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1. Introduction

Let B(H) and C(H) denote respectively the algebras of bounded and compact
operators on a complex separable Hilbert space H. Then C(H) is a closed ideal
in B(H) and B(H)/C(H), known as the Calkin algebra, is a C*-algebra with
identity in the quotient norm. One problem associated with this algebra is to
find a compact operator K for a given T B(H) such that T + K reflects
accurately in B(H) the properties of T + C(H) in B(H)/C(H). Some progress
on this question has already been made; it is well known that there exists
K C(H) such that liT / K liT / C(H)II, and Stampfli [6] has shown
recently that there exists C C(H) such that the spectrum of T / C and the
Weyl spectrum of T / C(H) are equal. This paper arose from an attempt to’
answer the question of whether each element of B(H)/C(H) has a representative
in B(H) which simultaneously preserves both the norm and the numerical range.
The solution of this problem will appear as a consequence of a more general
extension theorem, namely Theorem 3.3. The fact that C(H) is an M-ideal in
B(H) is crucial to these results.
The notion of M-ideal in a Banach space has been formulated and studied in

an important paper of Alfsen and Effros [2]. According to these authors a
closed subspace J of a (real) Banach space X is an M-ideal in X if its annihilator
J+/- is an L-ideal of the dual space X*. This in turn means that J+/- is the range
of an L-projection defined on X*; that is, a projection Q" x* --, jl with the
property that I[[[ [IQ[[ + [[ Qi[ for all X*. The following
examples of M-ideals will be of particular interest:

(a) The ideal rg(V) of compact operators on Banach spaces V that possess
a special type of unconditional basis. Among such spaces are the sequence
spaces Co and Ip, < p < c [3].

(b) The ideals Ir {f:f A(D),f[r =- 0} where A(D) is the disk algebra
and K is a compact set on the circle having Lebesgue measure zero.

(c) The set of continuous complex-valued affine functions vanishing on a
closed split face of a compact convex set K [1].

In [2], an intrinsic characterization of M-ideals was given in terms of an
intersection of balls property. The key to this proof was showing that for a
given M-ideal J in a (real) Banach space X, w*-continuous functionals on J"
could be extended with preservation of norm to w*-continuous functionals
on X*.
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The purpose of this paper is to show that under certain circumstances the
w*-continuous functionals may be extended in a certain range preserving
manner. More specifically we show that there is an extension so that the set of
images of the extended functional on the states of X* is equal to the set of
images of the functional on the states of ja.. As an application of our result we
will show that for any bounded linear operator T on a complex separable
Hilbert space, there is a compact perturbation T + K of T, so that the essential
numerical range of T is equal to the closure of the numerical range of T + K.
Some of our examples of M-ideals may occur in spaces X intrinsically defined

over the complex field. In such cases, when applying any theorems from [2],
we always consider that we are working in the real restriction of X. It is
straightforward to verify that an M-ideal in a complex Banach space X remains
an M-ideal in the real restriction of X.

2. Definitions and notation

We list here several important definitions and terms which will be needed for
future use. The space X will always be understood to be a Banach space. An
element e X will be called a generalized unit if Ilell 1. The corresponding
generalized states S will be {b e X*: 11 q(e)) and the gen6ralized
numerical range W(x) ofan element x Xis defined to be W(x) (b(x): b S).
If J is an M-ideal in X, then the essential norm of x e X, defined to be the
quotient norm of x + J, will be denoted by Ilxll, The generalized essential
numerical range We(x) is the set

((x): c s}.

In the case that X is a Banach algebra with unit I, our definitions correspond to
the usual definitions. (cf. r7]).

In keeping with r2-l, an M-ideal J in a Banach space X has an annihilator jx
which will be denoted by N and its complementary L-summand denoted by N+/-.
Let U(X) be the unit ball in X. We will at times set K U(X*). Cony (A, B)
will indicate the convex hull of A and B, and the distance of x to a set J will
be d(x, J).

3. The main theorem

We are now ready to prove our main result, namely, Theorem 3.3. The proof
that under certain conditions the essential numerical range of x X may be
preserved falls naturally into two cases which are considered in Theorem 3.1
and Theorem 3.2. In the first case, the numerical range is taken with respect to
a generalized unit.

THEOREM 3.1. Let J be a closed M-ideal in a complex Banach space X, and
let x X. If We(x) contains three noncollinear points, then there exists a j J so
that We(x) W(x + j). In addition Ilxlle IIx / ill.
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Proof. We first wish to derive a certain intersection of balls property,
namely

(.) ( B(x + 2e, p(x + 2e)) 0

where e is our generalized unit and p(x + 2e)= d(x + 2e, J). The preser-
vation of numerical range will be an easy consequence of this relation. We
proceed now to prove (*).

