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Abstract

Although the existence of Lebesgue nonmeasurable sets is provable in ZFC,
Solovay has proved that no definition made within set theory can be proved in
ZFC to define a Lebesgue nonmeasurable set. In contrast to Solovay’s result,
we construct a definable countably additive translation invariant extension
of Lebesgue measure which has character 2c.

Solovay [4] has constructed a model of ZFC in which there are no definable
Lebesgue nonmeasurable sets. Kakutani and Oxtoby [-2] have constructed a
countably additive translation invariant extension of Lebesgue measure on the
circle group which has character 2c. 2 Further investigations of invariant ex-
tensions of Lebesgue measure (and also of Haar measures) have appeared (see
Hewitt and Ross [1-1, and its bibliography). None of these constructions of
invariant extensions of Lebesgue measure are given by an explicit definition.
Typically, one uses a well ordering of the reals, not only to prove that the
extension is a proper extension, but also to describe the a-algebra. The results
of Solovay show that the first is necessary, and suggest that the second might
also be unavoidable. The example presented here shows that this is not the case.

Specifically, we give an explicit definition which, provably in ZFC, defines a
countably additive translation invariant extension of Lebesgue measure on the
circle group (the real numbers [0, 1) mod 1) of character 2c. In fact, the proof
that it defines a countably additive translation invariant extension of Lebesgue
measure is given within ZF plus the countable axiom of choice. (The same
result is shown also for the reals).
The construction makes use of a key measure theoretic lemma, which we

prove in Section 1 through forcing and conservative extension results. The
lemma likely can be proved from standard techniques; nevertheless, the proof
is very easy if these sophisticated techniques are used.a
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2 The separability character of a measure space is the least cardinality of a subset /of
measurable sets such that to every measurable set with /(E) < co, and 8 > 0, there is an
,4 ./with (E A ,4) < 8. If the character is less than or equal to co then the space is called
separable.

The referee has communicated two different proofs to us. The first proof uses hyper-
arithmetic theory, and the second uses descriptive set theory. Unfortunately neither can be
regarded as "logic-free." We wish to thank the referee for these and other important remarks.
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1. The key measure theoretic lemma

In [3-l, it is shown how to derive "the union of 091 sets of Lebesgue measure 0
is of Lebesgue measure 0" from ZFC + 2‘0 > col + a statement which has
since become known as Martin’s axiom (MA). In [5], it is shown that every
countable model of ZFC can be generically extended to a model of ZFC +
2 > o91 -I- MA. A consequence of this is that every statement of a certain
form (called H) which is provable from ZFC + 2‘0 > 091 + MA is provable
in ZFC.

Actually, we need only the following.

LEMMA l. Every I-I3 sentence provable in ZFC + "the union of o sets of
Lebesgue measure 0 is of Lebesgue measure 0" is provable in ZFC.

Since the measure theoretic lemma we are interested in is easily seen to be
provably equivalent, in ZFC, to a H sentence, it suffices to give a proof of it
using "the union of o91 sets of measure 0 is of measure 0."

Let G be an uncountable Borel subset of the circle group f, and let A f
have positive measure. The measure theoretic lemma asserts that some translate
G -I- x has continuumly many elements in common with A. Using the fact that
sets of positive measure contain closed subsets of positive measure, and that
uncountable Borel sets have perfect subsets, we see that the measure theoretic
lemma is provably equivalent (in ZFC) to the statement that every closed set of
positive measure meets some translate of G in a set that includes a perfect subset.
This latter statement can easily be put into FI form.
To prove the lemma, we can assume, without loss of generality that A is

Borel. Let Q be the rationals in f. Then A* A + Q must have measure 1,
by the 0, 1 density law.

It suffices to show that for some translate G -t- x,

I(G + x) c A*I c.

For if I(G + x) c A*l c, then I(G + x) c (A + Y)I c for some y e Q,
and solG + (x-y) cAI c.

