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1. Introduction

Let X be a Banach space and X*, X**, X***, and X(4) the successive dual
spaces. We denote by Jo, J1, and J2 the natural embeddings of X, X*, and X**
into X**, X***, and X<4) respectively. When no confusion can result we shall
omit these maps and write, for example, x X**’to mean Jo(x) X**.
Among the consequences ofa result of Dixmier [5] is the fact that if x** X**

then

IIJ2(x**) J*(x**)ll > dist (x**, X).

It is easy to verify that

S2(x**)lx. d’*(x**)lx.
and so if x**(x*) 1 where ]Ix** l[ Ilx* ]l 1 and x** X, then d(x*) has
two distinct norming elements in X4). Since by a famous theorem of James
[8], [9] such an x** and x* must exist if X is not reflexive we have that if X is
not reflexive then X*** is not smooth and X) is not rotund.

It is clear from this formulation of Dixmier’s theorem that reflexivity is
implied by a condition on X weaker than X*** smooth, involving only the
behavior of X* in X*** and X in X**. This suggests the possibility of studying
geometrical properties of Banach spaces determined by viewing the spaces as
subspaces of their second duals. In this paper we define several such properties
and explore the connections among them and other geometrical notions.

Section 2 contains various background information. In particular we examine
Dixmier’s theorem in a little more detail with a view to motivating the definitions
which are taken up in the later sections.

Since our properties are defined using the second and third dual spaces, the
fact that B (the unit ball of X) is weak* dense in B** (the unit ball of X**) and
Helly’s theorem are used extensively. Particularly useful is the elegant com-
bination of Goldstine’s theorem and Helly’s theorem expressed in the principle
of local reflexivity [12]. A version of this result due to Dean [3] is stated in
Section 2.
One of the principal themes of this work is the exploitation of the observation

that there is a dichotomy of geometrical conditions determined by which
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variable of the difference quotients defining the derivative of the norm is
uniformized. Thus dualities of geometrical conditions fall into two groups such
as "Fr6chet differentiable norm" and "locally uniformly rotund" on the one
hand and "uniformly Gateaux differentiable" and "uniformly convex in each
direction" on the other. A tool for obtaining such pairs of dualities are ele-
mentary inequalities which were used by Lindenstrauss [11] in studying (UR)
and (US) spaces. These are given in Section 2.
A second main idea is that uniform conditions on the geometry of X induce

uniqueness conditions on the properties of X in X**. Both local reflexivity and
the inequalities are used to obtain results of this sort.

In Section 3 we define three related conditions: X very smooth, X very rotund,
and X Hahn-Banach smooth all of which are taken more or less directly from
the statement of Dixmier’s theorem. The main results concern uniform geo-
metric conditions which imply these properties and the connection between
these properties and reflexivity and the Radon-Nikodym property.

Scattered throughout this section are various remarks and examples concern-
ing the extent to which the implications can or cannot be reversed. However,
we break with custom and do not collect what we have been unable to prove or
give a counter-example for in a section of problems and questions. The open
problems and missing counter examples are obvious.

It should be mentioned that these properties are all "isometric" conditions
(i.e., not preserved under isomorphisms) although they do imply isomorphic
conditions like the Radon-Nikodym property. It is possible to define an
isomorphic smoothness condition dual to the Radon-Nikodym property [17]
and we hope to deal with the "second dual" version of this elsewhere.

In Section 4 we switch to the "other variable" to define conditions Xextremely
smooth and X extremely roiund and carry out roughly the same program as in
the previous section for these properties. Results here, however, are somewhat
less complete probably reflecting the comparative dearth of information about
properties related to uniform Gateaux differentiability of the norm.

In Section 5 we change the point of view slightly and consider a condition
on X which is equivalent to strong rotundity properties in X*. This is a
strengthening of Vlasov’s necessary and sufficient condition on X’ for X* to be
rotund [19]. We characterize this property in terms of rotundity of the dual
and the smoothness properties of Section 3. Combining the results of this
section with those of Section 3 we obtain a necessary and sufficient condition
for a Banach space to have a separable dual space.

In all we consider five new geometrical properties and the relations among
them and various previously defined properties. In an effort to minimize the
possibility of confusion we summarize some of our main theorems in Section 6
in the form of charts of implication, in some sense these charts (especially the
second) can be considered to be one of the main results of this paper. We wish
to thank the referee for suggesting this form of presentation and for improving
Lemma 5.2.
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2. Preliminaries

It will be convenient for us to regard an arbitrary Banach space as a subspace
of its second dual. Thus, in particular X*_ X*** and in fact X***=
X*0) X+/- as is well known. Moreover, for x X* and xl X+/- we have
IIx* + xll > IIx*ll because X* is the range of the contractive projection
JJ on X***.

Passing to dual spaces we have that X(* X** X*x where X** is the
range of J2J*. However, we can also write

X(* X-x X*+/- where X+/-- is the range of J*J (JJ)*.
Dixmier [5-1 proved that X** c Xx+/- X so that, if X is not reflexive, X*x is
the null manifold of two distinct contractive projections. This implies that X(*

is not rotund [1-]. In fact, for any norm-I x** X**, the line segment joining
the norm-I vectors J*(x**) and J2(x**) x** lies on the surface of the unit
ball of X(*. As was mentioned earlier it can be shown that J*(x**)-
x** e X*+/- and if x** X, the vectors are distinct.

Hence, if X is not reflexive there are vectors x** and x*+/- #- 0 with

[Ix** + x*+/-[1 [Ix**[I 1

so that x**[x, has two distinct Hahn-Banach extensions. Moreover, from
James’ theorem [-9] we can even find vectors such that

IIx** / x*Zll- 1 (x** -!- x*+/-)(x*) x**(x*) IIx**ll- IIx*ll,

so that J(x*)e X*** is a norming element for both x** and J’*(x**). The
exclusion of this condition will provide the starting point for our definition in
Section 3.
The principle of local reflexivity is due to Lindenstrauss and Rosenthal and

states, roughly, that the natural map Jo’X--* X** can be inverted on finite
dimensional subspaces of X**. The precise statement of this result which we
will use is due to Dean [3].

PROPOSITION (Lindenstrauss, Rosenthal, Dean). Let A X** and F X*
befinite dimensional subspaces and let 0 < & < be arbitrary. Then there exists
a linear map T: A --} X such that"

(a) T(a) a for all a A c X.
(b) .f(T(a)) a(f) for all a A andf F.
(c) For all a A (1 i)Ilall <- liT(a)II -< (1 + O)Ila II.
In order to discuss various smoothness conditions it will be convenient to

use the following notation. For x, y X let

p(x,y) IIx / Y ll / IIx- Y ll- 2.

In this terminology a smooth Banach space is one for which

lira p(x, 2y)/2 0 for all Ilxll and y X.
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The notion of smoothness can be strengthened in at least two ways. We say
that X has Frdchet differentiable norm if for each [Ixll 1,

lim p(x, Y)/II Yll 0,

in other words the rate of convergence is independent of the direction y. If, on
the other hand, we uniformize in the first variable we say that X has a uniformly
Gateaux differentiable norm if for each Ilyll 1,

lim sup p(x, 2y)/2 0.
-,o llxll

The following inequalities are elementary and follow from rearranging terms.
For x, y X and {Ix* Ily* 1,

p(x, y) >_ (x* + y*)(x) + (x* y*)(y) 2.

For each x*, y* e X* and e > 0 there exist I[x]l ]IYl] 1 such that

p(x*, y*) < x*(x + y) + y*(x y) + e 2.

These basic inequalities will appear in various guises in the sequel.

3. Very smooth spaces

The discussion of Dixmier’s Theorem at the beginning of the previous section
suggests the following definitions"

(a) A Banach space X is said to be Hahn-Banach smooth if in X***,
IIx* + xZll IIx*l[ 1 implies that x 0. In other words x* X*** is
the unique Hahn-Banach extension of X*lx.

(b) X is said to be very smooth if each x s S has a unique norming element
in X***.

(c) X is said to be very rotund if no x* e S* is simultaneously a norming
element for some x e S and x** e S** where x** Jo(x).

The following implications are obvious and summarize the observations
made earlier.

LEMMA 1. (1) IfX* is very rotund then X is very smooth.
(2) IfX* is smooth then X is very rotund.
(3) IfX* is very smooth or Hahn-Banach smooth then X is reflexive.

Generalizing somewhat a result of [1] we have:

THEOREM 2. For X a Banach space the following are equivalent"
(1) X is very smooth.
(2) For each x S and y** S** lim.o p(x, 2y**)/2 0.
(3) Each closed subspace ofX is the range ofat most one contractive projection

in X**.
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Proof. Suppose that I" is very smooth. Since the norm is a convex function
for each x S and y** S** we have that

n+(x, y**) lim IIx / Ay**ll
exists.

0

Moreover, a simple application of the Hahn-Banach Theorem as in [6, Ch. 5]
shows that for each c, if -n/(x, -y**) <_ c <_ n/(x, y**) then there exists an

IIx***ll 1 with x***(x) 1 and x***(y**) c. Hence, we must have that
-n/(x, -y**) n/(x, y**) which is condition (2).
Assume now that condition (2) holds so that for each x S the map y** -n(x, y**) is a norm one linear functional in 1"***. By the reasoning of [1!, if

E: 1"** -* 1"** is any contractive projection with range a closed subspace of 1"
then for any x** 0,

n(Ex**)(y**) n(Ex**)(Ey**)

for all y** 1"**. If E and F are contractive projections with the same range
M X then for all x**,

n(Ex** Fx**)(Ex** Fx**) 0

because EF F and FE E.
Finally we show that if X is not very smooth then some (one dimensional)

subspace of X is the range of two distinct contractive projections in X**.
Namely if x*** and y*** are distinct norming functionals for some x s S, then

x** x***(x**)x and x** y***(x**)x

are the projections required. Q.E.D.

THEOREM 3. If the norm ofX is Frdchet differentiable then X is very smooth.

Proof. From the definition of Fr6chet differentiability we have that

lim sup p(x, 2y)/2 0 for allxS.
z--,o IlYll-

Goldstine’s Theorem and the fact that the norm in X** is weak* lower semi-
continuous give lim_.o p(x, 2y**)/2 0 for all x e S and y** e S**. Hence,
from Condition 2 of the previous theorem, 1" is very smooth. Q.E.D.

It is known that Co has an equivalent Fr6chet differentiable norm while l
has no equivalent smooth norm [2] so that 1" very smooth is strictly weaker
than X** smooth. We shall give an example at the end of this section to show
that it is possible to have X very smooth but not Fr6chet differentiable. On the
other hand if X is very smooth then X** must possess some degree of smooth-
ness as the following two results show.

LEMMA 4. If 1" is very smooth then X* has the Radon-Nikodym property.
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Proof. Since X is smooth for each x S let n(x) S* denote the unique
functional such that n(x)(x) 1. It is well known that the map n" S S* is
continuous from the norm topology of S to the weak* topology of S*. Now
since X is very smooth this map x --, n(x) can be thought of as a map from S to
S*** and the standard technique shows that n is continuous to the weak*
topology of S*** and hence to the weak topology of S*. Hence n" S S* is
norm to weak continuous. By a result of Diestel and Faires [-4] this implies that
X* has the RadonoNikodym property. Q.E.D.

Note that this implies that while 11 has an equivalent smooth norm it has no
very smooth norm.

THEOREM 5. IfX is very smooth then for each > 0 there is a 6 > 0 and an
x** S** such that p(x**, 2y**)/2 < for all I[Y** 1 and 0 < 2 < 6.

Proof. We shall show that if X** fails the above property then the unit ball
of X is not dentable [-7] and so X* fails the Radon-Nikodym property and
hence, from Lemma 3, X is not very smooth.
By a result of Phelps [15] we need only show that Bx, does not have slices

of small diameter.
Suppose that there is an > 0 such that for any IIx** and 6 > 0 there

is a Ily**[I and 0 < 2 < 6 with

[Ix** + 2y**[[ + [Ix** 2y**[[ _> 2 + 2.

Given any [[x**[] there is a positive sequence (2) decreasing to 0 and
[[y’* 1 with

[Ix** + 2ky’*[[ + [IX** 2kY’*[[ > 2 + 2ke.
* S*For each k let Xk, Y where

(x** + 2y’*)(x) _> [Ix** + &Y’*II-
and

(x** 2y*)(y) > I[x** 2y*[]- 2].
* and y both belong to the 22 / 2 slice of S* determined by x**Clearly x

and so the diameter of this slice is bounded below by [[x’ y’ 1[.
However

(X** + 2ky*)(X) + (X** 2ky*)(y)

> 2(1 A) / k.
Hence every slice fails to have small diameter as required. Q.E.D.

It is immediate (see the corollary to Lemma 5.2) that if X is smooth and
Hahn-Banach smooth then X is very smooth. On the other hand Co in the
usual norm is Hahn-Banach smooth because (l)* is the 1’ sum of 1’ and Co so
that Hahn-Banach smooth does not imply very smooth or even smooth.
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In a recent paper Namioka and Phelps [13] discuss a property they call (**).
For every net (x*) in X*, if

*(x*) x* and

then (x*) x*. In other words weak* and norm convergence coincide on the
unit sphere of X*. Namioka and Phelps show that if X* satisfies (**) then
is an Asplund space and hence X* has the Radon-Nikodym property, and they
ask whether property (**) in X implies that X has an equivalent Fr6chet
differentiable norm. It is clear that if . does not have a Fr6chet differentiable
norm and X* has property (**) then X is not smooth because in a smooth space
the map x n(x) is norm to weak* continuous. Some information in the
positive direction is given by"

THEOREM 6. If X* has property (**) then X is Hahn-Banach smooth.

Proof. Suppose that in X*** we have IIx*ll IIx*+ xll where
IIx+/-ll _> a > 0.
Let E be the two dimensional subspace of X*** spanned by x* and x and

let (F) denote the net of finite dimensional subspaces ofX directed by inclusion.
From local reflexivity we have for each t a linear map T’E X* such that
for each :

(a) Tx* x*.
* r(x* + x+/-).(b) Since x+/- e X+/-, x*(x,) x*(x) for each x e F where x

(c) For each e e E,

(1 1/dim (F))lie -< Te -< (l + l/dim (F))lie II.
Combining (a), (b), and (c) we have that

(x*) x* and IIx IIx
while IIx* x*ll IlT(x)ll remains bounded away from zero. This con-
tradicts (**) in X*. Q.E.D.

It is known that if X* is separable then X has an equivalent norm in which
X* has property (**) and is rotund and hence X has Fr6chet differentiable norm.
The preceding lemma shows that in this norm X is also Hahn-Banach smooth.
This will be used in Section 5 to establish part of a necessary and sufficient
condition for a separable space to have a separable dual space.

Passing now to rotundity we say that X is weakly locally uniformly rotund
(wLUR) if for any sequence (.X’k)tS2 S and x S, if [[Xk + xll 2 then
(Xk) X weakly. A result corresponding to Theorem 3 for the property "very
rotund" is a consequence of:

LEMMA 7. IfX is wLUR then for any

IIx** IIJo(x) 1 tf IIx** + Jo(x) 2

then x** Jo(x).
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Proof. If IIx** + Jo(x)ll 2 where x** + Jo(x) then from local reflexivity
we have a sequence of linear maps Tk: {span Jo(x),x**}--) X such that
TJo(x) x for each k and

1/(1 k) >_ IITx**ll > 1/(1 + )

where (ek) is a positive sequence decreasing to zero. While for some (fixed)
y*S*anda > 0,

y*(Tx** x) (x** Jo(x))(y*) >_ a > 0

since x** :t: Jo(x).
Let x Tx**/llTkx**l[; then we have IIx + xl[--, 2 while y*(x x) >

a > 0 contradicting wLUR in X. Q.E.D.

COROLLARY. IfX is (wLUR) then X is very rotund.

For any set F, Co(F) has an equivalent norm which is (wLUR) but for F
uncountable /(F) has no smooth norm so that implication (2) of Lemma 1
cannot be reversed.
A Banach space Y is said to have property (H) if for all sequences (y),

Yk Y weakly and [[Ykl[ [[YI[ imply that Yk Y, i.e., norm and weak con-
vergence of sequences coincide on the surface of the unit ball. Any smooth
reflexive space X, such that X* fails property (H) is very smooth, but the norm
in X is not Fr6chet differentiable. Mark Smith of the University of Illinois, has
kindly supplied the following example of this phenomenon.

Let I1" 112 denote the usual norm on 2 and consider the new norm defined by

Ilxllo max {1/2 IIx IIz, Ilxll}.

Clearly this is equivalent to II’llz because 1/211" IIz -< I1"11o -< I1" IIz. For (k) an
element of z let T(()) (/k) so that T: z --. 12 is a 1-1 continuous linear
map. Hence the equivalent norm IIIxlll Ilxllo + IITxll is strict convex [2].
We shall show that (l 2, Iii" III) fails property (H) so that

x qz, II1" III)*

is very smooth but not Fr6chet differentiable. Let x (1, 0,..., 0,...) and
for each k let xk (1, 0,..., 0, 1, 0,...) (1 in )he kth place). Then IIIxlll
1 + (1 + like)1/ and IIIxlll 2 so that IIIxlll -" IIIxlll. Also x x. However,
for each x, IIIx xlll I / 1/k which contradicts (H).

4. Extremely smooth spaces

As was mentioned earlier, some of the results of this section are similar to
those of Section 3, except that here we consider uniformizing the Gateaux
derivative in the first variable.
A Banach space is said to be extremely smooth if whenever x***(x**)

y***(x**) 1 where x** S** and x***, y*** S*** then x*** y*** X+/-



HIGHER DUALS OF A BANACH SPACE 323

A Banach space is said to be extremely rotund if every finite dimensional
subspace of X is a Chebyshev subspace of X**.
Note that if X is extremely smooth then X* is rotund so that l has an

equivalent norm which is smooth but not extremely smooth [10], [l 8].
A characterization of the property "extremely smooth" similar to that given

by Theorem 3.2 for "very smooth" is the following:

THEOREM ]. The followin9 are equivalent:

(1) X is extremely smooth.
(2) For each x** S** and y S, limo p(x**, 2y)/2 O.
(3) If two contractive projections on X** have the same range then they

agree on X.

Proof. The equivalence between conditions (1) and (2) is proved by the
appropriate modification of the corresponding part of Theorem 3.2 and will be
omitted.

Hence, assume that X is extremely smooth and that E and F are contractive
projections on X** with the same range. If n(Ex**) X*** is any norming
functional for Ex** then so is E*n(Ex**) and so these functionals must agree
on X. Thus for y X, n(Ex**)(y) n(E**)(Ey). A simple calculation now
shows that for any x X,

I]Ex Fx]l n(Ex Fx)(Ex Fx) O.

On the other hand, if X is not extremely smooth let x*** and y*** be norming
elements for some x** S** which differ on X. Then the maps

y** - x***(y**)x** and y** y***(y**)x**

will contradict condition (3). Q.E.D.

A consequence of extremely smooth concerning the norm to weak* con-
tinuity of the map n can be obtained with the help of the following lemma
which, in fact, characterizes dual spaces of extremely smooth spaces.

LEMMA 2. X is extremely smooth iff for all x** S** and all sequences
(Xk), (Y) S*, lim x**(x) lim x**(y) implies that

Proof. If for some x** S** and y S there are norm-1 sequences (x’)
and (y’) with lim x**(x)= 1 lim x**(y) while I(x’ -Y’)(Y)I remains
bounded away from zero, then if x*** and y*** in X*** are weak* limit points
of (x’) and (y’) we have x***(x**) 1 y***(x**) while

I(x*** y***)(y)[ > O.
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For the converse, suppose that X is not extremely smooth and let (/]’k) decrease
to zero and let x**, y and e satisfy

p(x**, 2kY)/2k >_ e > O.

* S*For each k let (x’) and (y’) be chosen so that x y and

(x** + 2Ry)(x) >_ IIx** + AkYll- 22k
and

(x** )kY)(Y) > [Ix** 2kYl[ A2k
Clearly limk X**(X) limk y** *(Xk). However, using the idea of the
inequalities of Section 2 we have

2 + 2Re 222k < [Ix** + 2kY][ + I[X** ARYl[- 222k
< X**(X + y) + "k(Xk Y)(Y)
< 2 + 2k(X’ y’)(y).

Hence (x’ y’)(y) remains bounded away from zero. Q.E.D.

A similar characterization of very smooth can also be given where the
condition becomes" If Xk (X), y(x) then Xk Y’ O. This is essentially
proved in Theorem 3.5 and reflects the fact that for very smooth spaces the
norming map is norm to weak continuous. The corresponding idea for
extremely smooth spaces is given by the following:

COROLLARY. IfX is extremely smooth then the normint7 map n" S S* has
an extension " S** --. B* which is continuous from the norm topology of S** to
the weak* topology of S*.

Proof If x** S** let (x’)
_

S* be any sequence such that x**(x) 1.
Define (x**)- x* where x* B* is any weak* limit point of (x’). The
previous lemma shows that (x**) is well defined since x* is unique.

** x** and y X is arbitrary.For the continuity statement assume that Xk
Let ek 0. Using the Bishop-Phelps theorem [14] we may assume that for

** such that ** *each k there is a vector y’* S**, close to xk Yk (Yk) Where
y’ (y’*) S*. Now

** .( y*--Xk ( Yk ) Y Y) ( X*)(y)
>_ --Ily’*

and so, using the lemma again, y’* may be chosen so that

*I(x’ y’)(y)[ < ek where Xk

Clearly we may assume that y* x** and so x**(y’) 1. To complete
the argument note that for x* (x**),

I(x* x’)(y)l < I(x* -Y’)(Y)I + [(Y’ x’)(y)l. Q.E.D.
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THEOREM 3. If the norm functional on X is uniformly Gateaux d(fferentiable
then X is extremely smooth.

Proof. Use Theorem and the same argument as Theorem 3.3. Q.E.D.

Recall that a Banach space is said to be uniformly convex in each direction
if for any norm-1 sequences (x,) and (y,), if IIx, + Y,]I -o 2 and x, y,, --. z
then z 0.

THEOREM 4.
rotund.

If X is uniformly convex in each direction then X is extremely

Proof Suppose some finite dimensional subspace of X is not a Chebychev
subspace of X**. This implies that for some IIx** and x 4= 0 we have

x** +(x**-2 x)ll= [’1"*- x,,.

Using local reflexivity we can produce sequences Ilx,][ --* and ]Ix,, x]l
with ]Ix, + (x,- x)]l 2. This contradicts uniform convexity in each
direction. Q.E.D.

For any set F, /I(F) has an equivalent norm which is uniformly convex in
every direction while for F not finite/(F) cannot be made even smooth. Thus
if X* is extremely smooth then (since X** is rotund) X is extremely rotund, but
the implication cannot be reversed.

5. Property V

It is often quite easy to specify conditions on X* which guarantee that X
possesses some desired geometrical property. On the other hand conditions on
X which are necessary and sufficient for a geometrical property in X* lie some-
what deeper. For example it is immediate that if X* is rotund then X is smooth,
but the implication cannot be reversed [10], [18]. In fact X* is rotund iffevery
two dimensional factor space of X is smooth [2]. L. P. Vlasov [19] has trans-
lated this fact into the following useful form"

THEOREM (Vlasov). X* is rotund ifffor every nested sequence

BI
_
B2 B, B.+

of open balls in X with radii increasing and unbounded, the set C1 ([.) B,) is either
all ofX or a half space.

We generalize this to the following stronger property" X is said to have
property V if there do not exist open balls
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with radii increasing and unbounded, and norm-1 functionals x* and (y’)
such that for some constant c

x*(b) > c for allb B..
y(b) > c for allb6B, wheren < k,

and dist (conv (y, y,...), x*) > 0.
Note that if X fails property V and y*** is a weak* limit point of (y’) in X***,

then y*** #: x* but y***(b) >_ c for all b )Bn. By Vlasov’s reasoning [_19]
this gives a nonsmooth factor space X**[L where L

_
X. We shall give a more

precise version of this fact in Lemma 3. First, however, we consider a result
in the other direction.

LEMMA 2. IfX has property V then X is Hahn-Banach smooth.

Proof. Suppose that in x*** we have Ilx*+ x+/-ll 1 IIx*ll where
x+/- 4: 0. We shall use local reflexivity (or really just Helly’s Theorem) re-
peatedly to obtain a sequence of balls and functionals contradicting property V.
Assume that Ilxmll-- 4a where a > 0 and let x**s S** where x+/-(x**) >

IIx+/- 11/2 2a.
Since IIx* there is a sequence (x,) S with x*(x,) > 6, where

6. N 0, 0 < 61 < aand 6. < 1. Notice that we also have (x* + xa)(x,) >
6.

Using Helly’s Theorem we produce a sequence (u’) where for each k,

’(x.) (x* + x)(x.) > a.
for all n < k and x**(u) (x* + xa)(x**) and 1 < Ilu’ll < 1 + di.
We adopt the notation B(r; x) for the open ball of radius r centered at the

point x. Let y* =- u*/llu*ll and

B,.B ((1 +6i); xl +’"+

Clearly r. /" c and from the triangle inequality B. B.+ 1, for each n.
If now y x +’"+ x. u where [lull <_ n + 6i then

x*(y) x*(xl +’"+ x. u)

>-2
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While, for k > n,

*(x +... + x.) {,y(y) > UR n z..,6i

> n-6

>_ (1 26i)- n Eat
m3.

Finally for each n,

[x**(x* y.*)] > Ix**(x*)- (x* / x)(x**)l
-I(x* + x*)(x**)- x**(y.*)l

,-Ixm(x *)1- I(x* / xm)(x**) x**(u*.)/llu. III
> 2a (1 1/[[u, ll)l(x + xS)(x**)l

,> 2a (1 l/l[u,]])
> 2a 6,
> a. Q.E.D.

COROLLARY. IfX has property V then X is very smooth.

Proof From Vlasov’s Theorem, property V in S implies that X* is rotund
and hence X is smooth. Hence, the only possible violation to very smooth is an
equation

IIx* / Xmll- (X* / Xm)(X)- 1 x*(x)= [Ix*ll
However from the previous lemma this is impossible. Q.E.D.

The converse to Lemma 2 and the fact that V implies Vlasov’s condition is"

LEMMA 3. IfX is Hahn-Banach smooth andX* is rotund then XhaspropertyV.

Proof Suppose that B. B(r.; z.) is a nested sequence of open balls with

B(r.; z.) c_ x*-*(-ov, 2) c y’-(-oo, 2

where z**(x* y’) > a > 0 for all k.
A simple calculation shows that. x*(z.) + r. sup {x*(b) b B.}

and since the balls are nested the sequence (/3.) is increasing and, since it is
bounded above by 2, converges.
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We may assume that

Y2’---" Y*, sup (y*(b) lb
and

lim y’(z,) + r# lim sup (y(b) lb B,) <_ 2,
k

so that (#) also converges.
For convenience we assume that B1 B(1; 0) and define a sequence of

vectors w, -z/(r# 1). We shall show that a weak* limit point of this
sequence violates Hahn-Banach smoothness.

