ON A CLASS OF DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE pq + 1

BY

DAVID CHILLAG

In [3] Atkinson conjectured that a nonsolvable doubly transitive but not doubly primitive permutation group is either a normal extension of $S_z(q)$ or an automorphism group of a block design with $\lambda = 1$.

Let G be a doubly transitive but not doubly primitive permutation group of degree pq + 1, where q is a prime. In [2] Atkinson proved that if p = 2, 3, 4 then his conjecture [3] is true. More evidence supporting this conjecture appears in [13]. We will prove that the conjecture is true if p and $\frac{1}{2}(p - 1)$ are primes, p < q.

THEOREM. Let G be a doubly transitive but not doubly primitive permutation group of degree pq + 1, where p, q, $r = \frac{1}{2}(p - 1)$ are primes and p < q. Then one of the following holds:

(a) $pq + 1 = 2^x$ for some integer x and G is sharply doubly transitive.

(b) $pq + 1 = 2^r$ and G is the Zassenhaus group of degree 2^r and order $2^r(2^r - 1)r$ which contains a regular normal subgroup.

(c) $q \equiv 1$ (p + 1) and G is an automorphism group of a block design with $\lambda = 1$ and k = p + 1.

Our notation for the parameters of a block design is standard; see [14]. We remark that groups in (a) and (b) are solvable and satisfy the assumptions of the theorem. Examples for (a), (b) are groups of degrees 2^{11} , 2^{23} , 2^{83} , 2^{131} , for which $2^r = 1 + pq$ and 2r + 1 = p. (We thank Prof. P. T. Bateman for the examples.)

The incidence equations of a nontrivial block design and the Fisher's inequality implies that if $\lambda = 1$ and v = pq + 1 then k = p + 1 and $q \equiv 1$ (mod p + 1). Therefore all we have to prove in (c) is that G is an automorphism group of a nontrivial block design with $\lambda = 1$. Since sharply doubly transitive groups of degree pq + 1 are solvable all we have to prove in (a) is that G is sharply doubly transitive (see [3, 2.4]).

Notations. Let G be a doubly transitive but not doubly primitive permutation group on a set Ω . Let $\Delta_1, \Delta_2, \Delta_3, \ldots$, be a complete system of imprimitivity sets for the action of G_{α} on $\Omega - \{\alpha\}$, for $\alpha \in \Omega$. We call each Δ_i a G_{α} -block. Set $\Lambda_0 = \{\Delta_1, \Delta_2, \Delta_3, \ldots\}$, and $\Lambda = \Lambda_0 - \{\Delta_1\}$. Let H be the stabilizer of Δ_1 in G_{α} and K the kernel of G_{α} in its action on Λ_0 . Let A be the kernel of H on Δ_1 . Let Fix (T) be the set of fixed points of the subgroup

Received February 17, 1976.

T. Let A_n and S_n be the alternating and the symmetric group of degree n, respectively.

Proof of the theorem. Let G be a counterexample to the theorem. Let Ω be the set on which G acts. Let $\alpha \in \Omega$ and $\beta \in \Delta_1$. Then $G_{\alpha\beta} \neq 1$ and G is not an automorphism group of a nontrivial block design on Ω with $\lambda = 1$ because of the remarks above. Let Q be a Sylow q-subgroup of G contained in G_{α} . By [1] we have |Q| = q. We now divide the proof into two parts according to the size of Λ_0 . We will use [17, 11.6, 11.7] without referring to them. We note that $G_{\alpha\beta} = H_{\beta}$.

Case 1. $|\Lambda_0| = p$. Then $|\Delta_i| = q$ for $1 \le i \le p$. We use Atkinson's argument (beginning of case 3 of the proof of Theorem A of [2]), replacing 4 by p, to obtain that K is transitive and faithful on each Δ_i , $1 \le i \le p$, and that $A \cap K = 1$.