Observe that /(A* y) 1 for all ysf. Choose K= G of power o91.
Then #(yr(A*-y))= 1. Let x e(A*-y), for all y eK. Then
(G + x) A* is uncountable. Since (G + x) c A* is Borel, it is of power c.
We have shown the following.

LEMMA 2. Every set of positive measure has continuumly many elements in
common with some translate of every uncountable Borel subset of f.

2. Construction of the measure

In this and succeeding sections, by a measure space we will always mean a
triple (fl, ’,/), where is a a-algebra of subsets of the circle group fl, and #
is a countably additive function from into [0, 1],/t() 1.
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Let us call a sequence (Xo, xn) from fl independent just in case axi 0
implies all a O, for integers a. Fix B to be some countable dense set
such that any finite sequence of distinct elements is independent.

LEMMA 3. There l’S a perfect C c such that any finite sequence of distinct
elements is independent.

Proof. Construct a sequence of sets Sn as follows. Each Sn is the finite union
of pairwise disjoint closed intervals, all of whose endpoints lie in B. Sn+ c Sn
is obtained from Sn by replacing each [a, b] in Sn with some [a, a + el,
[b tS, b], with a + e < b t3. Arrange for any sequence (Xo,..., xn) from
Sn+l, no two terms of which are from the same interval in Sn+ 1, and for any
-n_< ao,. an _< n, we have aix 0 implies all as 0. Then set C=

LEMMA 4. There is a function F whose domain is , such that each F(x) is an
uncountable Borel subgroup of , and no F(x) meets the group generated by
Uyx F(y) (except at 0).

Proof. Choose c pairwise disjoint perfect subsets of C, and index them by f/.
Take the groups generated by each subdivision. Note that the group generated
by a compact set is Borel, since it is a countable union of continuous images of
compact sets.

Call c .() countably independent just in case any nontrivial countable
intersection of elements ofd and complements of elements of" is nonempty.
In [2, p. 585], an explicit construction of a countably independent set V" of
power 2 is given, following Tarski.

LEMMA 5. There is a uniquefinitely additive measure v on the Boo&an algebra
(4) 9enerated by aft, such that v() 1, and v(At c...c An) 2-n, for
distinct A .A/.

Proof. This follows from the finite independence of’. Each finite sequence
of distinct A ,..., An .(vV’) determines a partition of f with 2 subdivisions.
The union of any k distinct subdivisions will be assigned measure k/2. Any
element of &(eft) can be so represented. The independence guarantees that the
measure is well defined.

LEMMA 6. The intersection of any decreasing sequence of nonempty elements
of (t/’) is nonempty.

Proof. Let (Bn} be the sequence. We can represent each Bn by means of a
partition Pn (determined as in Lemma 5 by a finite sequence of distinct elements
of .A/’), so that each P,+ is a refinement of
which intersects each Bn. Choose a subdivision s2 = st of P2 which intersects
each Bn. Continue in this way, defining a sequence {s} of subdivisions, nested
under inclusion. Countable independence guarantees that (] s is nonempty.
We are done, since each
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Now let j: .(f)--} ((f)) be given by j(A) {B c f: (Vx A) (-B
intersects every coset of the group F(x) in a set of power < c) and (Vx A)
(B intersects every coset of the group F(x) in a set of power < c)}. Let

{B f: B ej(A) for some A e (r)} (j[(X)]).

Define p: l0 (Rng (j)) (f) by p(B) {x: -B intersects every coset of F(x)
in a set of power < c}.
The following uses the fact that the union of countably many sets of power

less than c has power less than c.

LEMMA 7. ///is a Boolean algebra, ) (Rng (j)) is a Borel algebra, p(-A)
-p(A), p (0. p(A.) (. p(A.).

Define ml: / R by m(B) v(p(B)).

LEMMA 8. m is a finitely additive translation &variant measure on /l. The
intersection of any decreasing sequence of sets of positive m1-measure has
Lebesgue outer measure 1.

Proof. The first part follows immediately from Lemma 7, and that transla-
tions map cosets onto cosets. Now let {A,} be as in the lemma. Note that by
Lemma 7, - An will have less than c elements in common with every coset of
some F(x). Hence by the key measure theoretic Lemma 2, -1 An can contain
no subset of positive Lebesgue measure, and so/.* (0 An) 1.

