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1. Introduction

Throughout this paper, let G be an arbitrary nondiscrete locally compact
abelian group with dual F, mG Haar measure on G, and M(G) the convolution
measure algebra of G (cf. [4"[). We shall denote by M=(G) and Ms(G) the closed
ideal of all absolutely continuous measures and the closed subspace of all
singular measures (with respect to raG) in M(G), respectively. If B is a space of
measures or functions, the symbol B / (or B/) will stand for the set of real-
valued nonnegative members of B.

In their interesting paper [2] E. Hewitt and H. S. Zuckerman constructed a
nonzero measure/ M+(G) such that/ / is absolutely continuous and its
Radon-Nikodym derivative with respect to m is in U’(G) LP(G, m) for all
real p >_ (see also [3-]). Later K. Stromberg [-73 used their methods to prove
that M(G) contains a "large" independent set comprizing such measures. The
construction of such a measure/ by Hewitt and Zuckerman depends upon the
so-called Riesz product technique and some structure theorems for locally
compact abelian groups, and consequently it seems quite difficult to make any
nontrivial constraint on the support of # if one adheres to their methods.
Notice, however, that it is easy to make supp # sufficiently large by convoluting #
with an appropriate discrete measure (cf. 4.6 of [23). We are therefore interested
in the problem to construct a nonzero singular measure p so that supp # is as
small as possible while # # has some preassigned nice properties. It is the
purpose of the present paper to show that such a construction is possible in
some sense.

2. The results

Let D(2) denote the set of all sequences b (b l, b2,...) consisting of 0
and alone, so that the cardinality of D(2) is equal to the cardinality of the
continuum. We write Z and Z+ for the set of all integers and the set of all
nonnegative integers, respectively. Suppose that # M(G), < p _< c and
fe L’(G). By writing # Ln(G) we mean that # is in M=(G) and its Radon-
Nikodym derivative with respect to m is in Ln(G). If # gmo for some
g L Ln(G), we define Ilf- #11 [If- glib,. Our results can be stated as
follows.
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2.1. THEOREM. Suppose thatf f2, fr arefinitely many nonzero functions
in L+ c LZ(G), and that v(p) is a strictly positive continuousfunction ofp (1, 2)
such that limp_ iv(p) . Then there exists a set {#jb: _< j < r, b D(2)}
of non-zero measures in M+ (G) with the followin9 properties"

(i) For each j 1, 2,..., r, the supports of the measures with b D(2)
are disjoint compact subsets of supp , and the closure of their union has zero
Haar measure.

(ii) For each (j, b) {1, 2,..., r} x D(2), pjo Pb is in LP(G) for all real
p 1, II" * Pjb * bl]x < v(2)and

IlCf2)2 (fijb)2 I1 < vCp) for allp (1, 2].
(iii) If (j, b) and (k, c) are two difforent e&ments of{l, 2,..., r} x D(2),

then p is in L(G) for aH p 1,

I1. * A j * kcllx < v(2),
and fijbkc L(F) Ifj k, then Ilfffk jbcll < v(2).

2.2. COgOLLhgV. Let U be a neighborhood of the identity of F, and v(p) a

function ofp (1, 2] as in Theorem 2.1. Then there exists a probability measure
in M(G) such that supp p is compact, m(supp p) 0, and

2.3. Corollary. Let F be a a-compact subset of G. Then there exist

U M{(G) andf C+(G) such that (i) m (supp U) 0, (ii)f(x) > 0 for aH
x F, (iii) z if(F)for aH p > 1, and (iv) #(x) f(x)for almost a# x G,
where 9 denotes the Radon-Nikodym derivative of with respect to m.

Let r be a natural number, and let E be a subset ofZ which contains all the
unit vectors (1,0,...,0),...,(0,...,0,,1). We say that such a set E is
dominative if whenever m (m) Z%, n (n) E and m n for all j,
then m E. Notice that if p, , are nonzero measures in M(G), and if
E is the set of all (n) Z% such that ]....." M(G), then E is
dominative.

2.4. THEOREM. Suppose that Kx, K2,..., Kr are compact subsets of G with
positive Haar measure, that is a separable subset of M(G), and that E is a
dominative subset of Z+. Then there exists a set {/jb: < j < r, b e D(2)}
of nonzero measures in M+ (G) with the following properties"

(a) For each j 1, 2,..., r, the supports of the measures #b with b D(2)
are disjoint compact subsets of K, and the closure of their union has zero Haar
measure.

(b) If (mx,..., mr) E, b D(2), and v , then
m, mr M(G).
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(c) If (n,, n,) Z+\E and b D(2), then

"’ " M,,(G).

(d) If(j, b) and (k, c) are two elements of {1, 2, r} x D(2) with b # c,
then #jb * Pkc is in Lv(G) for all real p >_ 1.

2.5. COROLLARY. Let n >_ 2 be a natural number, and I.]/"(G) the set of all
# e M(G) such that #" Ma(G). IfK is a compact subset ofG with positive Haar
measure, then

Li/"(G) c {/z e M(K): m [supp (#"-)] O}

is unseparable, and, for each natural number r, contains probability measures
lx,..., tr such that me [supp (#x *... * #r)"-x] O.

