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Hewitt and Zuckerman [3] studied the measure algebra of a compact interval
and Ross [7] extended these results to locally compact intervals. Baartz [1]
then considered finite Cartesian products of intervals; however, he demon-
strated the impossibility of extending his results to infinite Cartesian products.
The purpose of this article is to extend the above works to infinite dimensional
spaces by using weak products, rather than Cartesian products. The maximal
ideal space of the measure algebra will be identified, the Gelfand topology
described, and many Banach algebra type results, such as semisimplicity,
regularity, Choquet boundary, etc., will be investigated. Finally, a Herglotz-
Bochner theorem will be obtained.

1. Preliminaries

Let S be a totally ordered set, with a least element 0. We make S into a
topological semigroup by putting on the interval topology and defining multi-
plication by xy max (x, y). We shall assume that S is compact, and write
S [0, 1-1; however, the extension of the results of this article to the locally
compact case can be accomplished in a manner precisely the same as in Ross [-7].
If {S 7 F} is a collection of these order intervals, we define the weak product,

s= H(s r r}

{(x) l-I {S y F} x 0 for all but finitely many coordinates}.

A basis for the topology on S is given by

{fi {Ur F} Ur open in S, 0r U. for all but finitely many coordinates}.
Multiplication and order is coordinatewise. Finally

L,= {ySly < x} and M,,= {ySly > x}.

We let M(S) denote the space of all bounded, regular Borel measures on S,
equipped with the total variation norm. We make M(S) into a Banach algebra
by defining

#,v(E)= sfsXr,(xy)d#(x)dv(y), l,vM(S),
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where ZE is the characteristic function of E. Let 5x denote the point mass at x.
It should be pointed out here that since S is no longer locally compact, we

cannot employ the Riesz representation theorem. In other words, our measures
can no longer be realized as the space of continuous linear functionals on the
space of continuous functions on S that vanish at infinity.
The following lemma, the proof of which is straightforward and follows

precisely as in Baartz [1], will provide a basis for much of what is to follow.

LEMMA 1. Suppose !, v M(S) and x, y S. Then:

(a) / v(E) s v(Ex-) dv(x), where Ex- {y S xy E}.
(b) p 6x(E) p(Ex-2).
(c) 6,,,6y=
(d) #, 6, # if and only/fsupport # S(p) Mx.
Notation.

l-I (At; V) I-I (Br; T)

(x.r) el-I{SrleF}lxreArforeVandxeBfor’r

The following proposition, stating that compact subsets of S are finite
dimensional, is crucial to the following results.

PROPOSITION 1. Suppose K is closed in S. Then K is compact ifand only iffor
some finite subset {)’t, ’u} of F,

K G 1-I (S;r r,,..., r) 1-I (Or; ? # ?,,’",

Proof. Since each St, is compact, it is clear that

l] (s; v v,,..., ) 1-I (0; v,,...,

is compact (Tychonov’s theorem). Hence, K closed implies K compact. To see
the opposite implication, suppose K were not contained in any "finite product."
Then for infinitely many points {x} K, and infinitely many coordinates
{?,} F, xr, # 0r,. Let V, be open in Sv, with 0r, Vv, but xv, Vv,, and define
the set 0u as follows:

0 H (s,; +,,...)II (v; +,,...).

Thus, {0u} covers K (in fact, it covers S), but no finite subcover covers K--
contradiction.

DEFINITION. A prime subsemigroup (pssg) of S is a subsemigroup whose
complement is an ideal.
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The following two propositions will be stated without proof. The first one
follows very similarly to the corresponding proof of Baartz. The second is a
general fact in the theory of idempotent semigroups.

PROPOSITION 2. A is a pssg of S if and only if A I-I At, where Ar
[0, xr) or [0, x] (we write Ar [0, xr}).

As a consequence of this proposition, we see that all pssg’s are Borel sets,
something which is false in the case of an infinite Cartesian product.
By a semicharacter on S, we mean a multiplicative map from S into the unit

disc. Denote the set of all nonzero measurable semicharacters on S by .
PROPOSITION 3.

ofa pssg of S.
Thefunction 7. ifand only ifT. is the characteristicfunction

Although convolution of measures is quite unlike pointwise multiplication,
the concepts turn out to be the same when applied to pssg’s.