Clearly

x*(w,) -x*(z,) r, ft,
r r

and likewise

y*(w,) r, ,
r,-

It is elementary that, since the balls are nested, [[z,[[ < r, 1 and so assuming

W X**
we have

x**(x*) lim x*(w,)= lim y*(w,)= x**(y*).

Since X* is rotund we must have x* y*. Hence, we may assume that

y x*.
Now let y*** be a weak* limit point of (y’) in X***. Because of the condition

z**(x* y’) > a > 0 we have y*** : x*. However [[y***[[ 1 and from
the previous discussion y***= x*+ x+/-. This contradicts Hahn-Banach
smooth. Q.E.D.

THEOREM 4. X has property V iffX is Hahn-Banach smooth and X* is rotund.

Proof. Combine Lemmas 2 and 3 and the observation that property V
implies that X* is rotund. Q.E.D.

THEOREM 5. IfX is separable then X* is also separable iffX has an equivalent
norm with property V.

Proof If X has property V then from the corollary to Lemma 2, X is very
smooth and from Lemma 3.4, X* has the Radon-Nikodym property. Since X
is separable, Stegall’s Theorem [16] implies that X* is separable.

If X and X* are both separable then X has an equivalent norm so that X*
is rotund and has property (**) [14], [20]. By Theorem 3.6, X is Hahn-Banach
smooth and so, from Lemma 3, X has property V. Q.E.D.

6. Summary

In this section we summarize, in the form of charts, the connections among
the various geometrical properties introduced in the previous sections. In order
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tO avoid pages containing a galaxy of asterisks we adopt the following notational
convention" If P is a geometrical property then pk means that the kth dual of X
has P. We write simply P for po. The usual arrow is used to indicate impli-
cation. Thus, in this notation, Dixmier’s Theorem that a nonreflexive space
has a nonstrictly convex fourth dual is stated R4 - reflexive. We also employ
the following abbreviations:

R--rotund (strict convex)
Ssmooth
ERextremely rotund
ES--extremely smooth
UGuniformly Gateaux differentiable
UCEDuniformly convex in each direction
VRvery rotund
VSvery smooth
HBSHahn-Banach smooth
RNPRadon-Nikodym property
wLURweakly locally uniformly rotund
(**)see Section 3
FFr6chet differentiable.

The main results of Section 4 may now be put together as follows"

UG
(b)

UCED

ES (_d) R2 (_e) ER

(a) Theorem 4.3.
(b) This is known. For example, see Day [2].
(c) Theorem 4.4.
(d) Lemma 4.2.
(e) Theorem 4.1.

The results of Sections 3 and 5 are interrelated as follows"

wLUR

R3 (a) S2 (b) VR[(h)
(e) (b)

V <d) HBS and R HBS and S <---) VS

(**)t and R (**)t and S (+ F

(**)
(i)

RNP

RNP
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(a) The fact that Rk+l ---+ Sk is well known.
(b) VR +1 ._ VSk and S + _. VRk are observations made in Section 3.
(c) Theorem 3.6 says (**)’ - HBS.
(d) Theorem 5.4.
(e) This is immediate. Note that from this any smooth, reflexive space has

property V and ’so the example at the end of Section 3 also shows that V does
not imply Fr6chet differentiability.

(f) Corollary to Lemma 5.2.
(g) Lemma 3.4.
(h) Theorem 3.3 and 3.7.
(i) This is known [13].
(j) This’is an observation made in Section 3.

The observations concerning Dixmier’s Theorem made in Section 2 can be
stated in the present notation as HBS reflexive and VS’ reflexive. Also,
it is obvious from Goldstine’s Theorem that (**)2 _. reflexive. Hence, if all
superscripts are increased by one, the two terminal nodes labeled RNP become
"reflexive."
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