Since W(x) is convex, the hypotheses of the theorem assure that W(x)
contains some ball relative to C, and we call it B(a, e). The next lemma is
pertinent for what follows"

LMMA 3.1. Let p(x 2e) d(x 2e, J). Then

B(x 2e, p(x- 2e))

has nonempty interior.

Proof We show that B(x- ae, e) ac B(x- 2e, p(x- 20) where
B(a, ) W(x). Let 2 e C. It suffices to show that la 2] + e N p(x 2e).
Now,

I- 21 + sup I- 21
B(, e)

sup I#- 1
# W(x)

sup I(x 2e)l

d(x- 2e, J)
p(x e).

The next result appears as Theorem 5.8 in [2].

THEOREM [2, p. 120]. Suppose J is a closed subspace of a Banach space X.
Then the following two statements are equivalent"

(i) J is an M-ideal.
(ii) If D,,..., D, are closed balls with int (D ... D,) 0 and

DiJ Oforalli, thenDt ...D,J O.

Our aim is to modify the above result for our particular case; namely, we
wish to show that given the M-ideal J, then

(a) c B(x + 2e, p(x + 2e)) 0 and
(b) B(x + 2e, p(x + 2e)) J 0 for all x imply

B(x+Xe, o(x+Xe))aJeO.

In order to motivate what we do next we give a heuristic proof of how (i)
implies (ii). Let v,..., v, denote the centers of the balls D,,..., D, and
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r1,..., r, the corresponding radii, and where occasion demands we make the
usual identification of an element of a Banach space X as w*-continuous linear
functional on X*. In [2-1, an element v D1 c c D, c J was produced as
a w*-continuous Hahn-Banach extension of a certain linear functional domin-
ated by the w*-lower semicontinuous concave function g() inf (v + r)()
where v + r is now an affine functional on U(X*) for all i. Since g is the
infinum of a finite number of w*-continuous affine functionals it is automatically
w*-lower semicontinuous.
To prove our theorem, it is seen that the same argument as in I-2] goes

through except the verification that the functional

g() inf Re ((x + 2e) + p(x + 2e))

is w*-lower semicontinuous on U(X*) { X*: IIll 1}. As a pointwise
infinum of affine w*-continuous functionals, #(.) is automatically a concave
w*-upper semicontinuous function. To prove that 0(.) is w*-lower semi-
continuous, and hence continuous, we need the following:

LEMMA 3.2.
with 121 Mo,

For each e > O, there exists an Mo < oo so that for all 2,

(,) sup I(x + 2e)i- sup l(x + 2e)l _< e.
dpN K dpN cS

Proof. Let e N c K with (x) ae, (e) beta, I&le. Then

I(x + 2e)l 2 (a cos + blAI cos (0 + ))2 .. (a sin + blAI sin (0 + fl))2.

Hence, I(x + 2e)l (bl&l + a cos (0 + fl ))1 < C/IAI, so that

I(x + Xe)l- IAl- sup [(b- 1)IAI + a cos (0 -t- fl- )] _< C/IA, I.
dpN K

Set f(0, I&l, ) (b 1)IAI + a cos (0 + fl e) and note that

If(0, I1, ) -f(o, I1, )1

lal Icos (0 +/7- )- cos (0 +/- )1 < DIO
for some constant D. Now fix 0. There exists Mo such that if 121 > Mo,

sup f(O, I&l, ) sup f(O, I&l, ) < .
beN K ebeN cS

To see this write E, {" I(e)l > 1 1In}. Clearly 02=x E, S. Since
the E,’s are w*-compact and x() is a w*-continuous function, we have
,= x(E,) x(S). Thus, along any ray, (,) is established.
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We now show uniformity in 0. Pick an e-net of O’s, call them {0}_ 1. Then

sup f(O, I1, ) sup f(O, I1, )
dpN K dpN S

sup f(O, I,1, k) sup f(Oi, I1, ) + sup f(O,, I1, )
NK NK

sup f(O,, I&l, ) + sup f(O,, I&l, ) sup f(O, I&l, ).

Picking the max of the M{s corresponding to the 0{s completes the proof.

Remark 1. We have actually shown that for fixed 0,

lim b(x + 2e) I,1 sup Re l/Ve(e-ix).