(1) Assume that K is solvable. Again, we use an argument of Atkinson (third paragraph of case 3 of the proof of Theorem A of [2]), replacing 4 by p, to get K = Q and $K_{\beta} = 1$.

It follows that $G_{\alpha\beta}$ is a subgroup of S_{p-1} , the symmetric group on p-1 points. Since $Q \lhd H$ and $Q \cap A = 1$ we conclude that H/A is a Frobenius group of degree q so that $G_{\alpha\beta}/A$ is cyclic of order dividing q-1.

If G_{α}/Q is solvable, it is a Frobenius group on Λ_0 so that $G_{\alpha\beta}$ is semiregular on Λ . Thus $G_{\alpha\beta}$ is cyclic and $|G_{\alpha\beta}|$ divides 2r. Since A fixes at least q + 1points we have $A \neq G_{\alpha\beta}$ (by Lemma 1 of [2]). Hence if $A \neq 1$, A is a normal Sylow subgroup of $G_{\alpha\beta}$ contradicting Lemma 1 of [2]. It follows that A = 1and $G_{\alpha\beta}$ is semiregular and faithful on both $\Delta_1 - \{\beta\}$ and Λ . Hence $G_{\alpha\beta\gamma} = 1$ for $\gamma \in \Omega - \{\alpha, \beta\}$. Hence G is a Zassenhaus group and since $p \neq q$ we use [5], [4], [16] to conclude that G contains a regular normal subgroup. Also $1 + pq = 2^a$ where $a = |G_{\alpha\beta}|$ and a is a prime. Since $1 + pq \neq 4$ we have a = r. This is a contradiction because G is a counterexample.

Therefore G_{α}/Q is nonsolvable. We claim that $|G_{\alpha\beta}: A| = 2$. We have G_{α} doubly transitive on Λ_0 .

By [6] we get that either $p \leq 11$ and $G_{\alpha}/Q \simeq PSL(2, p)$ or G_{α}/Q is triply transitive on Λ_0 . If p = 11 then $H/Q \simeq G_{\alpha\beta} \simeq A_5$ and since $A \neq G_{\alpha\beta}$ we have A = 1. This is impossible because $G_{\alpha\beta}/A$ is cyclic. If p = 7 then $G_{\alpha\beta} \simeq S_4$ and since $G_{\alpha\beta}/A$ is cyclic we conclude that $|G_{\alpha\beta}: A| = 2$. If p = 5 then $G_{\alpha\beta} \simeq A_4$ and A is a Sylow 2-subgroup of $G_{\alpha\beta}$. Since A fixes more than two points, Lemma 1 of [2] gives a contradiction.

If G_{α}/Q is triply transitive then $H/Q \simeq G_{\alpha\beta}$ is doubly transitive on Λ . It follows that $A \neq 1$ because otherwise $G_{\alpha\beta}$ would be regular on Λ . Since $A \lhd G_{\alpha\beta}$ we get that A is transitive on Λ (see [17, 9.9]). In particular r divides |A|. Let $g \in G$ such that $A^g \subseteq G_{\alpha\beta}$. If A^g fixes no point of $\Omega - \Delta_1 - \{\alpha\}$ then Fix $(A^g) = \Delta_1 \cup \{\alpha\}$ because $|\text{Fix}(A^g)| = |\text{Fix}(A)|$. Thus $A^g = A$ and A is weakly closed in $G_{\alpha\beta}$, contradicting Lemma 1 of [2]. Thus, there is a

$$\theta \in (\Omega - \Delta_1 - \{\alpha\}) \cap \operatorname{Fix} (A^{\theta}).$$

414

Let *i* be such that $\theta \in \Delta_i$ and let $H_i = \{h \in H \mid \Delta_i h = \Delta_i\}$. It follows that A^{θ} fixes Δ_i . Hence $A^{\theta} \subseteq H_i$ so $r \mid |H_i|$. Since *H* is transitive on Λ we have $|H: H_i| = 2r$ so that $r^2 \mid |G_{\alpha}: Q|$. Now [1] implies that G_{α}/Q contains A_p so that $G_{\alpha\beta}$ contains A_{p-1} . If p = 5 then either $G_{\alpha\beta}$ is A_4 or S_4 and we finish as above. If p > 5 then $|G_{\alpha\beta}: A| \leq 2$ and since $A \neq G_{\alpha\beta}$ we conclude that the index is 2.