A consequence of the last corollary is that L1/"(G) does not form a vector
space (n 2, 3, ...).

In Section 3 we establish some lemmas which will be used in the proof of
Theorem 2.1. Theorem 2.1 and the two corollaries to it are proved in Sections 4
and 5, respectively. Section 6 consists of three lemmas which are needed in the
proof of Theorem 2.4. Theorem 2.4 and Corollary 2.5 are proved in Section 7.
We give some remarks in Section 8, the final section.

3. Some lemmas

In this section we establish four lemmas. We assume that the Haar measures
me and mr are so adjusted that the inversion formula holds. Let A(G) LI(F)
denote the Fourier algebra of G; thus each element f of A(G) is the (inverse)
Fourier transform of a unique element of L (F), which will be denoted byf, and
the A(G)-norm off is defined to be Ilflla Ilfll,. Notice that Ilf* #lla <
Ilflla" I111oo iff A(G) and # M(G), and that IIf* 11 -< Ilfl12 11112 if f,
9 e L2(G). Iff LI(G), suppfdenotes the support of the measurefmo. For a
Borel set F in G and < p < , we denote by LV(E) the set of all f L(G)
such that suppf c E. The following lemma is, though elementary, very useful
in our proofs.

3.1. LEMMA. Let f, ,fm A(G), and y, ffm I.) (’ L(G). Also let
e > 0, _< q < o, and K be a compact subset of G. Then there exist 6 > 0
anda compact subset Y off which have thefollowinff properties. Ifh 12 c L2(K)
and [l < on Y, then

(i) IIf * hlla < (1 + Ilhlll),
(ii) I1 * hlla < e(1 + Ilhllz),
(iii) IIt * hll < (1 / Ilhll0

for allj 1, 2,..., m.
(1 <_p<_q)
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Proof. Let 6 > 0 and a compact subset Y of F be given. If h e D c L2(G)
and I1 < 6 on Y, then we have, forfe A(G),

Ilf* hllA ifh] d

6llfll,+llhll, (frxr Ill

Similarly we have, for g L2(G),

IIg*hlla 6 Ildy + I01=& I12&

6mr(Y)/2ll gl12 + I12 dy Ilhl12

by Schwarz’ inequality and Plancherel’s theorem. Thus both (i) and (ii) hold
if Y c F is suciently large and 6 > 0 is suciently small.
To confirm (iii), we may assume that g A(G) and supp g c L for all

j 1, 2,..., m and for some compact subset L of G. Then h L(K) implies
supp(g.h) c L + Kand

II& * hll II& * hll" mo(L + K)/ I1 * hll" mo(L + K)/

for allj 1, 2,..., m and all p 1. This, combined with (i), shows that (iii)
holds for appropriate Y c F and 6 > 0, which completes the proof.

3.2. LEMMA. Let g L L(G), Y a compact subset of F, and 6 > O.
Then there exist ho, h, L L(G) such that for O, we have

(i) supp ho and supp h, are disjoint subsets of supp g,
(ii) mo (supp h) 3-mo (supp g),
(iii) IIh,llx I111,, IIhll (3 +
(iv) I,() ()1 < 6 for all Y.

Proo Without loss of generality, we may assume that g is a simple function
with I111, and that supp g is compact. Since Y is a compact subset of F,
the set

V {x G:I1 (x)l < 6/2 for all e Y}

is a neighborhood of 0 e G. It follows that g can be written in the form
a,{(E,) + + a.{(E,), where the a are real positive numbers and the

E are disjoint Borel sets in G such that

x,x’eE and yYl(x)-y(x’)l < 6/2
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for all j 1, 2,..., n (the symbol (E) denotes the characteristic function
of E).
Now choose and fix anyb(0, 1) so that 3/(1 b) < 3 + 6. Since Gis

nondiscrete, there exist disjoint compact sets Kjo, Kjl c E such that
mG(Ki) 3-1(1- b)m6(E) (j= 1, 2, n; 0, 1). We define h by
setting hi 3(1 b)-x = aj(K) (i 0, 1). Then it is obvious that (i),
(ii), and (iii) hold. To confirm (iv), choose any xj e E) for eachj 1, 2, n.
Then we have, for 0, and Y,

1()- i(y)] < aj
j=l

r dx

j=l
l,;(x)- (xj)l dx + 3(1 b) -1

[(x) y(xj)l dx}
< 6 ajmG(Ej)

j=l

which completes the proof.

3.3. LEIMA. Suppose that fx, f2, ,fro L+ L(G), that Y is a compact
subset of F, and that w(p) is a strictly positive continuous function ofp (1, 2]
such that w(p) as p 1. Then there exist flo, fxl L+ c L(G) such
that, for O, andj 1, 2,..., m, we have"

(i) suppfo and supp fx are disjoint subsets of supp fa
(ii) Ilfxllx IlLllx, mo (suppL0 N 3-mo (suppL);
(iii) Ilfl * fl fli * fllll < W(2);
(iv) max (11* (fl --fx3111, I1 * (fx --fl311A) < W(2);
(v) Ifx() fi()1 < w(2) for all y e Y;
(vi) (x)2 (Y 32

p < w(p) for all p e (1, 2].

Proof Approximating f by an appropriate simple function, we may
assume that f has the form A = ak(Ek) Ef= #k, where the ak are
positive real numbers, the Ek are disjoint compact subsets of G, and #
ak(Ek) for k 1, 2,..., N.
We may also assume that w(p) w(2) for all p e (1, 2]. By induction on

k 1, 2,..., N, we shall construct hk e L(Eg) for 0, 1, as follows.
Set hoo ho 0, and assume that ho,..., h(_) have been defined for

0, 1 and some natural number k N N. By Lemmas 3.1 and 3.2, there exist
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hko, hkt Lg(Ek) which satisfy the following conditions for 0, 1, < j < m,
and _< n < N:

(3.3.1) supp hko and supp hkx are disjoint subsets of
(3.3.2) IIhll IIgll, m (supp hki) < 3-Xmo(Ek);
(3.3.3) IIhllp < 411gllp 4akmt;(Ek)/’ for allp >_ 1,
(3.3.4) Ik(V) k(V)[ < w(2)/N for all / Y;
(3.3.5) IIf * (g h311 / IIf * ( hk,)llx < w(2)/N;
(3.3.6) Ila * (g h)lla / I1 * ( hz)lll < w(2)/(4N2);
(3.3.7) IIh,.t * (,, 311 / Ilh, * (gk h311x < w(2)/(4N2)

for all r 0, 1,..., k and 0, 1. This completes our induction.
Now we define flz hli + h2i +"" + hNi (i 0,1), and claim that flo

and fx have all the required properties, provided that all the sets Ek have
sufficiently small Haar measure. Indeed, (i), (ii), (iv), and (v) follow from (3.3.1),
(3.3.2), (3.3.5), and (3.3.4), respectively.
To confirm (iii), we note that

.f * fa hli + gk * hli + gk
k-’2

Similarly we have

\k=

2 ., gk * (g hli) -!- gl * gl h * h
k=2

< 2(N- 1)w(2)/(4N 2) + IIo11 / IIh1,112

< w(2)/(2N) / 211 o xll by (3.3.2).

by (3.3.6)

hki -k Z gk
k= k=n+

< w(2)/(2N) / 211g,11 (n 1, 2,...,N)

by (3.3.6), (3.3.7), and (3.3.2), where f(2) f, f for f LI(G). Adding the
last inequalities for n 1, 2,..., N, we obtain

IlL *A -A, *A,II, < w(2)/2 + 2(llg, ll2x / .../ IIgll)
_< w(2)/2 / 211fxll, .max (llgkllx" _< k _< N}
_< w(2)/2 / 211AII," IIAII" M,

where

(3.3.8) M max {mc(Ek)" < k < N}.

Therefore (iii) holds if 211A IIx IIA " M < w(2)/2.
To prove (vi), notice that < p < m andf L2.’/(2’- X)(G) imply

(fr )l]p (fG )(2p-1)]pIIf211, Ill 2" dy < I/I 2"/(2"-a) dx
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by the Hausdorff-Young inequality. Therefore we have

k=2

N

< 2 (llgk*(gi
k=2

+ (llgll2v/(2p_))2 + (llhill2p/(2p_))2

< w(2)/(2N) + 17am(E)(2p-)/p

w(2)/(2N) + 17am(E)’llf111" m(E)’-/p

by (3.3.6) and (3.3.3). Similarly we have, by (3.3.0, (3.3.7) and (3.3.3),

kk= k= k=n+ p

< w(2)/(2N) + 17a.mo(E). Ilfm
for all n 1, 2,..., N; hence

ll(]a)2 (],)211p < w(2)/2 + 1711fll" Ilfxll" M
for all p 1. Thus (iii) and (vi) are satisfied if

411fxlll" Ilfxll" M < w(2) and 3411f11" Ilfxll" m
for all p (1, 2]. Since w is a strictly positive continuous function with

lim w(p) , and since we can demand that M is arbitrarily small, this
completes the proof.

3.4. LEMMA. Suppose thatfl, f2, fro, Y and w are as in Lemma 3.3. Then
there exist 2m functions f L+ c L(G) subject to the following conditions.
For allj, k {1, 2,..., m} and i, 1 {0, 1}, we have:

(i)
(ii)
(iii)
(iv)
(v)
(vi)

suppfo and suppfl are disjoint subsets of suppf;
IIf,ll IIfllx, mo (suppf,) < 3-mo (suppf);
IIf * A f * AII < w(2);
IIf * A f, * A,IIA < w(2) ifj k;
If(r) f,(r)l < w(2) for all Y;
II(f)2 (,)211 < w(p)for allp (1, 2-1.

Proof Letfo andftt be the functions given by Lemma 3.3 with w replaced
by 2-1w. When ft o, f , fk- 1)o, fk- )l are defined, we apply Lemma 3.3
with fl, {f, fro} and w replaced by f, {f,..., fro, fio, f ,"’, fk- )o,

fk_} and 2-w, respectively. By induction on k 1, 2,..., m, we find 2m
functions with the required properties. This completes the proof.
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4. Proof of Theorem 2.1

4.1. Let fl, ,f, L+ L2(G) and v C((1, 2]) be as in Theorem 2.1.
There is no loss of generality in assuming that [[f[[1 1, f L(G), and
Kj suppf is compact (j 1, 2, .,.., r). For each natural number n and
j e {1, 2,..., r}, we shall construct 2" functionsfb L+ L(G) of D-norm 1,
b {0, }", as follows.
Forn 1, we setfjo =f =f(1 _<j_< r). Suppose that n is a natural

number, and that the functions fb have been defined for all _< j _< r,
b{0, 1}k, _< k_< n. Put

Y, 0 { eF’lfj(y)[ >- "-’forsomel _<j_< randsomeb{0, 1}k},
k=l

and note that Y, is a compact subset of F. Applying Lemma 3.4 with Y Y,
and w 2-"v, we can find 2"+ r functions f,i L+ L(G), b {0, 1}" and
e {0, 1}, which satisfy the following conditions (j, ke {1, 2, r};

b, C {0, 1)n; i, 1 {0, 1))"

(4.1.1) supp (’o) and supp () are disjoint subsets of supp;
(4.1.2) IIb,llx 1, mo [supp ()] 3-mo [supp ()];
(4.1.3) I1 *Ac , *Ac,ll < 2-v(2);
(4.1.4) I1 *A j, * Ac,ll < 2-%(2) if (j, b) # (k, c);
(4.1.5) Ifb(Y) fb,()l < 2-" for all Y,;
(4.1.6) II(ff)2 (ff,)211 < 2-(p) for all p (1, 2].

This completes our inductive construction of theb.
Now let b (b, b2,...) D(2) and j r be given. We write

b(n) (b, b2, bn) {O, 1} fbrn 1,2,...,

and identify each <,) with the measure .b<,)mo M(G). The definitions
of the sets Y, and (4.1.5) show that limn fy<,)() exists for all F. Since
supp<,) Ky for all n 1 by (4.1.1), it follows from (4.1.2) that the sequence
(<,))= converges weak* to a probability measure yb M(Ky). Setting

00(2) {b D(2)" b 0),

we claim that the set (#g" j r, b Do(2)) has the required properties
(with D(2) replaced by Do(2)).

Indeed, let j r be given. Then (4.1.1) implies that

supp () supp (f(,) Kg (b Do(2)),
,=

that supp () supp () 0 whenever b, c are distinct elements of Do(2),
and that the union of all supp (), b Do(2), is contained in the compact set

[U {supp (f)" c e {0, 1}"}] c K.
n=l
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We therefore conclude from (4.1.1) and (4.1.2) that the closure of the union of
all supp (/jb) has zero Haar measure. This establishes part (i).
To prove part (ii), choose any (j, b) {1,..., r) x Do(2). We infer from

(4.1.3) that the sequence (fjb,) * fjb,))= converges to some gjb Lt(G) and
that Ilfj * fj gblll < v(2). Since

0jb() lim {J.b(n)()} 2 (jb())} 2 ( ( I-’),

it follows that #yb * #yb is absolutely continuous and that #yb /jb gybm.
Moreover, using (4.1.6), we can easily prove that

II(J)2 (#)2 II < v(p) for all p (1, 2].
Since fy Co(F) c L2(F), we also have (/jb #yb) LP(F) for all p (1, 2],
and so Y:b Lq(G) for all real q >_ by the Hausdorff-Young inequality. This
establishes part (ii).
The proof of part (iii) is similar to that of part (ii), and the whole proof is

complete.

4.2. A weak version of Theorem 2.1 holds for every nondiscrete locally
compact (not necessarily abelian) group. Suppose that G is such a group with
left Haar measure me, that fl,f2,... ,f, are nonzero functions in L(G) with
compact support, and that w is a strictly positive continuous function on [1,
such that w(p)- as p oo. Then there exist nonzero measures
M+(G), (j, b) {1, 2, r} x D(2), such that:

(i) For every < j < r, the supports of the ].lib b D(2), are disjoint
compact subsets of supp f, and the closure of their union has zero Haar
measure,

(ii) For each(j,b) e{1,2,...,r) x D(2),

#gb,/gb =ggm for somegj0 (LP(G): <p < )
and [If * f gjbllp < w(p) for all real p > 1;

(iii) If (j, b) and (k, c) are different two elements of {1, 2,..., r} x D(2),
then Pjb * Pkc gm for some g gjbkc Co(G) and Ilfj * f llx < w(2);
and, if, in addition, j k, then IIf * f tll(R) < w(2).
The proof of this fact is slightly more complicated than but similar to the

proof of Theorem 2.1. We omit the details.

5. Proofs of Corollaries 2.2 and 2.3

To prove Corollary 2.2, we choose and fix any fe L c A(G) such that
Ilflla 1 and suppf c U. By Theorem 2.1, there exists a probability measure
# e M(G), with compact support having zero Haar measure, such that
Ill2 -/i211 < v(p) for all p (1, 2]. Since Ill < andf 0 off U, it follows
that

!1#211 < IIf211 / v(p) <_ mr(U)x/ + v(p) (1 < p < 2),
which establishes Corollary 2.2.
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To confirm Corollary 2.3, let F be a a-compact subset of G. By the well-
known structure theorem [4_-I, G contains an open subgroup of the form RN x H,
where N is a nonnegative integer and H is a compact abelian group. Since F is
a-compact, there exist countably many elements Xo 0, xl, x2, of G such
that the family

{xn + [--1, 1-1N x H:nZ+}

covers F and is locally finite. Let denote the characteristic function of
[-- 1, l-IN x H, so that ( )(x) > for all x [-- 1, 1]N x H (we normalize
me so that m([0, 1]N x H)= 1). By Theorem 2.1, we can find Pl, g2
M+([-- 1, 1]N H) such that me (supp /i) 0, I/iil 2 LP(F) for all p > 1
and i= 1, 2, and I12-/i/i211x < 1/2. Define # M(G) by setting #
-o2-nS(xn) * (Pl + P2), where 6(x) denotes the unit point measure at x e G.
We then claim that # has all the required properties.

Indeed our choice of the sequence (x,) shows that

supp # 3 {x, + supp gi: n Z+, and 1, 2},

and so me (supp #) 0. Since I/il + /212 LP(F) for all p > and since

{ X 2-"-" 6(x,,, + x,,) * (/’1 + P2)* (Px + P-),
m, rl=0

it follows that ]fi]2 LP(F) for all p > 1. Now let g e A(G) be the Radon-
Nikodym derivative of Pl * P2 with respect to ma, and set

Then we have

so thatg(x) > (.)(x)- 1/2 > 1/2 for all xe[-1, 1-1N x H. Therefore
f(x) > 0 for all x F by the definition off and our choice of (x). Finally we
have

la * la >_ (.=o 2-" (x,,)) , lal , la2 fm,

which completes the proof.

6. Some lemmas

In this section, .we shall establish some lemmas which will be needed in the
proof of Theorem 2.4. For Kc G and nZ/, we shall write (K), 0 if
n 0and(K) [-Kw (0) (-K)-] + (K)o_ ifn >_ 1. For feLl(G), we
shall define f(") (5(0) if n 0 and f(") f, f("- 1) if n >_ 1.

LEMMA 6.1. Suppose that fl, f2, f are finitely many functions in L+ (G),
that D is a compact subset of G having zero Haar measure, that Y is a compact
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subset of F, and that nx, n2,..., nr Z+. Given e > 0, there exist simple
functions Fa, Fz, Fr L+ (G) such that, for j { 1, 2,..., r ),

(i) supp Fj = suppfj,
(ii) IIFj111 IIf.

(iii) maiD +
(iv) [f() P()[ < e for all Y.

Proo There is no loss of generality in assuming that I1,11 and K
supp is compact (j 1, 2,..., r).

For each j, let {K, Kz, K} be a finite partition of K into disjoint
Borel sets such that ma(K) > 0 and

(6.1.1) x, x’ K and y Y [(x) (x’)[ < e/2

for all k 1, 2,..., N. Then we note that p M+(K) and p(Kj)=. dx imply
N

(6.1.2) f() j(y) < e for all y V.

(See the proof of Lemma 3.2.) We then select compact subsets Lj of Kj, with

m(L) > 0, so that

j= k

This is possible, because (6.1.3) is satisfied if the "diameter" of every LjR is
sufficiently small (see Lemma of [5]). Setting

m(Cl-’ f ( ( , ,..., r,

we can easily prove that the F have all the required properties. This completes
the prooK

La6.2. Let D G and Y F be as in Lemma 6.1, and let > O be
iven. Suppose that f,f,... , are finitely many functions in L L(a),
and that M,Ma,...,M,, S e + satisfy M S for all j 1,2,...,r.
Then there exist r functions e L L(a),j e {1, 2,..., r}, such that"

(i) supp

(iii) maid +
(ivl I](
(v) Hf’,...,f

{0, S}" such that N > Mfor some j 1, 2,..., r.

Proo For typographical reason, we shall often write in this proof, for
instance, M(j) M andf f(. There is no loss of generality in assuming
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that Ilflll and suppf is compact for allj 1, 2,..., r. Taking Lemma
3.1 into account, we may also assume that Mj >_ 1 for all j, if necessary, by
setting #j fj for thosej with Mj 0. Given { 1, 2, r }, let P(i) be the
following assertion" there exist #1, #2,..., #r L+ c L(G) which satisfy
(i)-(iv) and (v)i

IIf’ *"’* f’ g’ *’"* g/’llt < e

for all (N1,...,N3{0, 1,...,S} such that Nj > Mj for some j=
1, 2,..., i. Notice that P(r) is nothing but the required conclusion. We shall
prove the above assertions by induction on i.

Let P(0) denote the conclusion of Lemma 6.1. Suppose that {1, 2, r}
and that P(i 1) is true. We choose and fix a natural number T > Mi so that

(6.2.1) A (Mi/T)t’+l < /8 where A
Mi

Let I1, 12, In be the distinct subsets of {1, 2,..., T} each of which com-
prises distinct Mi elements. For each a 1, 2,..., A, we shall construct
r- + T functions in L+ L(G),

Gj(j{1,2,...,r}\{i)) and Ft,(t{1,2,..., T)),

as follows. First take a real positive number 6 less than e and a compact subset
Yo of F containing Y; they may be arbitrary but will satisfy some requirements
which will be made later. Next set Gjo =f for j #-i, and select any
Fto L+ L(G) so that

and
fi Flo + F2o +"" + Fro

[IF,oil1 Ilflll/T lIT for all 1, 2,..., T.

We may assume that the Fro have disjoint supports.
Suppose that a {1, 2,..., A}, and that the functions Gj(a_l) and

have been defined; we demand that IIa(-)llx and IIF.-)llx lIT. Set

(6.2.2) Eta Ft(a-1) for all {1, 2,..., T}\Ia.

By P(i 1), we can find r + Mi functions Gja (j v i) and Fta (t Ia) in
LI+ c L(G) which satisfy the following five conditions"

(6.2.3)
(6.2.4)
(6.2.5)
(6.2.6)
(6.2.7)

for all

supp Eta = supp Ft(a_l) IlFtal]l l/T;
supp Gja = supp Gj( 1), IlGjal[1
maiD + Ej*i (supp Gja)M + (Otel supp Fta)M,] < e/A;

N(1) N(i- N(1) ,... , N(i- 1) e/(2A)(a-) * * (i-)(a-) a (i-)al[ <
(Nx, Ni_a) {0, 1, S} i-x such that Ny > My for some

j= 1,2,...,i- 1.

This completes the induction on a.
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Now we claim that g G (j - i) and 9 F: + + Fr satisfy (i),
(ii), (iii), and (iv). Parts (i) and (ii) are obvious by (6.2.2), (6.2.3), and (6.2.4).
To confirm (iii), we first note that supp g c supp G, and supp F supp Ft,
for allj- i, all te{l, 2,...,T}, and all ae {1, 2, A}. Let x be an
arbitrary element of (supp g),. Since supp g is the union of all supp F,
s {1, 2,..., T), there are Mi elements t(1),..., t(M) of {1, 2,..., T}

such that

x c (supp Ft(k)A) supp Ft(k)A
k=l

Consequently there exists a {1, 2,..., A} such that

Hence we have
x (} {supp Fta" la))t,.

D + (supp 9j)tj U D + , (supp Gj,)tj + [0 supp F,,
j= j4:i la Mi

This fact, combined with (6.2.5), yields (iii). Part (iv) is an easy consequence of
(6.2.2) and (6.2.6); in fact, we have

(6.2.8) If(Y) 0()1 < 6 for all y 6 Yo and all j {1, 2,..., r}.

We shall now state the requirements for 6 and Yo that assure the validity of
(v). First we can and do demand by virtue of Lemma 3.1 that (6.2.3) and
(6.2.6) imply

(t) (t)

Ft. * Ft(,,- 1) < e/(4A)
(t)

for all N 1, 2,..., S and all a 1, 2, A, where the sums (,) and
are taken over all Ia and over all {1, 2,..., T}\Ia, respectively. We
therefore infer from (6.2.2) and (6.2.3) that Ms < N < S imply

Fta} (N) [1

e/(4) + 2(M/T)
<_ e/(4A) + 2(M/T)’/ for all a 1, 2,..., A.

These inequalities, combined with (6.2.1), yield

(6.2.9) ][f’ 9’]11 < e/4 + 2A(M/T)t’+l < el2
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for all N, M + 1,..., S. Next we note that (6.2.7) implies

(6.2.10) Ilfi
for all (N1,..., N_x) {0, 1,..., S}-I such that N > M for some j
1,2,...,i- 1. Now take an arbitrary (Nx,...,N) of (0, 1,...,S} such
that N > Mj for somej 1,..., i. If N > M, we have, by (6.2.9),

Ilf(’)
*"’* f(’)

<

since Ilfll Ilgllx forallj. IfNi > Mforsomej < i, then theleft-hand
side of the last inequality is less than

IIJ’() *"" * f-(’l-’) * {fv(0 gf(,)} 11 + /2

by (6.2.10). Therefore Lemma 3.1 and (6.2.8) show that (v) holds for appro-
priate choices of 5 and Yo. This completes the induction on and hence the
proof.

LEMMA 6.3. Let D c G, Y c F, and fl, f2,... ,f L+ L(G) be as in
Lemma 6.2, and let > 0 be given. Suppose that S is a natural number and that E
is a dominative subset of Z% contained in {0, 1,..., S)’. Then there exist r

functions gl, g2, gr in L+ c L(G) such that"

(i) supp gj c suppf;
(ii)
(iii) If(m1, mr) is in E, then mo[O + f.
(iv) I() ()1 < *for all ;
(v) If(n1,..., nr) is in {0, 1,..., S)’\E, then

]lf(’’) *’"* f’) g")*"’* g"")llx

Moreover, there exist 2rfunctionsfl , f2 , fr L+ c L(G), {0, 1 }, such
that, for each i, the functions ff satisfy the above five conditions with g ft,
and such that:

(vi)
(vii)

suppfo supp fl 0,
Ilf *A fo *fklllp < (P 1,1, S])for all j, k 1, 2,..., r.

Proof. The first assertion is an easy consequence of Lemma 6.2. In fact, we
first select any M (mi) E, and find r functions gl,..., gr L+ L(G)
satisfying the conclusion of Lemma 6.2. Next select any M’ (mj) E\(M)
and apply Lemma 6.2 (to g1,..., gr and M’) to find appropriate g,...,
Repeating this process, we obtain r functions which have all the required
properties with e replaced by (Card E).e.
To prove the second assertion, we argue as follows. We may assume

that IIfllx for all j 1, 2, r. By the absolute continuity of
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indefinite integral, there exists 6 (0, e) such that if h L+ (G), hj < fj, and
mo({f v h}) < 6, then IIf- hll for all p [-1, S] and all j
1,2,...,r. Let fro =gt,...,fro =gr be as in the first assertion of the
present lemma. We can demand that mo [supp f’o] < 6, and also (by Lemma
3.1) that lif * fk f * foIl for all p [1, S] and all j, k 1, 2,..., r.

Definefj Lt(G) by settingfj 0 on suppfo andf/ f. on G\(suppfo) for
j 1, 2,..., r. Applying the first assertion to the fj/llf.’ll, we can find r
functions ftt,f21,... ,ft which satisfy (i)-(v) with the f replaced by the
fj/llfjllx. We may assume that suppfo suppf.l 0 and also (by Lemma
3.1) that

II(fj/llf;ll) *Ao -L’, *Aoll,, < *
for all p [1, S] and all j, k 1, 2, r. Then the 2r functionsfi obtained
in this way satisfy the required conditions with e replaced by Ce, where C is a
finite constant depending only onft, fr and S and is independent of e. This
completes the proof.

7. Proofs of Theorem 2.4 and Corollary 2.5

7.1. Let Kt,..., K, c G, (b c Ms(G), and E Z+ be as in Theorem 2.4.
Since is a separable subset of Ms(G), there exists a nonzero measure Po
M+(G) such that every element of is absolutely continuous with respect to/o.
Let D be a a-compact subset of G which carries o and has zero Haar measure.
We write D U=l D,, where the D, are compact subsets of D such that
0 D, D,+ for all n 1, 2, For each natural number n, we shall
construct 2"r functions fab, f2b, f,b Lt+ L(G), b {0, }", as follows.

First choose 2r functions fro, fat Lg(KI), fro, fa Lg(K,) such that

Ilfill 1 for all j and i, and such that

(suppf3 c (supPfk3 0

unless (j, i) (k, l). Suppose that n is a natural number, and that the functions

fb Lg(K) have been defined for allj 1, 2, r, and all b {0, }k, k < n.
We assume that all thefb have La-norm and disjoint supports. Setting

Yn 0 0 {’ ’" [fjb(Y)l > n-t for some b {0, 1}k},
k=a j=

we repeatedly apply Lemmas 6.3 and 3.1 to find 2"+ ar functionsf Lg(Kj)
which satisfy the following conditions for j, k {1, 2,..., r}, b, {0, 1}",
and i, I e {0, 1}:

(7.1.1)
(7.1.2)
(7.1.3)

supp fjbo and supp fjba are disjoint subsets of supp fjb;
Ilfjbollx Ilfjbxllx
m[D,, + Y’.i=a (supPfjbi)mj] < 4 for all

(ml, m,) E c {0, 1,..., n}’;
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I](Y) ,()1 < 2-" for all Y.;
’("11 < 2-" for allIIf( *’’" * f":) fi *’’" * arbi

(na,..., n,) {0, 1,..., n}’\E;

(7.1.6) I]fjb * fkc fjbi *A,II < 2-" for all p [1, n] unless (b, i) (c," 1).

This completes the induction.
Letj{l, 2,...,r} andb (ba, b2,...)eD(2)begiven. Writingb(n)

(b1,..., b,) {0, 1}" for all n 1, 2,..., we infer from (7.1.1), (7.1.2), and
(7.1.4) that the sequence (fb(,))= converges weak* to a probability measure
/jb M(Kj). The supports of the measures/tjb, j e {1, 2, r} and b D(2),
are disjoint by (7.1.1), and the closure of their union has zero Haar measure by
(7.1.3). (Notice that the dominative set E contains the fundamental unit vectors
(1, 0,..., 0), (0, 0, 1).) Moreover, (7.1.1) and (7.1.3) show that

m [D+ (supp lljb)mj]--’O
j=l

for all b D(2) and (mj) E.

Since every v is carried by D, it follows that the measure

V*#lb*’’’*

is singular with respect to me. for all b and (mj) as above. This establishes part
(b). Finally parts (c) and (d) are easily seen from (7.1.5) and (7.1.6), which
completes the proof of Theorem 2.4.
To prove Corollary 2.5, it suffices to put Kx Kr K, {6(0)},

and E {0, 1,..., n 1}r in Theorem 2.4 (see also the above proof).

7.2. Theorem 2.4 holds for every nondiscrete locally compact (not neces-
sarily, abelian) group. Moreover, in this case, the orders of the convolution
products in parts (b) and (c) may be arbitrary. We omit the details.

8. Remarks

Theorem 2.4 has various refinements. We state three of them without proofs
in 8.1, 8.2, and 8.3.

8.1. When G is metrizable, the measures #jb in Theorem 2.4 can be so
chosen as to satisfy the following additional condition: if (nl,..., n,) and
(2n,..., 2n,) are in E, and if /,..., ktr M(G) satisfy #j << jb for all
j 1, 2,..., r and some b s D(2), then

IIv #’ ,’", #?11 Ilvll I1 I1"’ II/#11 "
for all v s * (cf. Lemma 3 of [6]).
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8.2. Given p M(G), let / be the measure defined by the requirement

/(K) #(-K) for all Borel sets K in G. It is possible to construct the measures
Pjb in Theorem 2.4 so that the vjb (Pb 4- jb)/2 have properties (b), (c), and
(d) of Theorem 2.4. An interesting consequence of this fact is that there exists a
singular measure # L1/a(G) such that fiE Ma(G) but p / Ma(G). To see
this, we apply Theorem 2.4 and the above fact with r 2 and E {0, 1}2 to
find two probability measures vl, v2 L1/2(G) Ms(G) such that v,
2 ’2, and vt v2 Ms(G). Then # V 4- iv2 satisfies #at M,(G),
p2 M,(G), and # / M,(G).

8.3. Let q q(G) denote the largest element of {2, 3,..., } such that
every neighborhood of 0 G contains an element of order q. If G is metrizable,
then the measures Pb in Theorem 2.4 can be so constructed as to satisfy both
the conditions stated in 8.1 and 8.2 ,and also the following one: suppose (i) s is a
natural number, (ii) Xk (k 1,..., s) are different s elements of supp #jb for
allj 1, 2, r and some b D(2), and (iii) (mk) is a nonzero r x s matrix
of integers, each with modulus < q, such that

(Y’. Imxkl, Impel) E;

then -,k mkXk =/= O.

8.4. There exists a nonzero measure / DIS(G) such that # and v v2
are mutually singular for all v, v2 Mo(G), where Mo(G)= (v M(G):
9 Co(F)}. A sketch of the proof of this fact is as follows.

First assume that G is metrizable. By Remark 8.3 with r and E
{0, 1, 2, 3, 4), there exists a probability measure / LI/5(G) such that if
x,..., x# are different four elements of K supp/, then x + x2 + x3 +
x# 6= 0. To force a contradiction, suppose that (v v2)(K) - 0 for some
continuous measures v and v2 in M(G). Then an easy application of the Fubini
theorem yields four elements a, a2, bl, b2 of G such that a + bj K for all
i, j{1,2) and a + b a + b unless (i,j) (k,l). But we have
(aa + ba) + (a2 + b2)- (a + b2)- (a2 + b) 0, which gives us the
desired contradiction. Therefore we have shown that # _1_ v, v2 for all
continuous measures v and v2. To prove the general case, notice that if
v Mo(G) and H is a closed nonopen subgroup of G, then we have Ivl(H) 0,
as is easily seen. It therefore suffices to consider any nondiscrete metrizable
quotient of G. We do not know if there is a nonzero measure/ L/2(G) with
the above property.

8.5. Let (nk) be a sequence of natural numbers, and D a a-compact subset
of G with zero Haar measure. Then there exists a sequence (/k) of probability
measures in M(G) such that (a) #,+1 M,(G) for all k 1, 2,..., (b) the
infinite convolution product/]" # ,’.. converges weak* to a probability
measure #m M(G) whenever rn (mg) is a sequence of non-negative integers
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such that mk <-- nk for all k, and (c) mG[.D + (supp p,)] 0 for every sequence
m as in (b). This can be proved by modifying the proof of Theorem 2.4.

8.6. The methods in Section 6, combined with Cohen’s idea in [1], yield
this result: let < p < q < ,fe Lp c/2(G), n a natural number, and e > 0;
then there exist g e Lp Lq(G) and a probability measure p L1/"(G) such that
(a) f g. p, (b) ma [supp (p"-1)] 0, and (c) Ilf- giip + [If- gllq < 8.

A similar assertion holds even if the space Lp Lq(G) is replaced by any one of
the following spaces; A(G), Co(G), and PF(G) [Co(F)]^--.the space of all
pseudofunctions on G.
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