To see this, note that in the previous proof we were concerned with

sup [(b 1)1,1 / a cos (0 + fl
pN K

where
ok(x) ae, ok(e) bea, 2 Ile

or equivalently

ck’(e-x) aei(-a-), ok’(e) b, . -12le.
Since (b 1)121 as I1 , if b # 1, it follows that if b # 1, then

lim sup [(b 1)1i + a cos (0 + )] sup Re ae<-a-).
I1 OeN K

Now from the argument in Lemma 3.2, it is easy to see that for each e > 0
there exists an M so that

I(x + e) -I1 sup Re W(e-x)l < for all I1 > g.

Remark 2. The arguments in Lemma 3.2 also show that for 2 re,
lim IIx + ell -I1 sup Re W(e-x).

Returning to our proof, define

g() inf {Re (x) + Re 2(e) + p(x + 2e)}
and

gM(b) inf {Re b(x) + Re 2b(e) + p(x + 2e)}.
IXl =M

Lemma 3.2 showed that if Mn is an increasing sequence diverging to infinity,
then tTM, converges uniformly to t7 on U(X*). Since it is easily seen that
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is w*-continuous for each M,, (.), as a uniform limit of continuous functions,
is itself a w*-continuous function. Thus by the Alfsen-Effros theory

0 B(x + ;re, p(x + ,e))c J O.
xc

We now complete the proof of Theorem 3.1. In [7-1, the following charac-
terization of the numerical range of an element x of a Banach algebra was given"

THEOREM [7]. Let p be a complex number. Then, p W(x) if and only if
IP ’l < Ilx gell for all complex 2.

The proof of this theorem depends on the fact that limt_. (llx + tell t)
sup Re W(x) which is what we established for our more general case. We now
complete the proof of the theorem. Let Jo [’]xc B(x + ,e, p(x + 2e))c J.
Clearly W(x) W(x +jo). Now let pW(x +jo). By the preceding
argument, we have

IP- ,l < IIx + Jo 2ell p(x- e) Ilx- 2ell for all 2 e C,

which implies p W(x). This completes the proof of the theorem.
We now consider the case in which W,(x) is a line segment. Here we must

limit ourselves to certain Banach spaces. By an example to be discussed later,
it will be seen that the conditions to be given are essentially necessary.

Let X be a complex Banach space with a norm closed real-linear subspace Xh.
Further suppose that X has the following properties:

(i) X Xh iXt.
(ii) If x, y Xh then IIx + iyll >- max (llxll, YlI).
(iii) Xh is a complete order unit space with order unit e.
(iv) If x Xh and 2 e R then IIx + i&ell Ilxll + &z,

Examples of such spaces are

(i) a C*-algebra with identity, and
(ii) the space At(K) of continuous complex-valued affine functions on a

compact convex set K.

Under these assumptions we have the following"

THEOREM 3.2. Suppose x X has the property that W(x) is a line segment in
C. Then there exists z x + j X such that W (z) W(x) and IIz Ilxll.

Proof The proof proceeds in a series of lemmas.

LEMh 3.3. {qb 6 X*: b(e)= I111 1- { X*: I111--- 1, _> 0.

Proof Suppose (e)- I!11-- 1 and that there exists x Xn such that
qb(x) g + i/ with/ : 0. Then for all e R, we have

I(x + ige)l z < IIx / i,ell Ilxll ’ / ,
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and
[(x 4. iAe)[ 2 Z2 4. ,2 4. 2Aft 4- 2

so that 22fl < I[xll 2 (x2 2, which is a contradiction. Hence (x) is real
for x e Xh. Let be the real-linear restriction of to Xh. Then (e)ll
and hence >_ 0 by Proposition II.1.3 of [1]. Thus >_ 0 and IIll 1,

Conversely, suppose that >_ 0 and IIll- 1. Let be the real-linear
restriction of to Xh. Clearly, IIll -< 1. Define : X R by

(x + iy) (x) for allx, yeXh.

I(x + iy)l Iq4x)l < II011 Ilxll < I111 IIx //yll

by (ii). Hence IIl]- IIll. Define O’X--, C by O(x)= )(x)- i)(ix) for
x e X. It is well known that 0 is complex-linear and that I]011 [li/Tll. If x Xh
then O(x)= )(x)= O(x) ok(x) and hence 0 b. Then I111 II011
IIli I111 so that [1011 1. Hence by Corollary II.1.5 of [1]. O(e) and
so b(e) 1. It follows that I111 (e) 1.
LetS= {4eX*:O >0andllll
LEMMA 3.4. Let N be a w*-closed L-ideal in X* with complementary set N’.

Then S cony ((N m S) w (N’ m S)).