PROPOSITION 4. If, V M(S), A a pssg of S, then kt * v(A) p(A)v(A).

Proof. First notice that xy A if and only if x A and y A. Hence,

*v(A)=f.;s;rA(Xy)d(x)dv(y)
=fsfsXa(x)xA(y)d(x)d#(Y)

v(A)v(A)

by Fubini’s theorem.

2. The main theorem

The main theorem in this section deals with the relationship between the
maximal ideal space of M(S) and the space of semicharacters on S. Since the
proof is fairly long, it is broken up into a sequence of lemmas. Let a stand for
the projection onto the flth coordinate of S.

LEMMA 2. Let A be a pssg of S, I M(S), and 8 > 0 be given. Then there
exists an Xo A such that I/I(A Lo) < 8.

Proof. Since # is regular, there exists a compact K_ A satisfying
I#I(A K) < , and by Proposition 1,

K
__

I-I (S; 7,,..., 7) rl (or: , =# 7,,..., 7).
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Suppose A I-I A and tr, max (nr,(K)) for 1, 2,..., N.
tr, At, for 1,..., N, since At, is a pssg of St,. If Xo (tr), where

Then

for 7 7
otherwise,

thenxo e A, and Lo I-I ([0r, tr]; 7 7t,..., 7N) II (0; 7 71,..., 7N).
From this, K

__
Lxo - A, and hence, I/I(A Lxo) < e.

The maximal ideal space of M(S) consists of all nonzero algebra homo-
morphisms ofM(S) into the complex numbers, and this is denoted by dI(M(S)).

DEFINITION. If z e I(M(S)), then z determines the set A
_
S if

A {x e S z(5) 1}.

LEMMA 3. If determines A, then A is a pssg of S.

Proof. From Lemma tc), we know that di, 5 for all x, y S. Con-
sequently, the function Z on S defined by Z(x) (5) is multiplicative. There-
fore, either 27 is a semicharacter, in which case A is a pssg, or is identically 0.
If we can eliminate the latter possibility, we are done. Suppose 7 were identically
0; i.e., r() 0 for all x S. Defining 0 e S by rr(0) 0r, for all 7 F, we
have Mo S. If e M(S), then obviously S(p)_ Mo, and Lemma "l(d)
implies that z00 z(# * dio)= z(p)r(5o)= 0. Thus, z is identically zero,
which is a contradiction.

DEFINITION. Given ,u e M(S), define ,ut, e M(S) by ,up(E) ,u(E c P).

LEMMA 4. Suppose # M+(S) (the positive measures on S), A
a pss#, and > O. Then there exists an open set U oftheform

u II d,);r H r
with the property that A

_
U and/(U A) < .

Proof. Being that the proof of this lemma is rather long, it is broken down
into three steps.

Step I. There exists countably many (7} such that

]A (At; 7 71, 72,’") H (S),; 7 # 71, 72,’" ](A).

For each finite subset L (7,..., 7} of F, define

h I] (P,; v e I] v where

Note that for two different finite subsets L and E, I I., 0. Hence kt(h) > 0
for at most countably many L, for if not, we could choose countably many L,
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say {Lr}, with /(I.:) oo, and this would contradict the boundedness of
the measure p. Let (s} be those s associated with the countably many L such
that P(IL) > O. The assertion is that if

then (B) (A). If this were not the case, there would exist a compact
K B A with (K) > 0. By the characterization of compact sets, it is
known that for some fl,,..., fl e F,

K G H (S,; fl,..., fl) H (0,, ? # fl,..., fl).

For those fl, (}, we must have ua,(K) G Aa,. Hence, the only coordinates
which need not have na,(K) Aa, are those fl 6 {}. Without loss of gener-
ality, suppose that fl {) for 1,..., s; and fl (} for s + 1,...,
m. Then the claim is that

(.) K G 0 (Pa;J sT) H(A,; # fl1, jeT)
T

where the union is taken over all nonempty subsets T of {1, 2,..., s}. To see
this, suppose that (tv) K. Then t 0 for # fl,..., tim, t e A for

fl+t,..., fl (since t B), and t 6 Av for some {fit,..., fl,} (since
t 6 A). We define the set To to be exactly those e {1,..., s} with the property
that t, Aa, and consequently,

e H (na; i e To) H (A,; V e , j e To).

