SINGULAR MEASURES HAVING ABSOLUTELY
CONTINUOUS CONVOLUTION POWERS

BY
SADAHIRO SAEKI

1. Introduction

Throughout this paper, let G be an arbitrary nondiscrete locally compact
abelian group with dual I', mg; Haar measure on G, and M(G) the convolution
measure algebra of G (cf. [4]). We shall denote by M,(G) and M(G) the closed
ideal of all absolutely continuous measures and the closed subspace of all
singular measures (with respect to mg) in M(G), respectively. If B is a space of
measures or functions, the symbol B* (or B.) will stand for the set of real-
valued nonnegative members of B.

In their interesting paper [2] E. Hewitt and H. S. Zuckerman constructed a
nonzero measure pu € M. (G) such that u * pu is absolutely continuous and its
Radon-Nikodym derivative with respect to mg is in [P(G) = (G, mg) for all
real p > 1 (see also [3]). Later K. Stromberg [7] used their methods to prove
that M(G) contains a “large” independent set comprizing such measures. The
construction of such a measure y by Hewitt and Zuckerman depends upon the
so-called Riesz product technique and some structure theorems for locally
compact abelian groups, and consequently it seems quite difficult to make any
nontrivial constraint on the support of u if one adheres to their methods.
Notice, however, that it is easy to make supp u sufficiently large by convoluting u
with an appropriate discrete measure (cf. 4.6 of [2]). We are therefore interested
in the problem to construct a nonzero singular measure u so that supp u is as
small as possible while p * u has some preassigned nice properties. It is the
purpose of the present paper to show that such a construction is possible in
some sense.

2. The results

Let D(2) denote the set of all sequences b = (by, b,,...) consisting of 0
and 1 alone, so that the cardinality of D(2) is equal to the cardinality of the
continuum. We write Z and Z, for the set of all integers and the set of all
nonnegative integers, respectively. Suppose that pe€ M(G), 1 < p < o and
fe I’(G). By writing u € I(G) we mean that u is in M,(G) and its Radon-
Nikodym derivative with respect to mg is in I?(G). If u = gmg for some
g e ! n I2(G), we define || f — ul » = IIf — gll,- Our results can be stated as
follows.
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2.1. THEOREM. Suppose that f}, f5, . . . , [, are finitely many nonzero functions
in L', n I*(G), and that v(p) is a strictly positive continuous function of p € (1, 2)
such that lim,_, ,v(p) = 00. Then there exists a set {u;:1 < j < r, be D(2)}
of non-zero measures in M (G) with the following properties:

(i) Foreachj=1,2,...,r, the supports of the measures py, with b € D(2)
are disjoint compact subsets of supp f;, and the closure of their union has zero
Haar measure.

(i) For each (j,b)e {1,2,...,r} x D), uj, * py, is in I°(G) for all real
P = LS f; — wip * mplly < 0(2) and

1(F)* — (A)?ll, < v(p) forallpe(l,2].

(i) If (j, b) and (k, c¢) are two different elements of {1,2,...,r} x D(2),
then iy, * iy is in IP(G) for all p > 1,

15 * fe — myp * teelly < 0(2),
and [ifiy, € L\(I). Ifj # k, then ”fjfk = Aphigclly < v(2).

2.2. COROLLARY. Let U be a neighborhood of the identity of T, and v(p) a
Sfunction of p € (1, 2] as in Theorem 2.1. Then there exists a probability measure
u in My(G) such that supp u is compact, mg(supp p) = 0, and

(f A dy)'“’ <mU)" +o(p) (1 <p<).
r

2.3. COROLLARY. Let F be a o-compact subset of G. Then there exist
u e M} (G) and fe C*(G) such that (i) mg (supp p) = 0, (ii) f(x) > 0 for all
x € F, (iii) 4% € I(T) for all p > 1, and (iv) g(x) = f(x) for almost all x € G,
where g denotes the Radon-Nikodym derivative of p * p with respect to mg.

Let r be a natural number, and let E be a subset of Z', which contains all the
unit vectors (1,0,...,0),...,(0,...,0,1). We say that such a set E is
dominative if whenever m = (m;) e Z',, n =.(n;) € E and m; < n; for all j,
then m € E. Notice that if u,, ..., u, are nonzero measures in M (G), and if
E is the set of all (n;) € Z. such that pf' % - u" e M(G), then E is
dominative.

2.4. THEOREM. Suppose that K, K,, ..., K, are compact subsets of G with
positive Haar measure, that ® is a separable subset of M(G), and that E is a
dominative subset of Z',. Then there exists a set {u;:1 < j < r, beD(2)}
of nonzero measures in M (G) with the following properties :

(@) Foreachj=1,2,...,r, the supports of the measures p;, with b € D(2)
are disjoint compact subsets of K;, and the closure of their union has zero Haar
measure.

®) If(my,...,m)€eE, beD(),andved, then
Vo s % € My(G).
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© If(n,...,n)eZ" \Eand b e D(2), then
Bip * 0 * pyp € M(G).

(@) If(j, b) and (k, c) are two elements of {1,2,...,r} x DQ) withb # c,
then pj, * W is in I7(G) for all real p = 1.

2.5. COROLLARY. Let n > 2 be a natural number, and 1}'"(G) the set of all
1 € M(G) such that u* € M (G). If K is a compact subset of G with positive Haar
measure, then

L'"G) A {u € M(K): mg [supp ("~ 1] = 0}

is unseparable, and, for each natural number r, contains probability measures
Rys - - - » Py Such that mg [supp (uy * ... x p)" '] = 0.