Since $G_{\alpha\beta}$ does not fix a third point [2, Lemma 1] we conclude that the $G_{\alpha\beta}$ -orbits on $\Delta_1 - \{\beta\}$ are of size 2. Let $\{\alpha_i, \beta_i\}, 1 \le i \le \frac{1}{2}(q-1)$, be these orbits. Since Fix $(G_{\alpha\beta}) = \{\alpha, \beta\}$ we have that $N_G(G_{\alpha\beta}) = G_{\{\alpha, \beta\}}$. But $G_{\alpha\beta} \subset G_{\{\alpha_i, \beta_i\}}$ for all *i* so that $|G_{\{\alpha_i, \beta_i\}}: G_{\alpha\beta}| = 2$ and so $G_{\{\alpha_i, \beta_i\}} = N_G(G_{\alpha\beta}) = G_{\{\alpha, \beta\}}$ for all *i*. This implies that $\Delta_1 - \{\beta\}$ is $G_{\{\alpha, \beta\}}$ -invariant contradicting Lemma 2 of [2]. This contradiction implies that K is nonsolvable.

(2) We can assume that K is nonsolvable. Since $A \cap K = 1$ we get

$$K \simeq AK/A \subseteq H/A$$

so that H/A is nonsolvable and consequently H is doubly transitive on Δ_1 . Thus $\Gamma_1 = \Delta_1 - \{\beta\}$ is a $G_{\alpha\beta}$ -orbit. Now Γ_1 is not $G_{\{\alpha,\beta\}}$ -invariant by Lemma 2 of [2] so that there is another $G_{\alpha\beta}$ -orbit, Γ_2 , of size q - 1 which is not $G_{\{\alpha,\beta\}}$ -invariant. Lemma 3 of [2] yields yet another $G_{\alpha\beta}$ -orbit Γ_3 , of size q - 1 which is $G_{\{\alpha,\beta\}}$ -invariant. It follows that $\Gamma_1 \neq \Gamma_2$, $\Gamma_1 \neq \Gamma_3$, $\Gamma_2 \neq \Gamma_3$. By an argument appearing in the second paragraph of case 3 of [2], we get that Γ_3 and Γ_2 cannot intersect the same Δ_i and that none of them is contained in a G_{α} -block. Also K_{β} has at most two orbits on any Δ_i such that $\Gamma_j \cap \Delta_i \neq \emptyset$, j = 2, 3.

Let t be the number of Δ_i 's such that $\Delta_i \cap \Gamma_2 \neq \emptyset$. Then $t \neq 1, t \neq p - 1$. The set of these $t \Delta_i$'s is a $G_{\alpha\beta}$ -orbit on Λ and since $H = KG_{\alpha\beta}$, the set is an *H*-orbit on Λ . As $t \neq p - 1$, H/K is not transitive on Λ and therefore G_{α}/K is a solvable Frobenius group on Λ_0 . Thus $H/K \simeq G_{\alpha\beta}/K_{\beta}$ is semiregular on Λ , its order is t and $t \mid 2r$. It follows that t = 2, r.