However, all of the sets in the union in (.) have measure zero, and since there are
only finitely many ofthem, their union has measure zero which implies (K) 0
--a contradiction.

Step II. There exist finitely many {7} satisfying

)(A; v v,,..., v) H (S; v v,, v) < (A) + /2

Suppose B= (A; ,2,...)(S; ?,72,...) is as in
Step I, that is, p(B) (A). Let

s, H (A; v v,, ,..., v) H (s; v v,, v:,..., ).

Notice B B2 Ba ’", and B B. Consequently, by a standard
fact in measure theory, there is an N such that (B) < B(B) + e/2.

Step III. There exists an open set U of the form

v H ([0, d0; v v,,..., v) H (S,; v v,..., v)

with A
_
U and p(U A) < e.
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If C I-I (At; ? 71,..., )’) I-I (St; # V1,..., YN) as in Step II, we
need only show that p(U C) < e/2. Without loss of generality, suppose that
At, [0t,, %] for 1,..., Mand that At, [%, %) for M + 1,...,
N. Thus

c II (E0,, ,3;r ,,..., r,) II ([0,, ,); r r,/,, r)

x H(s;77,
Define the set

Lj
(crj, ltj] x n(st;? - 7j), J 1,...,M

I.[%, lt] x H(S,;7 # 7); J M + 1 ,N.

We can then write C U L. Again, the regularity of g implies there exist
compact {K}, K c L, with the property that g(C) < g (U K) + e/2.
If nr(K) D, then D is compact in Sr, and

Oj (%’ 1,], j 1,...,M

[[cr, lr], j M + 1, N.

Forj= 1,...,M, definedr min{D}. Weseethatdr > cry. If

U n ([o,, d,);j 1,..., M) n ([o,, c,);j M + 1,..., N)

x (S; ? # ?,..., ?s),

we have A C U and U (U Kj) O, since

[%, ,] x (s,; r e rl, j + ,..., .
Therefore U C (S C) (U K), and (U C) < e/2.
Remark. The above lemma is strictly stronger than just the regularity of the

measure, even for finite products. Its significance is suggested by the following
counterexample. Suppose S [0, 1] x [0, 1], A {0} x [0, 1) is a pssg in
S, and U {[0, 1/n) x [0, n l/n)} is an open set in S containing A. Then
there does not exist d, dz e [0, 1] such that A [0, d) x [0, d) U.
With the use of the previous lemma, the following lemma can be proven.

LEMMA 5. Suppose z (M(S)), z determines A I-I At, andP S A.
Then if # M+(S), z(ge) O.

Proof. Given e > 0, choose U as in Lemma 4, with

v H ([% d,,); ,,..., ) H (s,; # ,,..., ),
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A
_

U, and p(U A) < . Since z is a multiplicative linear functional, z has
norm one. If T S,, U, then Pe Pr + #v~a where p(U,- A) < e.
Consequently,

and since I111 < = we have I(ua)l < . Because e > 0 is arbitrary, it
suffices to show that z(#r) 0. Let yJ S be defined by

for), 7j(Y)
0 otherwise,

and notice that T U M, andy e S A forj 1,..., N. If T1 My1 and
Tk Myk ]-M, then T = Tk is a disjoint union. Thus we have
r u,r r. Noticing that Tk M, or equivalently, that S(r)
M, and applying Lemma l(d) yields the fact that r r * 6, and there-
fore, r r * 6y. Then,

since yk e S A for k 1,..., N.

With all of the preliminaries out of the way, we are now ready to state and
prove the major theorem of this section.

THEOREM 1. Suppose S is as above, A a pssg of S, and the homomorphism za
ofM(S) defined by za(#) p(A). Then the mapping p" g(M(S)) defined
by qb(a) za is a one-one correspondence.