A consequence of the last corollary is that I!/*(G) does not form a vector
space (n = 2, 3,...).

In Section 3 we establish some lemmas which will be used in the proof of
Theorem 2.1. Theorem 2.1 and the two corollaries to it are proved in Sections 4
and 5, respectively. Section 6 consists of three lemmas which are needed in the
proof of Theorem 2.4, Theorem 2.4 and Corollary 2.5 are proved in Section 7.
We give some remarks in Section 8, the final section.

3. Some lemmas

In this section we establish four lemmas. We assume that the Haar measures
mg and my are so adjusted that the inversion formula holds. Let 4(G) = L'T')"
denote the Fourier algebra of G; thus each element f of A(G) is the (inverse)
Fourier transform of a unique element of L'(T"), which will be denoted by f, and
the A(G)-norm of f is defined to be [ f]l, = | f]l,. Notice that || fx ull, <
I/1la - 1Al if fe A(G) and p e M(G), and that ||f* gll, < [Ifl2- gl if £,
g € I2(G). If fe L'(G), supp f denotes the support of the measure fing. For a
Borel set Fin G and 1 < p < o0, we denote by IP(E) the set of all fe IP(G)
such that supp f = E. The following lemma is, though elementary, very useful
in our proofs.

3.1. LeMMA. Let fi,...,f,€ A(G), and gy, ..., gu € L' n L*(G). Also let
£>0,1 < g < o, and K be a compact subset of G. Then there exist 6 > 0
and a compact subset Y of T which have the following properties. Ifh e I! n I*(K)
and |h| < 8 on Y, then

@ Nfi*hla < el + |Ally),
(i) llg;*hlla < e + ||All2),
(i) lg;*Ahl, <eld + |Al) A <p<gq)
forallj=1,2,...,m.
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Proof. Letd > 0 and a compact subset Y of I' be given. If # e I! n I*(G)
and || < & on Y, then we have, for f e A(G),

1 % il = f \Th] dy

<o ([ 1nar) +nn ([ ura)

< o114+ Il (fm i ‘”)'

Similarly we have, for g € I%(G),

toentass([1aam) + ([ 1o a)” ([ wea)”

1/2
< om(Y)' P gll; + (fm 14912 dv) T

by Schwarz’ inequality and Plancherel’s theorem. Thus both (i) and (ii) hold
if Y < I is sufficiently large and § > 0 is sufficiently small.

To confirm (iii), we may assume that g; € 4(G) and supp g; = L for all
j=1,2,..., mand for some compact subset L of G. Then h € [}(K) implies
supp (9; * h) = L + Kand

lg; * hl, < llg; * hlle - me(L + K)''P < llg; * hlly- mo(L + K)'7

forallj = 1,2,...,mand all p > 1. This, combined with (i), shows that (iii)
holds for appropriate Y < I" and § > 0, which completes the proof.

3.2. LEMMA. Let ge LY n L*(G), Y a compact subset of T, and § > O.
Then there exist hy, hy € L\ n L*(G) such that for i = 0, 1 we have

(1) supp ko and supp hy are disjoint subsets of supp g,
(ii) mg (supp ;) < 37 'mg (supp g),
(i) N2l = gl hille < B + 0)lgl,
(v) 1h(y) — g < éforallyeY.

Proof. Without loss of generality, we may assume that g is a simple function
with ||g|; = 1 and that supp g is compact. Since Y is a compact subset of I,
the set

V={xeG:|l —yx)| <d2forallye Y}

is a neighborhood of 0 e G. It follows that g can be written in the form
g = a,¢(Ey) + - + a,¢(E,), where the a; are real positive numbers and the
E; are disjoint Borel sets in G such that

x,x'€E; and yeY = |p(x) — y(x')| < 4/2



SINGULAR MEASURES 399

for all j = 1,2,..., n (the symbol £(E) denotes the characteristic function
of E).

Now choose and fix any b € (0, 1) so that 3/(1 — b) < 3 + §. Since G is
nondiscrete, there exist disjoint compact sets K;,, K;; < E; such that
me(K;) = 3711 — bymg(E)) (j=1,2,...,n;i=0,1). We define 4; by
setting 4, = 3(1 — b)~! io1 a;ié(K;;) (i = 0, 1). Then it is obvious that (i),
(ii), and (iii) hold. To confirm (iv), choose any x; € E;foreachj = 1, 2, ..., n.
Then we have, fori = 0,1 andy e Y,

190) — ho)l f Jdx — 3(1 — b)-! f v dx

a
1

IA
1=

J
J

< Z a; U [y(x) — y(x)| dx + 3(1 — b)~!
Jj=1 E;
n 8 fKﬂ |Y(X) - y(xj)i dx}
<6 Y amg(E)
= dlgl,
= 5,

which completes the proof.

3.3. LeMMA. Suppose that f,, f5, . . . , fw € LY 0 L*(G), that Y is a compact
subset of T, and that w(p) is a strictly positive continuous function of p € (1, 2]
such that w(p) = o as p — 1. Then there exist fio, f11 € LY n L*(G) such
that, fori = 0,1 andj = 1,2,..., m, we have:

(i) supp fio and supp fy, are disjoint subsets of supp fi;
() Ifully = 1Al mg (supp f15) < 37 'mg (supp £1);
i) Ay *fi = Sra*x fulls < w@2);

(v) max {||f; * (fy = fidlles 1S5 * (fr — fidlla} < w(2);
™ /1) = Fu®| < w(2) forallye Y;

o) I(FD)* = (F1)?ll, < wp) for all p e (1, 2].