Let $\mathscr{A}_i = \{\Delta_j \mid \Delta_j \cap \Gamma_i \neq \emptyset\}$ for i = 2, 3. Then \mathscr{A}_i is a $G_{\alpha\beta}$ -orbit on Λ of size t. Let $\Delta \in \mathscr{A}_i$ for some i. Since both $\Delta \cap \Gamma_i$ and $\Delta - \Gamma_i$ are K_β -invariant, they have to be the two K_β -orbits on Δ (K_β cannot be transitive on Δ as $|K_\beta|_q = 1$). Since $K_\beta \lhd G_{\alpha\beta}$, Γ_i is a union of K_β -orbits of equal sizes. From $\Gamma_i = \bigcup_{\Delta \in \mathscr{A}_i} (\Delta \cap \Gamma_i)$ we conclude that $|\Delta \cap \Gamma_i| = (q - 1)/t$. Thus K_β has two orbits of sizes m and q - m on $\Delta \in \mathscr{A}_i$, where m = (q - 1)/t.

By [11, B1], we get $|\text{Fix}(K_{\beta})| = 2$ so that $N_{G_{\alpha}}(K_{\beta}) = G_{\alpha\beta} (K_{\beta} \neq 1 \text{ as } K \text{ is doubly transitive on each } \Delta_i)$. Since G_{α}/K is solvable, $|G_{\alpha}: K| = tp$ and we can choose $h \in G_{\alpha} - K$ such that |hK| = p. Let $C_1 = \langle h \rangle$ and let $C = \{h^i \mid 1 \leq i \leq p\}$. Using the bar notation in $\overline{G}_{\alpha} = G_{\alpha}/K$ we have that $\overline{C} = \overline{C}_1$. Also \overline{C} is a regular normal subgroup of \overline{G}_{α} and therefore $\overline{C} \cap \overline{H} = 1$. Since $N_{G_{\alpha}}(K_{\beta}) \subseteq H$ we get $C \cap N_{G_{\alpha}}(K_{\beta}) = 1$. It follows that the set $I = \{(K_{\beta})^a \mid a \in C\}$ contains exactly p different subgroups of index q in K. Assume that $a, b \in C$ and $(K_{\beta})^a$ and $(K_{\beta})^b$ are conjugate in K. Then $K_{\beta ah_1} = K_{\beta b}$ for some $h_1 \in K$ and since conjugates of K_{β} in G_{α} have exactly one fixed point, each, in $\Omega - \{\alpha\}$

we conclude that $\beta ah_1 = \beta b$. Since $h_1 \in K$, $\{\beta a, \beta b\} \subseteq \Delta_i$ for some $1 \le i \le p$ and therefore $\Delta_1 a = \Delta_1 b$. Since C is regular on Λ_0 , this implies that a = b.

Hence no element of *I* is conjugate in *K* to another element of *I*. A lemma of Ito [7, Lemma 1] implies that for each pair $\langle E, F \rangle$, $\{E, F\} \subseteq I$, there is a symmetric block design on the cosets of *E* in *K*. In this design $k = |E: E \cap F|$ and v = q.

Let a_1, a_2 belong to C, $a_1 \neq a_2$, such that

$$\beta a_1 \in \Delta_{i_1}, \quad \beta a_2 \in \Lambda_{i_2} \quad \text{and} \quad \{\Delta_{i_1}, \Delta_{i_2}\} \subseteq \mathscr{A}_3 \cup \mathscr{A}_2.$$

This is possible because C is transitive and regular on Λ_0 and $|\mathscr{A}_3 \cup \mathscr{A}_2| = 2t \ge 4$. Let k_i , λ_i be the parameters of the mentioned design for $\langle K_{\beta}, (K_{\beta})^{a_i} \rangle$, for i = 1, 2 and let k_3, λ_3 be the parameters for $\langle (K_{\beta})^{a_1}, (K_{\beta})^{a_2} \rangle$. Since K_{β} has two orbits of sizes m and q - m on $\Delta_{i_i}, j = 1, 2$, we get

$$k_i = |K_{\beta}: K_{\beta, \beta a_i}| = |(\beta a_i)^{K_{\beta}}| = \text{either } m \text{ or } q - m.$$

The equations of a symmetric design with v = q implies that

$$\lambda_i = m(m-1)/(q-1)$$
 or $(q-m)(q-m-1)/(q-1)$, respectively.