Proof. The fact that VA is a multiplicative linear functional is straightforward,
just using Proposition 4. To see is one-one, let A and B be pssg’s of S with
A : B. Without loss of generality, there exists an x e S with x A but x B.
Then 1 ZA(6x)4: ZB(fx)= 0. Finally, we must show that tk is onto, so
suppose that z .I[(M(S)) and z determines A. It is known by Lemma 3 that A
is a pssg; consequently, it suffices to show that z z,, i.e., z(p) p(A). By
Lemma 2, given e > 0, choose x A such that p(A L) < e. Without loss
of generality, p M/(S), since if not, we can decompose # by/ /tx /2 +
ipa ip and use the linearity of z. By Lemma l(b), we know that

IdA * (x(E) IAA(EX-1 )

#t,,,(Ex- ) + #a,,, ,,(Ex- )

#L(Ex-) + #ALx * Jx(E)

HL(Ex-1) + v(E)

where v(E) AL * 6(E) and Ilvll < e since v(S) (A L) < e.
Notice that if x E, then Ex- {y S xy E} L and if x E, then
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Ex- c Lx 0. Thus #Lx(Ex- t) #a(L,) 6,,(E). Therefore, #a * 6
#a(Lx) 6, + v. Lemma 5 and the fact that "c(6,) 1 (since x e A) allows us to
write

(#) "l(#AC + #A) T(#AC) "- (#A) "C(#A)

Z(#A * fix) Z(#A(L)6x + v) #A(L) + Z(V).

Hence, Ix(#) #(A)I < I#A(Lx) #(A)I + Iv(v)l + 2e. Since e > 0
is arbitrary, we get that (#) #(A).

If S [0, 1], Ross showed in 1-7] that , can be identified with the set
{x]]0 < x < 1} w{x) 10 < x < 1}. Again using the symbol x} to stand
for either x) or x], the order on is given by x} < y} if either x < y or x y
and x} x), y} y]. Furthermore, he demonstrated that the maximal ideal
space of M[0, ll is homeomorphic and semigroup isomorphic to , with the
order topology, where the multiplication is given by x}y} min (x}, y}).
Following this idea, the next item on the agenda is identifying the Gelfand
topology and obtaining a similar type of semigroup isomorphism. The reader
should note that in the next theorem, the Gelfand topology is realized in the form
of a full Cartesian product, which is exactly what happens when considering
the dual of a weak product of groups as shown by Kaplan in [4].

THEOREM 2. If we make ]-I r into a semigroup by defin#Ig the multiplication
on each r by x}y} min (x}, y}), we have - I-I r, where has the Gelfand
topology and - denotes homeomorphic and semigroup isomorphic.

Proof. The semigroup isomorphism is straightforward. For the other part,,,
we let # e M(S) and we want to show ki is continuous on I--I St" Without loss
of generality, suppose # e M /(S), for

(#1 #2 -I- i#3 i,fl4.) 1 12 "1- i3 i/4."

Let e > 0 be given and A I-I I0r, cr} __. S. We will show that/i is con-
tinuous at (cr}) . By Lemma 4, there exists a

U H ([0r, dr); ’ ’I ’N) H (Sr; ’ ’I,..., ’N)

with A U and #(U A) < e. Choose a compact K
_
A with #(A K) <

e. The fact that K is compact implies that

K II v,,..., II
If K zr,(K), 1,..., M, then A a pssg implies that

K’ n (K,;i 1,..., M) H (or; ? # ?, ?t) - A,

and #(A K’) < . If tr, max (K3, then again because A is a pssg, we have

K" I-I ([o,, t,];T y,,..., y) n (o,; ,,, # ’I,..., M) C2 A,
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and p(A K") < e. Let

and

Srj

Pj

crs) if trs
tr] if tr <
[0r,] if N > M

lrs]ifM> N

wherefore sr, pr e Sr.
Define V by

forj= 1,...,M
forj= 1,...,M
forj M + 1,...,N

forj= I,...,N
forj N + 1,..., M;

In either case, V is open in I-I r and, for any (xr}) e V,

ifN>M

ifM> N.

K"
_
H [Or, xr} - U

and hence, p(A) e < p (I-I [0r, xr}) < p(A) + e, or in other words,

((c})) < ((x})) < ((c})) + .
Therefore, /i is continuous on I-I r with the Cartesian product topology;
consequently, the Gelfand topology is weaker than or equal to the Cartesian
product topology on 1--[ r" But both topologies are compact and Hausdorff,
since each Sr was shown to be compact and Hausdorff in [3]. Thus, by a
standard theorem in topology, the two topologies coincide.