Proof. Approximating f; by an appropriate simple function, we may
assume that f; has the form f; = Y8_, a,&(E) = 8-, gi» Where the g, are
positive real numbers, the E, are disjoint compact subsets of G, and g, =
al(E)fork =1,2,..., N.

We may also assume that w(p) = w(2) for all p e (1, 2]. By induction on
k=1,2,..., N, we shall construct 4,; € LY(E,) for i = 0, 1, as follows.

Set koo = hoy = 0, and assume that hg;,. .., hy_1); have been defined for
i = 0, 1 and some natural number k < N. By Lemmas 3.1 and 3.2, there exist
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hio» iy € LT(E,) which satisfy the following conditionsfori = 0, 1,1 < j < m,
and1 <n < N:

(3.3.1) supp Ao and supp A, are disjoint subsets of E,;

(3.32) lhlly = llgills mg (supp i) < 37'mg(Ey);

(3.33) Nhall, < 4lgill, = 4ame(E)'? for all p > 1,

(3.3.4) 14:(») — hu(y)l < w(2)/NforallyeY;

(3.3.5) 1fj* (g — mdlla + ISy * (g — mdlly < wW2)/N;

(3.3.6) 11gn* (9x — M)lla + 1190 * (g — M)y < W(2)/(4N?);

B3 by * (g = hdlla + 1B * (g = By < W2)/(4N?)

forallr =0,1,...,k — 1and / = 0, 1. This completes our induction.
Now we define fy; = hy; + hy; + - + hy; (i = 0,1), and claim that fi,
and f;; have all the required properties, provided that all the sets E, have
sufficiently small Haar measure. Indeed, (i), (ii), (iv), and (v) follow from (3.3.1),
(3.3.2), (3.3.5), and (3.3.4), respectively.
To confirm (iii), we note that

llf1 *f, — (hl,. + kgz gk) * (hu + é:_‘,z gk)

1
N
= ‘.2 kZZ gi*(gy — hy) + gy %9y — hy* h“"l
< 2N — DW)/@AN?) + llg4llf + [hyll? by (3.3.6)
< w(/(2N) + 2]g,I} by (3.3.2).
Similarly we have

n—1 N 2) n N 2)
(£ £0)" - (§ 0 5,00

=n 1 k=n+1

1

< w@J2N) + 2|t (n=1,2,...,N)

by (3.3.6), (3.3.7), and (3.3.2), where f® = fx f for fe [}(G). Adding the
last inequalities forn = 1, 2, ..., N, we obtain

If: *fi = fri* Sulls < w@)/2 + 2(lgdli + -+ + lgnlD)
< w@2)/2 + 2| filly - max {{lgill: 1 < k < N}

< w22 + 2| £l - 1fillw - M,
where

(3.3.8) M = max {mg(E,): 1 < k < N}.

Therefore (iii) holds if 2|/, ], - Ifille - M < w(2)/2.
To prove (vi), notice that 1 < p < oo and fe [*?/?P~1(G) imply

. Py 1p i) gg) 20
172510, = rll y) < Glfl x
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by the Hausdorff-Young inequality. Therefore we have

“(f, (hui+ iék)z

= P
N
<2 ; 1g(dy — Al + 181, + 121,
N
<2 ; Uge *(gy — hdlla + llge*(gy = hi)lly)
+ (”glu2p/(2p—l))2 + (I|h1i||2p/(21z—l))2
< w(2Q)/(2N) + 17afmG(E1)‘2"’”/”

IA

w(2)/(2N) + 17a;me(Ey) - | fillw - mg(Ep)' ~17
by (3.3.6) and (3.3.3). Similarly we have, by (3.3.6), (3.3.7) and (3.3.3),

(b fa) - (S0 3 )

k=n+t+1

14

< w(2)/2N) + 17a,mg(E,) - | fille - mg(E)' ~1°
foralln =1,2,..., N; hence

1G> = (12, < w@/2 + 170101 1 fille - M2
for all p > 1. Thus (iii) and (vi) are satisfied if

Sl Il M < w@) and 341130 [ fille - M* 7P < w(p)

for all pe(l,2]. Since w is a strictly positive continuous function with
lim,,; w(p) = oo, and since we can demand that M is arbitrarily small, this
completes the proof.

3.4. LEMMA. Suppose that f1, f5, . . . s m» Y and w are as in Lemma 3.3. Then
there exist 2m functions f;; € L, n L*(G) subject to the following conditions.
Forallj, ke{l,2,...,m}andi,le {0, 1}, we have:

(i) supp fjo and supp f;, are disjoint subsets of supp f;;
@) 1S5l = 1)1 mg (supp f;) < 37 'mg (supp f));
@) NSy * S = Sii* Salls < w@2);

Av) Nf; *fi = [ * fulla < w@)ifj # k;

v) Ifj(v) Fil < w2) forall ye Y;

~vi) I(FD? = (Fi?l, < w(p) for all p € (1, 2].