It follows that $k_i - \lambda_i = m(q - m)/(q - 1)$ for i = 1, 2. In particular $k_1 - \lambda_1 = k_2 - \lambda_2$. Another lemma of Ito [7, equation (12)] implies that for some natural number a,

$$(k_1 - \lambda_1)(k_2 - \lambda_2)(k_3 - \lambda_3) = a^2.$$

This implies that $k_3 - \lambda_3$ is a square, contradicting Lemma 5 of [7]. This completes the proof of Case I.

Case II. $|\Lambda_0| = q$. Then $|\Delta_i| = p$ for $1 \le i \le q$. We break the proof into two parts.

(1) Assume that G_{α}/K is not solvable. Then H is transitive on Λ . If all $G_{\alpha\beta}$ -orbits on Λ are of size more than p - 1, then all $G_{\alpha\beta}$ -orbits on $\Omega - \{\alpha\} - \Delta_1$ are of size bigger than p - 1. Thus all the orbits of $G_{\alpha\beta}$ of size at most p - 1 are in $\Delta_1 \cup \{\alpha\}$. Since Fix $(G_{\alpha\beta}) = \{\alpha, \beta\}$ by Lemma 1 of [2], we conclude that $\Delta_1 - \{\beta\}$ is $G_{\{\alpha, \beta\}}$ -invariant. This is impossible because of Lemma 2 of [2]. Hence there is at least one $G_{\alpha\beta}$ -orbit on Λ of size less or equal to p - 1. In particular $G_{\alpha\beta}$ is not transitive on Λ . Since H is transitive on Δ_1 , $|H: G_{\alpha\beta}| = p$. If $K \neq 1$ we get $H = G_{\alpha\beta}K$ and since H is transitive on Λ , so is $G_{\alpha\beta}$. Since this is impossible we get K = 1.

Let P be a Sylow-p-subgroup of G contained in H. It follows that $H = PG_{\alpha\beta}$. If P fixes some $\Delta_i \in \Lambda$ then $(\Delta_i)^H = (\Delta_i)^{G_{\alpha\beta}} \subset_{\neq} \Lambda$, contradicting the transitivity of H on Λ . Thus P fixes no point of Λ and consequently $p \mid q - 1$. Since $|H: G_{\alpha\beta}| = p$, all $G_{\alpha\beta}$ -orbits on Λ are of size at least (q - 1)/p. By the remark at the beginning of this case we have that $(q - 1)/p \leq p - 1$. Let q - 1 = pm, then $m \leq 2r$.

If $G_{\alpha} \simeq A_q$ or S_q in its action on Λ_0 then it is 3-transitive on Λ_0 so that H is doubly transitive on Λ . Since $A \subseteq G_{\alpha\beta}$, A is not transitive on Λ so that

A = 1 (see 9.9, [17]). But $\frac{1}{2}(q - 1)!$ divides |H| and |H| divides p!. This is impossible. Thus $G_{\alpha} \neq A_{q}$ or S_{q} on Λ_{0} .

Suppose $(m, r) \neq 1$. Since *m* is even and $1 < m \le 2r$ we have that either m = r = 2 or m = 2r. If m = r = 2 then p = 5 and q = 11. Since G_{α} is a nonsolvable transitive permutation group of degree 11 and $G \not\simeq A_{11}$ or S_{11} , we get that either $G_{\alpha} \simeq PSL(2, 11)$ or M_{11} (see [9]). If $G_{\alpha} \simeq PSL(2, 11)$ then $H \simeq A_5$ so that A = 1 and $G_{\alpha\beta} \simeq A_4$. Now [18] gives a contradiction. If $G_{\alpha} \simeq M_{11}$ then H is triply transitive on Λ . As $A \lhd H$, A is either 1 or transitive on Λ . Since $A \subseteq G_{\alpha\beta}$ and $G_{\alpha\beta}$ is not transitive on Λ we have A = 1. Hence H is a transitive permutation group of degree 5 and order $8 \cdot 9 \cdot 10$. This is impossible. We conclude that m = 2r and q - 1 = p(p - 1). Since $p \neq 3$, r = 3, or $r \equiv 2$ (3). But $r \equiv 2$ (3) implies $q \equiv 0$ (3) which is impossible. Thus r = 3, p = 7, and q = 43. By [9, Section 5], $G_{\alpha} \simeq A_q$ or S_q on Λ_0 which is impossible. Hence (m, r) = 1.