3. More on M(S)

In Section 2, the maximal ideal space of M(S) was completely described. In
this section, many of the other aspects of M(S) that one usually looks at when
studying any Banach algebra are investigated. The Gelfand theory yields a
map M(S) - C() and one can ask several questions about this map: Is
the map one-one and what does the range look like? If the map is one-one,
then M(S) is called semisimple and this is shown in the next proposition. A
description of the range is given in the Herglotz-Bochner theorem in the next
section.

PROPOSITION 5. M(S) is semisimple.
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Proof. By Theorem 1, M(S) is semisimple if and only if for all 2 M(S),
2(A) 0 for all pssg’s A implies that/ 0. Suppose 2(A) 0 for all pssg’s
A
_
S but 2 0. Then there would exist a compact set

H (s; ,..., ) H (0; ,..., )
in S with [[(K) > O. Define a measure on the finite Cartesian product T

S, as follows" if T is measurable, and

E E x H(0; # y,...,ys s,

then (E) 2(E). It is an easy matter to check that M(T), and it.is also
clear that (X) 0 for all pssg’s X in T. Hence, Baartz has shown in [1; 3.6]
that 0, and thus Il 0. But if

g {(kr,) T for some k z K, %,(k) kr, for 1,..., N},

then 0 IXl(g) [AI(K), which is a contradiction.
In the finite dimensional case, is known to be a totally disconnected space.

From this fact and Theorem 2, we can easily deduce that is totally disconnected
where S is a weak product.

COgOLLAgY 1. The space is Hausdorff and totally disconnected.

DEFINITION. If X is a compact Hausdorff space, a subalgebra B of C(X) is
called regular on X if for each closed subset F of X and each point F, there
exists anf B such that f(t) 0 but f(x) 0 for all x F. A commutative
Banach algebra A is called regular if 2 is regular on (A).

The next project will be to show that M(S) is a regular Banach algebra.

THEOREM 3. The algebra M(S) is regular.

Proof. Let F be closed in and x F. We want to show that there
exists a measure t M(S) with the property that/(x) 1, but/(y) 0 for all
y F. Since I-I r is compact Hausdorff and hence a regular topological
space, there exist neighborhoods U of x and V of F such that U c V 0.
Without loss of generality, we can choose U a basic open set of the form

u II (u; ,,..., ) FI (; r ,,..., ),
where each Ur, is an open interval.

For each Ur,, determine the points dr,,f from one ofthe following four cases:

Case I. xr,} xr,-].
Subcase ct. xr, has no immediate successor in St,. Therefore, Ur, must

contain certain points of the form Yr,], where Yr, > xr," Choose one such point
and let dr, xr,, fr, Yr,"
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Subcase ft. xr, has an immediate successor Y r, in St,. In this case, xr,]
Yr,) and let dr, x,, fr, Y,.

Case II. xr,}
Subcase . xr, has no immediate predecessor in St,. Thus, Ur, must contain

points of the form y,], where y, < x,. Choose one such point and let dr,
Yr,, f,

Subcase ft. x, has an immediate predecessor Yr, in St,. In this case, y,]
x.,) and let dr, Yr,, f, xr," Now define d andf S by

fory y,i 1,...,N
dr 0 fory-- ,...,yu,]F;

f d, for y,i 1,...,N,i-j

0 for y ],..., Yu, Y e F,

and let l 6n 6. M(S). The first claim is that/i(x) 1 for all j
1, 2,..., N By construction, (dr]) < (xr})for certainly 0r] < xr}, e F,
Y ’,,...IYu and dr,] < xr,}, i=-],..., N. As a result, 3n(x)= 1. But
f] > x}, implying that (f]) z (xr}) and thus 3(x)= 0. Therefore,
fj(x) 3n(x) 6(x) 1 0 1. We now assert that for t (t})e F,
there exists an s e {1, 2,..., N} with/i(t) 0. Since U, there exists an s
such that tr U. Since Ur is an open interval, there are two eases involved
in showing that fi(t) 0.

Case (1). tr} < y}, for all y} e Urn. Consequently, d and :f;
therefore, p(t) 3n(t) 3(t) 0 0 0.