Proof. Let f,, and f;, be the functions given by Lemma 3.3 with w replaced
by 27'w. When fi0, fi15 - - - » Joe- 190> Jk—1)1 are defined, we apply Lemma 3.3
with fla {fl, cee 9fm} and w replaced by f;ca {fla cee ’fm’flo’fll’ te ’ﬂk—l)o’
Su-1y1} and 27w, respectively. By induction onk = 1,2, ..., m, we find 2m
functions with the required properties. This completes the proof.
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4. Proof of Theorem 2.1

4.1. Let fi,...,f,€ LY n *(G) and v e C((1, 2]) be as in Theorem 2.1.
There is no loss of generality in assuming that | fjll, = 1, fj € L*(G), and
K; = supp f; is compact (j = 1,2, ..., r). For each natural number » and
je{l,2,...,r}, weshall construct 2" functions fj, € L} n L*(G) of I!-norm 1,
b € {0, 1}", as follows.

For n = 1, we set fjo = f;; = f; (1 <j < r). Suppose that » is a natural
number, and that the functions f;, have been defined for all 1 <j <,
be{0,1},1 < k < n. Put

Y=

n

1 {yeT:|f(»)l = n~"'forsome 1 < j < rand some b e {0, 1}}},

TC=

and note that Y, is a compact subset of I'. Applying Lemma 3.4 with Y = Y,
and w = 27", we can find 2"*'r functions f},; € L} n L*(G), b € {0, 1}" and
ie{0,1}, which satisfy the following conditions (j, ke {l,2,...,r};
b, ce {0, 1}*; i, 1€ {0, 1}):

(4.1.1) supp (fjso) and supp (fj») are disjoint subsets of supp fj,;
(4.1.2) | fipills = 1, mg [supp (f35)] < 37 'mg [supp (fj»)];
4.1.3) N fip * fre — Sivi * frallt < 27"(2);

4.1.8) | fip * fuc = Fini * fralla < 27"0(2) if (J, b) # (k, ©);
4.15) |fp®) — fim@| < 27" forally e Y,;

4.1.6) (fi)?* — Fd?ll, < 27"(p) for all p e (1, 2].

This completes our inductive construction of the fj,,.
Now let b = (by, b,,...)eD(2)and 1 < j < r be given. We write

b(n) = (by, by, ...,b)€{0,1}" forn=1,2,...,

and identify each fj,,, with the measure f,ms € M(G). The definitions
of the sets Y, and (4.1.5) show that lim,., ,, f;5(,)(¥) exists for all y e . Since
supp fipm < Kjforalln = 1by (4.1.1), it follows from (4.1.2) that the sequence
(fjbm)=1 converges weak* to a probability measure uy, € M(Kj). Setting

Dy(2) = {beD(Q): b, = 0},

we claim that the set {u;: 1 < j < r, b e Dg(2)} has the required properties
(with D(2) replaced by Dy(2)).
Indeed, let 1 < j < r be given. Then (4.1.1) implies that

supp (ﬂjb) < 61 supp (f, jb(n)) < K; (b € Dy(2)),

that supp (u;5) N supp (u;;) = @ whenever b, c are distinct elements of Do(2),
and that the union of all supp (i;5), b € Dy(2), is contained in the compact set

”(ojl LU {supp (fj): c € {0, 1}"}] = K.
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We therefore conclude from (4.1.1) and (4.1.2) that the closure of the union of
all supp (u;;) has zero Haar measure. This establishes part (i).

To prove part (ii), choose any (j, b) € {1,...,r} x Dy(2). We infer from
(4.1.3) that the sequence (fjpmy * fipm)ne1 CONvVerges to some g;, € L}(G) and
that || f; * f; — glli < v(2). Since

] jb(y) = lim {f jb(n)(?)}z = {ﬁjb(y)}z (yeD),

it follows that u;, * u;;, is absolutely continuous and that puj, * pjy = g;me.
Moreover, using (4.1.6), we can easily prove that

17 — (B)ll, < v(p) forallpe(l, 2]
Since fj € Co(I) N IX(IN), we also have (s * ujp)” € IX(T) for all pe(l, 2],
and so g, € I/(G) for all real ¢ > 1 by the Hausdorff-Young inequality. This
establishes part (ii).
The proof of part (iii) is similar to that of part (ii), and the whole proof is
complete.

4.2. A weak version of Theorem 2.1 holds for every nondiscrete locally
compact (not necessarily abelian) group. Suppose that G is such a group with
left Haar measure mg, that f1, f5, . . . , f, are nonzero functions in L%(G) with
compact support, and that w is a strictly positive continuous function on [1, o)
such that w(p) —» o as p — oo. Then there exist nonzero measures pu;, €
M*(G), (j,b)e {1,2,...,r} x D(2), such that:

(i) For every 1 < j < r, the supports of the u;, be D(2), are disjoint
compact subsets of supp f;, and the closure of their union has zero Haar
measure;

(ii)) Foreach (j,b)e{l,2,...,r} x D(Q2),

Hjp * Ly = gpme for some gj, € () {IX(G): 1 < p < oo}
and || f; * f; — gpll, < w(p) for all real p > 1;

(iii) If (j, b) and (k, ¢) are different two elements of {1, 2,...,r} x D(2),
then pj, * py, = gmg for some g = gy € C(G) and | f; * fi — gll; < w(2);
and, if, in addition, j # k, then [ f; * fi — gl < W(2).

The proof of this fact is slightly more complicated than but similar to the
proof of Theorem 2.1. We omit the details.