LEMMA 9. Let (fl, , pl) be a measure space, and let #2 be afinitely additive
measure on a Boolean algebra 2 ofsubsets oft), p2(f) 1. Furthermore sup-
pose that the intersection ofany decreasing sequence ofsets ofpositive Ig2-measure
has outer la-measure 1. Then there is a unique countably additive measure 2 on
the Borel algebra generated by gift w aft2, such that

,(A i’ A2) ,fl (A 1)" ,tt2(A 2).

If Its, !2 are translation &variant, so is 2.

Proof. We first observe that there is a unique finitely additive measure
on the Boolean algebra generated by w 2, such that

2o(A A2) /I(A I)"/2(A2).

The elements of this Boolean algebra can be written in the form (A c B) w...
w (An c B,), where B,..., Bn is a partition of f by elements of ,’2, and
AI,..., An e . Define

o((A1 B1) t.)’"o (An B.)) t(A1)’/.t2(B1) +"" + tl(An)"

Using//2(B) > 0 ---}/(B) 1, one easily shows this to be well defined.
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It now suffices to show that any decreasing sequence of elements (C.) in the
Boolean algebra, all of whose ),o-measures are at least e > 0, has nonempty
intersection. To this end, represent each C. as

as above, in such a way that the partition B,+ 1,1,..., B,+ 1,kn+, is a refinement
of the partition B,,..., B,k.. Again using that #2(B) > 0 implies t(B) 1,
we observe that if B,+ a. c B,j,/2(B,+ a.) > 0, then/(A,+ 1. A,j) 0.
Note that the B,m form a finitely branching tree when partially ordered under

containment, with B,m on the nth level. Consider the subtree consisting of all
B,,, such that/2(B,m) > 0 and t(A,) > e. This subtree must be infinite, and
therefore must have an infinite path {B,m.}. By hypothesis,/ (0, B,z.) 1.
Since t (Nn Anm.) >- 8, we see that 0, C, # 0.

Translation invariance and uniqueness are immediate.

LEMMA 10. There is a unique countably additive measure m on the Borel
algebra &(LM w /) generated by the Lebesgue measurable sets and l, such
that m(A B)= la(A)’m(B), for Lebesgue measurable A, and B e/l.
Furthermore, m is translation invariant.

Proof From Lemmas 8 and 9.

3. The definability of the measure

The countable axiom of choice (AC,o) asserts that every countable set of non-
empty sets has a choice function. This is a special case of the axiom ofdependent
choice (DC), which asserts that for nonempty A, if (Vx A)(3y A)(R(x, y)),
then (:h: o A)(Vn o)(R(h(n), h(n + 1))). It is shown in [-4] that ZF + DC
does not suffice to prove the existence of a Lebesgue nonmeasurable set.
The purpose of this section is to indicate how the (. 9o(LM w ), m) of

the previous section can be defined and proved to be a translation invariant
measure space extending the Lebesgue measure space, within ZF + AC,o.
Note that some form of choice is needed even to prove that Lebesgue measure is
countably additive.
We first note that the key measure theoretic Lemma is provably equivalent

to a I-I sentence within ZF + AC,. This is because ZF + AC, suffices to
prove that sets of positive measure contain closed sets of positive measure, that
uncountable Borel sets have perfect subsets, and that uncountable Borel sets are
of cardinality . In addition, every 1-I sentence provable in ZFC is provable
in ZF. Hence the measure theoretic lemma is provable in ZF + AC,o.
A proof in ZF + AC,o of the existence of a definable independent countable

dense set can be obtained by iterating the following. There is a definable pro-
cedure which takes any sequence of reals and interval of reals into a real in that
interval which is not present in the sequence.



EXTENSION OF LEBESGUE MEASURE 145

For Lemma 4, note that the construction of C puts C naturally in one-to-one
correspondence b with 2’. Let g: 2 - (2) be given by

g(o0 {fl e 2’: (Vn)(fl(2n) z(n))}.