Case (2). tr} > y}, for all y}

Subcase(a). tr,} >_ dr,] for all i= 1,...,N, i4: s. Thent >_ d and >
f, and thus, p(t) 3n(t) 3(t) 1 1 0.

Subcase (b). For some p e {1, 2,..., N}, p s, tr,} < dr,]. As a result,
t : d and t : f, and p(t) 3d(t) 3(t) 0 0 0. Define the mea-
sure p / /2 *’" "* Pu. Then (x) 1, since each of the/ii(x) 1, and
/i li/i’"/i. Also, (y) 0 for all y e F, since for some s, f(y) O.
This shows that M(S) is regular.

Our next goal will be to identify the Choquet boundary of M(S), which recall
is the set of all elements of g(M(S)) having unique representing measures.
First of all, notice that M(S) is dense in C(). This is because M(S) is sym-
metric (/7 ^ /i-) and we can employ the Stone-Weierstrass theorem. Hence,
we get the following result.

PROPOSITION 6. The Choquet boundary ofM(S) equals
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Proof Let x e , and suppose there were two representing measures 21 and
2. for x. That is, $fd21 f(x) $fd22 for all fe M(S) ^, or equivalently,
fd(2l 22) 0 for all f e M(S) ^. But M(S) ^ is dense in C(), and con-
sequently, 21 22 0, or 21 22.

4. Idempotents and Herglotz-Bochner

We come now to the final two major theorems of this paper. In the first of
these, the idempotents of M(S) are characterized in precisely the same way as
in the case of finite products. The second theorem deals with the Gelfand image
as a subalgebra of C() and relies heavily upon the notion of a function of
bounded variation on a commutative idempotent semigroup with identity as
described by Newman in [6].

Recall that an idempotent measure # is one that satisfies It # It. We omit
the proof of Theorem 4 due to the fact that it is pretty much an application of
Baartz’s [1] result on idempotent measures on finite dimensional products. The
main idea of the proof is to find a compact set K which approximates the support
of the measure It to within 1/4 and choose a compact pssg L containing the
compact set. Then realizing that the measure Its. is also idempotent, use Baartz’s
result to characterize ItL, from which, it can be easily deduced that ItL It.

THEOREM 4. A measure It M(S) is idempotent if and only if It is a discrete
measure qf theform It , ktS,, with the property that/f q ]B I, where

B {Jl nr(tk) Orfor some tk, k 1,..., M},

then the coefficients tk are nonzero integers between -2q- and 2- satisfying
for each x S, , (k; tk < X) 0 or 1.

We now proceed to prove a Herglotz-Bochner theorem which characterizes
the Gelfand image of M(S). All of the ideas below about functions of bounded
variation were taken from Newman [6]. The idea in the proof of the main
theorem is exactly as in the proof of the previous theorem, that is, to reduce the
case of a weak product to that of a finite product of intervals and use the known
results.
For ;t ,, define A z to be the pssg associated with ;t ;(-1(1). Let Jz

;t-1(0) so that A z w Jx S, A z c Jv 0. Let be the Boolean algebra of
subsets of S generated by the Jz(;t e ). Suppose

x {z, z,..., z,} - S,

and tr e T,, the Boolean algebra of all n-tuples of O’s and l’s. We can then let

(**) B(X, a) { (Ax,; a(i) 1)} c { Jx,; a(i) 0}.

Therefore, z’ consists of all finite unions of sets of the form (**).
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where

If F is a function on , define an operator L by

L(X, a)(F)
T.

#(a’ z)F (lI 7’’i))
ifz>a

otherwise

and lal denotes the number of ones in the n-tuple a.
We are now ready to define what is meant by a function of bounded variation

on .
DEFINITION. F is a function of bounded variation on if

sup IL(X, a)(F)l < c,
X Tn

where the supremum is taken over all finite subsets X of .
The following theorem of Newman’s gives us the relationship between the

functions of bounded variation on and the finitely additive set functions on 1.

THEOREM 5. I-6; 3.2] The algebra ba(M) of all bounded, .finitely additive
measures on z, with convolution multiplication is a Banach algebra. The algebra
BV) ofallfunctions ofbounded variation on , with pointwise multiplication and
bounded variation norm, is also a Banach algebra. The map !- ft (where
ft(Z) #(Ax)) maps ba(zd) isomorphically and isometrically onto BV().

Suppose that X is the a-algebra generated by M’. In other words, X; is generated
by the pssg’s of S, all of which are Borel sets, and hence the Borel algebra
&(S)

_
E. The following lemma is a parallel to Caratheodory’s extension the-

orem for measures.

LEMMA 6. Each p ba() can be extended to an element t ba(X), i.e., a
finitely additive measure on the a-al#ebra X. Moreover, this can be done in such
a way that I111 I111.

Proof Let

B() {uniform limits of functions of the formf Xr,,IE e,’},
and similarly

B(E)= {uniform limits of functions of the formf 1 i;E, E E}.
Clearly, both B(a’) and B(E) are normed linear spaces with the sup norm. Let
I ba() and define B(z)* by l(f) $sfdt--it is easily seen that II/11
[l#[I. Hence, by the Hahn-Banach theorem, we can extend I to B(E)*; i.e.,
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l(f) i(f) for allf B(z), and II1 11711. Define fi ba(E) by fi(E)
thus getting an extension of t with the property that I111 IIPlI,

Let us examine the following diagram"

(1) ba() BV() (as in Theorem 5)

(2) ba(E) BV (,) (obtained by factoring through
w Lemma 6 assures us that this is onto)

(3) M(S) Gelfand. C()
We see from this diagram that

where CBV($) is the set of continuous functions of bounded variation on
We want to show that the Gelfand map is onto, and this result is called a

Herglotz-Bochner theorem. The fact that the map is onto for the case of
S I-I S, will be used. Since map (2) above is onto, it suffices to show that

ba(E) M(S) NBV($), the set of noncontinuous functions of bounded
variation on . Again, for S 1--IUl S,, this is known to be true.

TI-IEORM 6. The Gelfand map M(S) CBV($) is onto.

Proof. Suppose # ha(E) M(S). We break this up into several cases.

Case I. # is not countably additive on (S). Consequently, there exist
disjoint sets {E,} such that

I (U .)- E (t.)l > > o.
Choose a compact

K H (st; y ,,..., n) n (0r; # , n) L

such that Iliar -#11 < e/3, and hence, [IPL- PI[ < e/3. Consider / as a
finitely additive measure on y[ Sr T, and call it fi, that is,

For a set E S; let Er {(x,,..., x,) T there exists a y E with
r,(y) x, for all 1, 2,..., N}. We then have

I, (U ()) 2 7,(())1 > /3 /3 /3 > o.
Thus, fiz is not countably additive and by the remark just before the statement
of the theorem, (fiz)" is not continuous. This implies that there exists a sequence

{(,,,}, ,,},..., ,.})} - (,}, ,_},...,
with the property that

(fiL)"(X,,,,}, X,,,,},..., X,,,,,}) (fiL)(X,}, X},..., X,}).



138 GEORGE AKST

Let yn, y be such that zrr(yn) x,} and rr,(y) _--xr}, forj 1,..., N
and rr(y) rr(y) 0r], # V. Hence, y y in $but

()((x,,},..., x.,}))
()(x,},..., x})

fi(y),

wherefore,/i is. not continuous.

Case II. / is countably additive, but not regular.

Subcase . It is not inner regular. Consequently, there exists a set E
_
S

and an e > 0 such that for all compact K
_

E, IItl(E K) > 5. As before,
find

L II S; ,..., II 0; ,...,
with I1. -/11 < , and consider L defined on T I-I Sw Let Er T be
defined as before. If L were inner regular, there would exist a compact K’
Er - T satisfying ]fiLl(Er K’) < 5/3. Let K K’ x I-I (0r; )’1,...,
7N). Then IItl(E K) < 5/3 + IItl(Er K’) 25/3 < 5, which is a contra-
diction. Hence is not regular, from which we can conclude that It is’not
continuous by the same argument as in Case I.

Subcase [3. It is not outer regular. Claim that this case follows from subcase, since It not outer regular implies that # is not inner regular, or equivalently,/z
inner regular implies # is outer regular. For suppose that # is inner regular
and E_ &(S). Given e > 0, find a compact set K_ S, E such that
Ipl((S E) K) < 5. Then let U S K. Clearly, E

_
U, U is open,

and Il(U E) Il((S E) K) < 5.
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