Let R be a Sylow r-subgroup of H. If H/A is nonsolvable, R fixes one point on Δ_1 and has two orbits of size r on the rest of the points. This is also the case when H/A is solvable unless |H: A| = p or 2p. In this case $|G_{\alpha\beta}: A| \leq 2$. This is impossible because Lemma 1 of [2] implies that $|G_{\alpha\beta}: A| = 2$ and we can get a contradiction as in the end of (1) of Case I. We conclude that every Sylow r-subgroup of H has three orbits on Δ_1 , their sizes are: 1, r, r. Since $|G_{\alpha\beta}: A| \leq 2$ is impossible we also get $1 \neq |G_{\alpha\beta}|_r = |H|_r$ so that $G_{\alpha\beta}$ is either transitive or has two orbits of size r on $\Delta_1 - \{\beta\}$. Let $g \in G_{\{\alpha,\beta\}} - G_{\alpha\beta}$. Since $\Delta_1 - \{\beta\}$ is not $G_{\{\alpha,\beta\}}$ -invariant (by Lemma 2 of [2]), there is a $G_{\alpha\beta}$ -orbit, Γ_0 , on $\Delta_1 - \{\beta\}$ such that $\Gamma_0 g \not\subseteq \Delta_1$. Let $\Gamma = \Gamma_0 g$, then $|\Gamma| = r$ or 2r.

Let $H_i = \{h \in H \mid \Delta_i h = \Delta_i\}, 2 \le i \le q - 1$. Since $|H: H_i| = q - 1 = pm$ and (m, r) = 1 we get $|H_i|_r = |H|_r$ for $2 \le i \le q - 1$. If no H_i fixes a point of Δ_1 then each H_i must have two orbits of sizes r and r + 1 on Δ_1 . Thus, for i > 1,

$$|\Delta_i^{G_{\alpha\beta}}| = |G_{\alpha\beta}: G_{\alpha\beta} \cap H_i| = |G_{\alpha\beta}: (H_i)_{\beta}| = \left|\frac{H_i: (H_i)_{\beta}}{H: G_{\alpha\beta}}\right| \cdot |H: H_i| = \theta m,$$

where $\theta = r$ or r + 1. If m > 2 then all $G_{\alpha\beta}$ -orbits on Λ are of size more than 2r which is impossible. Hence m = 2. By a theorem of Neumann [10], $G_{\alpha} \simeq A_q$ or S_q on Λ unless q = 23, 11. Since $G_{\alpha} \not\simeq A_q$ or S_q we conclude that q = 23, 11 and by [9, Section 5], we have $G_{\alpha} \simeq M_{23}$ on Λ_0 or $G_{\alpha} \simeq PSL(2, 11)$. If $G_{\alpha} \simeq M_{23}$ then H is 3-transitive on Λ so that A is either 1 or transitive on Λ . Since $A \subseteq G_{\alpha\beta}$ we have A = 1. But q = 23 implies p = 11 and since $|H| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, [9] gives a contradiction. If q = 11, p = 5, and $H \simeq A_5$. Thus A = 1 and $G_{\alpha\beta} \simeq A_4$. A contradiction follows from [18].