5. Proofs of Corollaries 2.2 and 2.3

To prove Corollary 2.2, we choose and fix any fe L, n A(G) such that
I£l; = 1 and suppf = U. By Theorem 2.1, there exists a probability measure
u € M(G), with compact support having zero Haar measure, such that
If2 — A%ll, < v(p) for all p e (1, 2]. Since |f] < 1 andf = 0 off U, it follows
that

1821, < 1721, + o) < me(U)'? + 0(p) (1 <p <2,

which establishes Corollary 2.2.
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To confirm Corollary 2.3, let F be a o-compact subset of G. By the well-
known structure theorem [4], G contains an open subgroup of the form RY x H,
where N is a nonnegative integer and H is a compact abelian group. Since F is
o-compact, there exist countably many elements x, = 0, x;, X,, ... of G such
that the family

{x, + [-L,1]" x H:neZ,}

covers F and is locally finite. Let & denote the characteristic function of
[—=1, 1]¥ x H,sothat (¢ x £)(x) = Lforallxe[—1, I]¥ x H (we normalize
mg so that mg([0, 1TV x H) = 1). By Theorem 2.1, we can find p,, u, €
M*([—1, 1]¥ x H) such that mg (supp u;) = 0, |4;|*> € IP(T) for all p > 1
and i = 1,2, and ||& — f,fi,]l; < 1/2. Define ue M(G) by setting u =
>R 027 "0(x,) * (uy + up), where 6(x) denotes the unit point measure at x € G.
We then claim that u has all the required properties.

Indeed our choice of the sequence (x,) shows that

supppu = |J {x, + suppp;:neZ,,andi = 1,2},
and so mg (supp p) = 0. Since |i; + fi,|*> € I?(T) for all p > 1 and since

p*p = { i 275Xy + x,,)} * (g + po) * (uy + 1),

m,n=0

it follows that |i|*> € I”(') for all p > 1. Now let g € A(G) be the Radon-
Nikodym derivative of u, * p, with respect to mg, and set

f=g+(E 27" o).
n=0
Then we have
€% & —glly, < NExE = glly = 18 — s, < 172,

so that g(x) > (€ * &)(x) — 1/2 = 1/2 for all xe [—1, 1]V x H. Therefore
f(x) > 0 for all x € F by the definition of fand our choice of (x,). Finally we
have

prp > (go 27 a(x")) ¥ 1y 1y = fmg,
which completes the proof.

6. Some lemmas

In this section, we shall establish some lemmas which will be needed in the
proof of Theorem 2.4. For K < G and n e Z,, we shall write (K), = 0 if
n = 0and (K), = [Ku {0} U (—=K)] + (K),—, if n = 1. For fe L'(G), we
shall define f® = §(0)if n = O and f™ = f« f* " Vifn > 1.

LEMMA 6.1. Suppose that f,, f», . . . , f, are finitely many functions in L% (G),
that D is a compact subset of G having zero Haar measure, that Y is a compact
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subset of T, and that n,, n,,...,n. € Z,. Given ¢ > 0, there exist simple
functions F, F,, ..., F, e L\(G) such that, for je {1,2,...,r},

(i) supp F; < supp f},

@ NFl = 1f.04
(iii) mg[D + X5-, (supp Fy),,] < e,
Gv) |f;(») — F,(»)l < eforallyeY.

Proof. There is no loss of generality in assuming that | f;|; = 1 and K; =
supp f; is compact (j = 1, 2,...,r).

For each j, let {K;;, Kj,, ..., K;y} be a finite partition of K; into disjoint
Borel sets such that mg(Kj;) > 0 and

(6.1.1) x, X €Ky, and yeY = |p(x) — y(x)| < ¢/2
for all k =1,2,..., N. Then we note that [.ljkGM+(Kjk) and u;(Ky) =
Sk f; dx imply
N

f j()’) - Zl ﬂjk(v)

k=

(6.1.2)

<¢ forallyeY.

(See the proof of Lemma 3.2.) We then select compact subsets L, of K, with
mg(Lj) > 0, so that

(6.1.3) mg [D + ,gl (k(:)l L,k)”j] <e

This is possible, because (6.1.3) is satisfied if the “diameter” of every Lj, is
sufficiently small (see Lemma 1 of [5]). Setting

N
F=73 [mG(L,k)" f 5, dx] KL (=121,
K=1 K ,

we can easily prove that the F; have all the required properties. This completes
the proof.

LEMMA 6.2. Let D =« Gand Y <= T be as in Lemma 6.1, and let ¢ > 0 be
given. Suppose that f,, f5, ..., f. are finitely many functions in L. n L*(G),
and that M, M,, ..., M, Se€Z, satisfy M; < S for all j=1,2,...,r.
Then there exist r functions g; € L} n L*(G),je{1,2,...,r}, such that:

(i) suppg; < supp f;;
@ lg;le = 150
(i) mg[D + 5=, (Supp g)m,] < &
i) 1f;®» — g; < eforallyeY;
W) 10w fO = g e a g, <& for all (Vy,..., N €
{0, 1,.... S} such that N; > M; for somej = 1,2,...,r.

Proof. For typographical reason, we shall often write in this proof, for
instance, M(j) = M; and f¥ = f™. There is no loss of generality in assuming
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that || f;ll; = 1 and supp f; is compact for allj = 1, 2, ..., r. Taking Lemma
3.1 into account, we may also assume that M; > 1 for all j, if necessary, by
setting g; = f; for those j with M; = 0. Givenie {1, 2,...,r}, let P(i) be the
following assertion: there exist g1 92 - --» g, € LY 0 L°(G) which satisfy
(1)—(iv) and (v),
IfY el =g we e w gy < e

for all (N,,...,N)e{0,1,...,S} such that N; > M; for some j =
1,2,...,i Notice that P(r) is nothing but the required conclusion. We shall
prove the above assertions by induction on i.

