VI tell us K is Kind 1.

Corollary II. If all but one of the class numbers $h_{1}, h_{2}, h_{3}, h_{4}$ are relatively prime to three then K is of Kind 1.

Proof. Say h_{1} is not prime to three. If $3^{a} \| h_{1}$ then it is clear from Theorem XIV that $3^{a+1} \nmid h$. However it is easy to show by class field theory that $h_{1} \mid h$, i.e., simply take the Hilbert class field k_{1} of k_{1} and note that $k_{1} K$ is an abelian unramified extension of K of degree h_{1}. Thus $3^{a} \| h$ and so ($\hat{e}: \hat{e}_{0}$) $=27$ and K is of Kind 1.

Combining our last theorem with Lemma 5 of [3] gives an interesting result. First some additional notation is required.
T : ring of integers of K.
$S:$ smallest subring of K containing $1, \sqrt[3]{m_{1}}, \sqrt[3]{m_{2}}, \sqrt[3]{m_{3}}, \sqrt[3]{m_{4}}$.
$s_{i}=3$ or $1: \quad$ according as $m_{i} \equiv \pm 1(\bmod 9)$ or not, for $i=1,2,3,4$.
Corollary III. For any field $K,(T: S)=3^{3} s_{1} s_{2} s_{3} s_{4}$.
Proof. Lemma 5 of [3] says

$$
(T: S) h=\left(\hat{e}: \hat{e}_{0}\right) h_{1} h_{2} h_{3} h_{4} s_{1} s_{2} s_{3} s_{4}=3^{3} h s_{1} s_{2} s_{3} s_{4}
$$

by Theorem XIV. This proves the corollary.
We conclude this article with a short table of class numbers for some bicubic fields. In the table the types of the subfields $k_{1}, k_{2}, k_{3}, k_{4}$ are listed in consecutive order. The class number and a system of fundamental units is given for each field K. The class numbers of the fields $k_{1}, k_{2}, k_{3}, k_{4}$ were obtained from the table of Selmer [13].

m_{1}	m_{2}	m_{3}	m_{4}	h_{1}	h_{2}	h_{3}	h_{4}		Class			$\begin{gathered} J_{\text {NTIS }} \\ \end{gathered}$			Units		
2	3	6	12	1	1	1	1	I	IV	I	I	1	$\sqrt[3]{\varepsilon_{1}}$	ε_{2}	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
2	5	10	20	1	1	1	3	I	I	I	I	3	ε_{1}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{1} \varepsilon_{4}}$	
2	7	14	28	1	3	3	3	I	III	I	III	3	ε_{1}	ε_{2}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{3}}$	ε_{4}	
2	11	22	44	1	2	3	1	I	I	I	I	6	ε_{1}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{1}^{2} \varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
2	13	26	52	1	3	3	3	I	III	III	I	3	ε_{1}	ε_{2}	ε_{3}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{4}}$	
2	15	30	60	1	2	3	3	I	I	I	I	18	ε_{1}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{2}^{2}}$	$\sqrt[3]{\varepsilon_{2} \varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
2	17	34	68	1	1	3	3	I	IV	I	I	3	ε_{1}	ε_{2}	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
2	19	38	76	1	3	3	6	I	III	I	I	18	ε_{1}	ε_{2}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{1} \varepsilon_{4}}$	
3	5	15	45	1	1	2	1	IV	I	I	I	2	ε_{1}	$\sqrt[3]{\varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
3	7	21	63	1	3	3	6	IV	III	III	III	6	ε_{1}	ε_{2}	ε_{3}	$\sqrt[3]{\varepsilon_{1}^{a} \varepsilon_{2}^{b} \varepsilon_{3}^{c} \varepsilon_{4}^{d}}$	$\begin{gathered} 0 \leq a \leq 2 \\ 1 \leq b, c, d \leq 2 \end{gathered}$
3	10	30	90	1	1	3	3	IV	I	I	I	3	ε_{1}	ε_{2}	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
3	11	33	99	1	2	1	1	IV	I	I	I	2	ε_{1}	$\sqrt[3]{\varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{3}}$	$\sqrt[3]{\varepsilon_{4}}$	
5	6	30	150	1	1	3	3	I	I	I	I	9	ε_{1}	$\sqrt[3]{\varepsilon_{1} \varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{1}^{2} \varepsilon_{2}}$	$\sqrt[3]{\varepsilon_{4}}$	

References

1. P. Barrucand and H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory, vol. 2 (1970), pp. 7-21.
2. ——, Remarks on principal factors in a relative cubic field, J. Number Theory, vol. 3 (1971), pp. 226-239.
3. J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika, vol. 13 (1966), pp. 111-120.
4. P. G. L. Dirichlet, Recherches sur les formes quadratiques á coefficients et á indeterminées complexs, J. Reine Angew. Math., vol. 24 (1842), pp. 291-371.
5. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Physica-Verlag, Wurzburg/Wien, 1970.
6. T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory, vol. 3 (1971), pp. 7-12.
7. T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklishen biquadratischen Zahlkörpers, Nagoya Math. J., vol. 6 (1953), pp. 119-127.
8. _-_Über den bizylkishen biquadratischen Zahlkörper, Nagoya Math. J., vol. 10 (1956), pp. 65-85.
9. S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci., Univ. Tokyo, vol. 4 (1943), pp. 383-406.
10. —UUber die Klassenzahlen algebraishen Zahlkörper, Nagoya Math. J., vol. 1 (1950), pp. 1-10.
11. S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970.
12. C. Parry, Pure quartic number fields whose class numbers are even, J. Reine Angew. Math., vol. 264 (1975), pp. 102-112.
13. E. S. Selmer, Tables for the purely cubic fields $K(\sqrt[3]{m})$, Avh. Norske Vid.-Akad. Oslo, vol. 5 (1956), pp. 1-38.
14. H. Wada, On the class number and unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo, vol. 13 (1966), pp. 201-209.

Virginia Polytechnic Institute and State University Blacksburg, Virginia