Proof Suppose s e S with decomposition s n + n’ such that Ilsl[
Ilnll / IIn’ll. Then

IIs(e)ll s(e)- n(e)+ n’(e)< Ilnll / IIn’ll 1.

Hence n(e) Ilnll and n’(e) IIn’ll.
Then it follows that

n__ (e)
Ilnll

=1

Assume n and n’ are unequal to zero.

and (e)

Thus n/llnll and n’/lln’ll are in S, and s is the convex combination Ilnlln’/llnll +
IIn’lln’/lln’[I. This completes the proof.

We now proceed with the proof of the theorem. There exist 2 C and
0 R so that e(x + 2e) y has the property that y(S c N) c R is a line
segment symmetric about the origin. Let y have decomposition Yl + iy2.
Then y y on N c S and hence on N. In view of Lemmas 3.3 and 3.4, it
follows that X can be isometrically identified with

IS] {6 e x*: cb(xo = },

and that N m i-S] and N’ IS] are complementary real L-ideals in X. By
the real Alfsen-Effros theorem there exists a g Xh such that
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since N c U([S]) conv (N c S) w (-(N c S)) and yl(N S) is sym-
metric. Now# =yx on Nand#(S) =yx (NS). Then9 =Y on Nand
#(s) =y(NcS). Let z e-i#- e. Then z(S) x(NcS) and z x
on N. It remains to show that Ilzll Ilxl x, ll. By construction there exist
qb N S and qt e -(N c S) such that Ilgll (g) -q(g). Let ei2
+ ifl. Then

Ilzll 2-- I1- e- i/el12- IIt- ell 2 +
Clearly, depending on the sign of e, either Ib(# ee)l or IO(g e)l is equal
to I1 ell. Without loss of generality suppose it is qS. Then I(z)l
Thus lie I(z)l I(x)l <_ Ilxl x, and the reverse inequality is clear.
Combining Theorems 3.1 and 3.2 leads us to the following:

THEOREM 3.3. Let X satisfy the hypothesis of Theorem 3.2 and let We(x),
W(x) be the numerical ran#es correspondin# to the units e + j and e. Then there
exists a perturbation of x, x + j where j J, such that W(x + j) We(x), and
furthermore IIx / ill d(x, J).

4. Remarks and open questions

In [6], Stampfli showed that for any bounded linear operator T on a complex
separable Hilbert space H, there exists a compact operator Ko so that

a(T) =_ ( a(T + K)= a(T + Ko).
K C()

Now it is well known that C(/-/) is a complex M-ideal in the C-albra B(H).
In I-?-, it was shown that Wo(T) W(T) where Wo(T) is the usual numerical

ranB. In addition it was shown that We(T) (c(u) W(T + K). Com-
binin these remarks with Theorem 3.3 ivs the followin
COROLLARY 4.1. There exists a K C(H) such that W(T + K) We(T)

od IIT / K IIT II.
We next iv an example to show that the hypotheses for Theorem 3.2 are

not superfluous.

Sxample 4.1. There exists an M-ideal J in a Banach space Z and elements
x Z for which there exists no extension x + j such that We(x) W(x + j).

Proof. Let Z A(D), the disk algebra on the unit disk D. It is well known
4-] that the }P/-ideals of Z correspond to {x: x(z) 0, z K} where K is
closed set of LebesBu measure zero on the unit circle. Let K {z, z} be a
two point set on the unit circle. Let x A(D) such that x(z) # x(z.). It is
easily seen that the state space of Z/J consists of conwx combinations of
&=,( ) and &==( ) whereas the state space of A(D) includes {&=( ): z D}.
Clearly We(x) is a line segment. If there existed an x x + j, j J, so that
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W(x + j) W(x), then the fact that the nonconstant analytic functions are
open maps would show that x + j constant. But x(zx)- x(z2), a
contradiction.

Remark 1. By [5, prob. 10 p. 289], it was observed that A(D) may be

equipped with an involution f*(z) f(). However assumption (iv) is seen to
fail for the self-adjoint element f(z) z.

Remark 2. By Theorem 3.2, if We(x) has a nonempty interior then there
exists a j J so that W (x + j) We(x). Viewed as a result in approximation
theory, this says that if We(x) has nonempty interior then there exists a best
approximationj to x from J, so that x + j has minimal range among all possible
functions of the form x + j, j J.

Remark 3. Let K be a compact convex set with closed split face F [1]. Then
Theorem 3.3 implies that given a Ac(F), there exists a e Ac(K) such that

(i) a =SonFand
(ii) a(F) (K).
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