Therefore at least one H_i fixes a point of Δ_1 . Since all H_i 's are conjugate in H, each H_i has a fixed point on Δ_1 and is either transitive or has two orbits of size r on the rest of the points in Δ_1 . Thus for $i \ge 2$,

$$|\Delta_i^{G_{\alpha\beta}}| = |G_{\alpha\beta}: (H_i)_{\beta}| = \theta m,$$

where $\theta = 1, r, 2r$. As above m > 2 so that all $G_{\alpha\beta}$ -orbits on Λ which have size at most p - 1, are of size m < 2r. Let $\mathscr{A} = \{\Delta \in \Lambda \mid \Delta \cap \Gamma \neq \emptyset\}$. Then \mathscr{A} is a $G_{\alpha\beta}$ -orbit on Λ . But \mathscr{A} is also a complete system of imprimitivity sets for the action of $G_{\alpha\beta}$ on Γ . Thus $|\mathscr{A}|$ divides Γ . Hence $|\mathscr{A}| = 1, 2, r, 2r$. In particular $|\mathscr{A}| \le p - 1$ so that $|\mathscr{A}| = m$. But $m \ne 1, 2, r, 2r$. This is a contradiction.

(2) We assume now that G_{α}/K is solvable. It follows that $G_{\alpha\beta}/K_{\beta}$ is a semiregular group on Λ , as H/K is a Frobenius complement on it. Since H is transitive on Δ_1 and $K \lhd H$, K is 1/2-transitive on Δ_1 . If K fixes Δ_1 pointwise it fixes all Ω so that K = 1. If K is transitive on Δ_1 , it is transitive on each Δ_i . Hence, either K = 1 or K is transitive on each Δ_i . As in (1), $|G_{\alpha\beta}: A| > 2$ so that $|G_{\alpha\beta}: A|_r \neq 1$ and we can define Γ and \mathscr{A} as in (1). Since $G_{\alpha\beta}/K_{\beta}$ is semiregular and \mathscr{A} is a $G_{\alpha\beta}$ -orbit on Λ we get that $|\mathscr{A}| = |G_{\alpha\beta}: K_{\beta}|$. Let $t = |\mathscr{A}|$, then $|G_{\alpha}: K| = tq$ and t | 2r.

If $K_{\beta} = 1$ then $G_{\alpha\beta}$ is semiregular and faithful on Λ and $|G_{\alpha\beta}| = 1, 2, r, 2r$. It follows that $G_{\alpha\beta\gamma} = 1$ for $\gamma \in \Omega - \Delta_1 - \{\alpha\}$. Since $A \lhd G_{\alpha\beta}$ and $A \neq G_{\alpha\beta}$ (by Lemma 1 of [2]) we have that either A = 1 or A is a Sylow subgroup of $G_{\alpha\beta}$. By Lemma 1 of [2], A = 1. Then |H| = tp so that H is solvable. Thus $G_{\alpha\beta}$ is also semiregular on Δ_1 . Hence $G_{\alpha\beta\gamma} = 1$ for $\gamma \in \Omega - \{\alpha, \beta\}$ and G is a Zassenhaus group. By the characterization of these groups we have that $1 + pq = 2^t$ and t is a prime. Since $1 + pq \neq 4$ we get t = r. Also G contains a regular normal subgroup. This contradicts the fact that G is a counterexample.

Hence $K_{\beta} \neq 1$. By [11, B1], we get Fix $(K_{\beta}) = \{\alpha, \beta\}$. Also K is transitive on each Δ_i . If K acts nonfaithfully on the Δ_i 's then: $PSL(n, s) \leq G \leq P\Gamma L(n, s)$ (see either [13A(a)] or [12, Proposition 4] and [11]). Then G is an automorphism group of a block design with $\lambda = 1$ (see [11]). Hence K is faithful on each Δ_i . If K is solvable, there is exactly one class of subgroups of index p in K so that K_{β} fixes one point in each Δ_i contradicting $|Fix(K_{\beta})| = 2$.