Now take the -l[g(a)]. These form a partition of C into perfect subsets
indexed by 2% It remains only to remark that 2 is in definable one-to-one cor-
respondence with f. This is a consequence of the fact that the SchrSder-
Bernstein theorem is explicitly true. In other words there is a definable procedure
which takes any one-to-one " A B, fl" B A, to a one-to-one onto " A B.
The construction referred to in [2, p. 585-1, is definable, and uses only AC, to

prove countable independence. The actual domain used there is in definable
one-to-one correspondence with f.
The proof of Lemma 6 only uses ACo,. For each n, choose an appropriate

partition P, equipped with an indexing of the subdivisions of P. Then refine
this partitions by induction, retaining an indexing of subdivisions, to the P,.
Then the rest of the argument involves no use of choice.
The definitions ofj, d//, and p are explicit. "Power < c" means that there is a

monomorphism into f, but no surjection onto t2. We use this somewhat non-
standard definition to ensure that ACo suffices to prove that the union of a
sequence of sets of power less than c is of power less than c. Hence Lemmas
7 and 8 need only AC,o.

In the proof of Lemma 9, if the partitions and subdivisions are handled as in
the proof of Lemma 6, only AC, is used. The measure extension theorem used
for Lemma 9 needs only AC,o.

In the proof of Lemma 10, we need that Lebesgue measure is countably
additive, which uses only ACo.

4. The separability character of the measure

In view of [4], we know that ZF + AC,o, and in fact ZF + DC, does not
suffice to prove that (f, &(R)(LM w d/l), m) differs from the Lebesgue measure
space. In this section, we will use the full axiom of choice to show that
(t), oo(LM w d/l), m) has separability character 2c.

It clearly suffices to find a subset of :oo(LM w d/l) of power 2c such that the
measure of the symmetric difference of any two elements is 1/2. Hence it suffices
to establish that j(A) 0 for all A

LEMMA 11. Allj(A) are nonempty, A c f.

Proof. We shall use c also for the least ordinal number of power c. Let
(x, y), for a < c, be chosen so that the cosets F(x,) + y, enumerate

{F(x) + y: x, y e fl}

without repetition.
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We define a transfinite sequence B = f, < c, in order that

(i)
(ii)
(iii)
(iv)

for all fl < a, xa A, -(B,) (F(xa) / ya)) has power less than c,
for all fl < a, xtj A, Bo, c (F(xtj) + YtJ) has power less than c,

for all < fl < a, B, c (F(xr) + y) Ba (F(xr) + yr),
= +

Suppose all Ba, fl < a, have been defined in accordance with (i)-(iv). Note
that by Lemma 4, if (x, y) : (z, w) then F(x) + y has at most one element in
common with F(z) + w. It therefore follows that Ua< (F(xa) + yj) has less
than c elements in common with F(x) + y.

If a A, set

B= (<Ba) w((F(x)+ y’)-

If A, set B Ua< Ba.
Now let B U,<c B. Then B j(A).

5. Conclusion

From Lemmas 10, 11, and the discussion in Section 3, we have now proved
the following.

THEOREM. There is a formula dp(x) of set theory such that

(a) ZF + AC,oproves (3 x)(dp(x)) and (3x)(b(x) & x is a translation invariant
measure space on the circle group that extends Lebesgue measure) and

(b) ZFC proves (3x)(dp(x) & x has separability character 2c).

The theorem carries over for Lebesgue measure on the reals by means of the
following observation. Let (f, d’, v) be a measure space. Let be the family of
all A c R such that (A c In, n + 1)) B, + n, for some (unique) B,
n e Z. (Here f is identified with [0, 1)). Let map into the nonnegative
extended reals by (A) v(B,). Then is countably additive. If v extends
Lebesgue measure on f, then will extend Lebesgue measure on R. If v is
f-translation invariant, will be R-translation invariant. If (f ,, v) has separ-
ability character 2c, so will (R, 7, 9).
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