Let P(0) denote the conclusion of Lemma 6.1. Suppose thatie {1,2,...,r}
and that P(i — 1) is true. We choose and fix a natural number T > M, so that

(6.2.1) A (M/T)M*! < /8 where A = (;)
Let I, I,, ..., I, be the distinct subsets of {1, 2,..., T} each of which com-
prises distinct M; elements. For each a = 1,2,..., 4, we shall construct
r — 1 4+ T functions in L} n L*(G),

Gi,(je{l,2,...,r}\{i}) and F,(te{l,2,...,T}),

as follows. First take a real positive number 6 less than ¢ and a compact subset
Y, of T containing Y ; they may be arbitrary but will satisfy some requirements
which will be made later. Next set G;, = f; for j # i, and select any
F,, € L} n L*(G) so that

Ji=Fio + Fyo + ++ + Fpo
and

IFolly = 1Ailll/T = YT forallt=1,2,..., T

We may assume that the F,, have disjoint supports.
Suppose that a e {1, 2,..., 4}, and that the functions G;,_,, and F,,_,,
have been defined; we demand that |G;,-)ll; = 1 and |Fy,-ll; = 1/T. Set

(6.2.2) Fo= Fyy forallte{l,2,..., T\,

By P(i — 1), we can find r — 1 + M, functions G;, (j # i) and F,, (t€ 1,) in
L% ~ L*(G) which satisfy the following five conditions:

(6.2.3) supp Fi, < supp Fyq- 1y | Filly = 1T;
(6.2.4) supp Gj, < supp Gju-1) 1Gslly = 1;
(6.2.5) mg[D + ¥4 (supp Gy, + (Utela supp Fou,] < ¢/4;
(6.2.6) >;:; |Gj(a 1) G}al + IZteIa( Ha=1) Fta)' < 6/4 on Y,;
(6.2.7) ||GT((¢11) 1) * ook G(i 1)(a 1H ~ GYD - Z('x)la)“x < ¢/(24)
for all (N, ..., N;_))e{0,1, S}'“1 such that N; > M; for some
j=12,...,i— 1

This completes the induction on a.
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Now we claim that g; = G;, (j # i) and g; = Fy 4, + -+ + Fr, satisfy (i),
(i), (iii), and (iv). Parts (i) and (ii) are obvious by (6.2.2), (6.2.3), and (6.2.4).
To confirm (iii), we first note that supp g; = supp G}, and supp F,, < supp F,,
for all j # i, all te{l,2,..., T}, and all ae {1,2,..., A}. Let x be an
arbitrary element of (supp g;)y,. Since supp g; is the union of all supp F, 4,
te{l,2,..., T}, there are M; elements #(1),..., t(M;) of {1,2,..., T}
such that

M) M)
X € kzl (supp Fypya)1 < ( U supp Ft(k)A) My
Consequently there exists @ € {1, 2, ..., 4} such that

x € (U {supp Fi: t € I}y,
Hence we have

r A
D+ ¥ (supp gu, = U [D + Y (supp Gy, + ( U supp Fm) ] :
Jj=1 a=1 J#i tel, M;
This fact, combined with (6.2.5), yields (iii). Part (iv) is an easy consequence of
(6.2.2) and (6.2.6); in fact, we have

62.8) |fi(») — g, < forallye Yoandallje{l,2,...,r}.

We shall now state the requirements for 6 and Y, that assure the validity of
(v);. First we can and do demand by virtue of Lemma 3.1 that (6.2.3) and
(6.2.6) imply

N
Z “ ZFt(a 1)

(N -m) (m)

* {Z/ Ft(a—l)}
)
(N=m) , (m)
- {Z Fm} * {;) Ft(a-—l)}
t

(1)

< ¢/(44)

forall N =1,2,...,Sandalla = 1, 2,..., 4, where the sums ¥ ,, and 3,
are taken over all eI, and over all re {1, 2,..., T}\I,, respectively. We
therefore infer from (6.2.2) and (6.2.3) that M; < N < S imply

T (N) T (N)
(£, el - (£,
t=1 t=1 1
N N
)+ (5+])
1 (t) 1

< ¢/(44) + (IZ Ft(a—l)'
®
e/(44) + 2(M,/TM*! foralla = 1,2,..., A.

¢/(44) + 2(M,[T)N

IA

These inequalities, combined with (6.2.1), yield
(6.2.9) IfF = g¥lly < el4 + 2AM T < ¢f2
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forall N; = M; + 1,...,S. Next we note that (6.2.7) implies
(6.2.10)  JFYD ke w fROTD g s gV < g2

for all (Ny,...,N;—)€{0,1,..., S} such that N; > M; for some j =
1,2,...,i — 1. Now take an arbitrary (N, ..., N;) of {0, 1,..., S} such
that N; > M, forsomej = 1,...,i If N; > M;, we have, by (6.2.9),

”fIIV(l) R *f,N(i) - gllv(l) * 0% {V(i)||
< MDD = gD e gD SO + 62,

since || f;ll; = llg;ll; = lforallj. If N; > M;forsomej < i, then the left-hand
side of the last inequality is less than

WA e 0D (YO = g¥ Ol + &2

by (6.2.10). Therefore Lemma 3.1 and (6.2.8) show that (v); holds for appro-
priate choices of § and Y,. This completes the induction on i and hence the
proof.

LEMMA 6.3. Let D = G, Y < T, and f\, f5, ..., f, € LY n L*(G) be as in
Lemma 6.2, and let ¢ > 0 be given. Suppose that S is a natural number and that E
is a dominative subset of Z', contained in {0, 1, ..., S}. Then there exist r
functions gy, g5, - . - , g, in L, ~ [°(G) such that:

(i) suppg; < supp f;;
(i) ”91”1 = ||f;"1,
(i) If (my, ..., m,) is in E, then mg[D + Y-, (SUpp g))m,] < &;
V) 1 — 4,0 < eforallyeY;
~ If(ny,...,n)isin {0, 1,..., SY'\E, then

||f(1"') R *fg"r) _ g(lnl) * % 95"')”1 < e

Moreover, there exist 2r functions f,;, f5i, . - - » foi € LY 0 L*(G), i € {0, 1}, such
that, for each i, the functions f;; satisfy the above five conditions with g; = f;;,
and such that:

(vi) supp fjo N supp fj; = 0,
i) | fy*fi — fijo*fuulp, <e(pell, S) forallj bk =1,2,...,r

Proof. The first assertion is an easy consequence of Lemma 6.2. In fact, we
first select any M = (m;) € E, and find r functions g4, ..., g, € LY n L*(G)
satisfying the conclusion of Lemma 6.2. Next select any M’ = (m)) € E\{M}
and apply Lemma 6.2 (to g4, ..., g, and M’) to find appropriate g}, ..., g,.
Repeating this process, we obtain r functions which have all the required
properties with ¢ replaced by (Card E) - e.

To prove the second assertion, we argue as follows. We may assume
that | fjll;, =1 for all j=1,2,...,r. By the absolute continuity of
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indefinite integral, there exists 6 € (0, &) such that if h; € L1(G), h; < f;, and
me({f; # h;}) < o, then |f; — hyl, <& for all pe[l,S] and all j =
1,2,...,r. Let fio =91 --->f0 = g, be as in the first assertion of the
present lemma. We can demand that mg [supp fjo] < 9, and also (by Lemma
3.1) that || f; * fi — f; % frol, < eforallpe[l,S]andallj, k =1,2,...,r
Define f] € L!(G) by setting Ji = 0onsupp f;, and f/ = f; on G\(supp f;o,) for
Jj=1,2,...,r. Applying the first assertion to the f//| fjl;, we can find r
functions f1, f21, ..., f,1 which satisfy (i)-(v) with the f; replaced by the
£ f7Il;. We may assume that supp fjo N supp f;; = 0 and also (by Lemma

3.1) that
NGNS * fio = fix * froll, < &

forallpe[l, S]and allj, k = 1,2, ..., r. Then the 2r functions f}; obtained
in this way satisfy the required conditions with ¢ replaced by Ce, where Cis a
finite constant depending only on f}, . . . , f, and S and is independent of . This
completes the proof.

7. Proofs of Theorem 2.4 and Corollary 2.5

71. LetK,,...,K, = G,® =« M/(G), and E = Z', be as in Theorem 2.4.
Since @ is a separable subset of M,(G), there exists a nonzero measure y, €
M/ (G) such that every element of ® is absolutely continuous with respect to u,.
Let D be a o-compact subset of G which carries p, and has zero Haar measure.
We write D = (), D,, where the D, are compact subsets of D such that
0# D,c D, foralln =1,2,.... For each natural number n, we shall
construct 2"r functions fip, fop, - - - » fop € LY 0 L°(G), b € {0, 1}", as follows.

First choose 2r functions f,, fi; € LY(K}), - . ., fros fy1 € LZ(K,) such that
I fjill, = 1 for all j and 7, and such that

(supp f1) 0 (supp fu) = 0

unless (j, i) = (k, I). Suppose that nis a natural number, and that the functions
fi» € LR(K;) have been defined forallj = 1,2, ..., r,and all b € {0, Ik <n
We assume that all the £}, have L'-norm 1 and disjoint supports. Setting

Y, = 0 0 {yeT: ()| = n! for some b € {0, 1}},
k=1 j=1

we repeatedly apply Lemmas 6.3 and 3.1 to find 2"*!r functions f;,; € LY(K})
which satisfy the following conditions for j, k€ {1,2,...,r}, b, ce {0, 1},
and i, [ € {0, 1}:

(7.1.1) supp fj»o and supp fj;; are disjoint subsets of supp fj,;
(7.1.2) ||fjbo||1 = ”fibl”l =1;
(7.1.3) mg[D, + 3 (Supp fipi)m,] < 47" for all

my,...,m)e En{0,1,...,n}";
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(7.1.4) |f3) = fiy)l < 27" forallye Y,;
(T15) fG0 - x f40 — fO0 % f4P), < 27" for all

(ny,...,n)e{0,1,..., n}"\E;
(7.1.6) 11 fip * fue — Fivi * freall, < 27" forall p € [1, n] unless (b, i) = (¢, 1).

This completes the induction.

Letje{l,2,...,r}and b = (by, b,, ...) € D(2) be given. Writing b(n) =
(byy...,b) € {0, 1} for al n = 1, 2, ..., we infer from (7.1.1), (7.1.2), and
(7.1.4) that the sequence (fjpmy)iz: converges weak* to a probability measure
Ujp € M(K;). The supports of the measures uj, j€ {1,2,...,r} and b € D(2),
are disjoint by (7.1.1), and the closure of their union has zero Haar measure by
(7.1.3). (Notice that the dominative set E contains the fundamental unit vectors
(1,0,...,0),...,(,...,0,1).) Moreover, (7.1.1) and (7.1.3) show that

mg [D + ,;1 (supp lljb)m,] = 0 forall b e D(2) and (m)) € E.

Since every v € @ is carried by D, it follows that the measure
VoK R

is singular with respect to mg for all b and (m;,) as above. This establishes part
(b). Finally parts (c) and (d) are easily seen from (7.1.5) and (7.1.6), which
completes the proof of Theorem 2.4,

To prove Corollary 2.5, it suffices to put K, = -++ = K, = K, ® = {6(0)},
and E = {0, 1,...,n — 1}" in Theorem 2.4 (see also the above proof).

7.2. Theorem 2.4 holds for every nondiscrete locally compact (not neces-
sarily, abelian) group. Moreover, in this case, the orders of the convolution
products in parts (b) and (c) may be arbitrary. We omit the details.

8. Remarks

Theorem 2.4 has various refinements. We state three of them without proofs
in 8.1, 8.2, and 8.3.

8.1. When G is metrizable, the measures p; in Theorem 2.4 can be so
chosen as to satisfy the following additional condition: if (n,,...,n,) and
(@ny, ..., 2n,) are in E, and if py,..., u, € M(G) satisfy u; <« p; for all
j=1,2,...,rand some b € D(2), then

v gt el = AVIE g 7ol ™
for all v € @ (cf. Lemma 3 of [6]).
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8.2. Given ue M(G), let ji be the measure defined by the requirement

H(K) = u(—K) for all Borel sets Kin G. It is possible to construct the measures
Kjp in Theorem 2.4 so that the v;, = (u; + fij)/2 have properties (b), (c), and
(d) of Theorem 2.4. An interesting consequence of this fact is that there exists a
singular measure u € I'/3(G) such that u*> ¢ M,(G) but u * fi € M,(G). To see
this, we apply Theorem 2.4 and the above fact with r = 2 and E = {0, 1} to
find two probability measures v,, v, € L!’*(G) n M(G) such that ¥, = v,,
¥, =v,, and v, *v, e M(G). Then u = v, + iv, satisfies u®e M,(G),
12 ¢ M,(G), and p * fi € M(G).

8.3. Let g = q(G) denote the largest element of {2, 3,..., oo} such that
every neighborhood of 0 € G contains an element of order ¢g. If G is metrizable,
then the measures uj, in Theorem 2.4 can be so constructed as to satisfy both
the conditions stated in 8.1 and 8.2 ,and also the following one: suppose (i) s is a
natural number, (ii) x;, (k = 1, ..., s) are different s elements of supp u;, for
allj = 1,2,..., rand some b € D(2), and (iii) (m,) is a nonzero r x s matrix
of integers, each with modulus <g¢, such that

Crlmuds - -+, 2 Impl) € E;
then 3, myx; # 0.

8.4. There exists a nonzero measure p € L'/>(G) such that u and v, * v,
are mutually singular for all v,, v, € My(G), where My(G) = {v e M(G):
9 e Co(IN}. A sketch of the proof of this fact is as follows.

First assume that G is metrizable. By Remark 8.3 with r = 1 and E =
{0, 1, 2, 3, 4}, there exists a probability measure u e L'/5(G) such that if
Xgs ..., X, are different four elements of K = supp u, then x; + x, + x; +
x4 # 0. To force a contradiction, suppose that (v, * v,)(K) # 0 for some
continuous measures v, and v, in M(G). Then an easy application of the Fubini
theorem yields four elements a,, a,, b;, b, of G such that a; + b; € K for all
i, je{l,2} and a; + b; # a, + b, unless (i,j) = (k,]). But we have
(a; + b)) + (ay + by) — (a; + by) — (a, + by) = 0, which gives us the
desired contradiction. Therefore we have shown that u L v, x v, for all
continuous measures v, and v,. To prove the general case, notice that if
v € My(G) and H is a closed nonopen subgroup of G, then we have |v|(H) = 0,
as is easily seen. It therefore suffices to consider any nondiscrete metrizable
quotient of G. We do not know if there is a nonzero measure u € L/2(G) with
the above property.

8.5. Let (n,)3 be a sequence of natural numbers, and D a o-compact subset
of G with zero Haar measure. Then there exists a sequence (1,)7 of probability
measures in M(G) such that (a) p*! e M(G) for all k = 1,2,..., (b) the
infinite convolution product uf* * p%? * - - - converges weak* to a probability
measure y,, € M(G) whenever m = (m,) is a sequence of non-negative integers
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such that m, < n, for all k, and (c) mg[D + (supp u,)] = O for every sequence
m as in (b). This can be proved by modifying the proof of Theorem 2.4.

8.6. The methods in Section 6, combined with Cohen’s idea in [1], yield
thisresult:let1 < p < g < 00,f€ [’ n I!(G), n a natural number, and ¢ > 0;
then there exist g € I” n I%(G) and a probability measure u € L'"(G) such that
(@) f =g+ p, (b) mg [supp (W'~ H)] = 0, and (©) If — gl, + If — gl, <.
A similar assertion holds even if the space I’ n I(G) is replaced by any one of
the following spaces; A(G), Co(G), and PF(G) = [Cy(I)]"—the space of all
pseudofunctions on G.
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