Therefore K is nonsolvable. Since $|Fix (K_{\gamma})| = 2$ for $\gamma \in \Delta_i$, i > 1, K_{γ} fixes no point of Δ_1 so that K_{β} is not conjugate to K_{γ} in K. By a paper of Ito [8], K is not triply transitive on Δ_1 and by another paper of Ito [6], $p \le 11$ and $K \simeq PSL(2, p)$. Let $g \in G_{\alpha}$ such that $Q = \langle g \rangle$. Then $g \notin K$, |g| = q > p, and g normalizes K. Since PSL(2, p) does not admit an automorphism of order q > p if p = 5, 7, 11 we conclude that g and therefore Q centralizes K. Now $G_{\alpha} = HQ = G_{\alpha\beta}KQ = G_{\alpha\beta}QK$. Let $h \in G_{\alpha}$ be such that $\beta h = \gamma \in \Delta_i$, i > 1. Then $h = h_1h_2h_3$ where $h_1 \in G_{\alpha\beta}$, $h_2 \in Q$, and $h_3 \in K$. Then $(K_{\beta})^h = K_{\gamma}$. But $K_{\beta} \lhd G_{\alpha\beta}$ and Q centralizes K_{β} . Thus $(K_{\beta})^{h_3} = K_{\gamma}$. This is a contradiction because K_{β} and K_{γ} are not conjugate in K, as $|Fix (K_{\gamma})| = 2$. This contradiction completes the proof of the theorem.

References

1. K. I. APPEL AND E. T. PARKER, On unsolvable groups of degree p = 4q + 1, p and q primes, Canad. J. Math., vol. 19 (1967), pp. 583-589.

- 2. M. D. ATKINSON, Two theorems on doubly transitive permutation groups, J. London Math. Soc. (2), vol. 6 (1973), pp. 269–274.
- 3. ——, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2), vol. 10 (1975), pp. 53-60.
- 4. W. FEIT, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 4 (1960), pp. 170–186.
- 5. N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 6 (1962), pp. 341-352.
- 6. , Transitive permutation groups of degree p = 2q + 1, p and q being prime numbers, III, Trans. Amer. Math. Soc., vol. 116 (1965), pp. 151–166.
- 7. ——, On Wielandt number of transitive permutation groups of prime degree, Acta, Sci. Math. Acad. Hung., vol. 26(3-4) (1975), pp. 267-274.
- 8. , Uber die Gruppen $PSL_n(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged, vol. 21 (1960), pp. 206–217.
- 9. P. M. NEUMANN, *Transitive permutation groups of prime degree*, Proc. Second International Conference on Theory of Groups, Canberra, 1973, pp. 520–535.
- 10. , Transitive permutation groups of prime degree, II: A problem of Noboru Ito, Bull. London Math. Soc., vol. 4 (1972), pp. 337–339.
- 11. M. O'NAN, A characterization of $L_n(q)$ as a permutation group, Math. Zeitschr., vol. 127 (1972), pp. 301-314.
- 12. ——, Normal structure of the one point stabilizer of a doubly transitive permutation group II", Trans. Amer. Math. Soc., vol. 214 (1975), pp. 43–74.
- 13. C. E. PRAEGER, Doubly transitive permutation group which are not doubly primitive, unpublished.
- 14. H. J. RYSER, Combinatorial mathematics, Carus Math. Monographs, Math. Assoc. Amer., 1963.
- C. C. SIMS, "Computational methods in study of permutation groups" in Computational problems in abstract algebra, John Leech (Editor), Pergamon Press, 1970, pp. 169–183.
- M. SUZUKI, On a class of doubly transitive groups, Ann. of Math., vol. 75 (1962), pp. 105– 145.
- 17. H. WIELANDT, Finite permutation groups, Academic Press, New York, 1964.
- H. YAMAKI AND R. NODA, A characterization of the alternating groups of degrees six and seven, Osaka J. Math., vol. 7 (1970), pp. 313–319.
 - TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL