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1. The Dedekind q-function is defined by

r/(z) e’a/’2 n (1
n=l

It has a well-defined logarithm which transforms according to the rules

log r/(z + 1) log r/(z) + rci/12, (1)

log r/(-l/z) log r/(z) + 1/2 log (z/i). (2)

The first of these rules is obvious and many proofs have been given for the
second. One of the neatest proofs, which has been given by Weil [8], is to note
that the Mellin. transform of

f(z) niz/12 log r/(z) (3)
is

(s) (2)-’r(s)(s)(s + 1) (4)

where ((s) is the Riemann zeta-function. The functional equation for ((s)
implies that (s) (-s). Also, tI)(s) is regular except for simple poles at
s -t- and a double pole at s 0. The formula (2) follows from these facts
by applying the residue theorem.

Since the transformations z z + 1 and z--l[z generate the full
modular group, repeated applications of (1) and (2) gives a formula relating
log q(az) and log q(z) whenever a SL(2, Z). Dedekind was the first to prove
that if

a=(ac bd) witha, b,c,dZ,c>O, ad-bc= 1,

then

(aZ + bd) (. ) +-----ri- ris(d,c) (5)logr/ logr/(z) + 1/2log
cz + d a + d

cz + 12c

where s(d, c) is the Dedekind sum

s(d, c) . ((2d[c))((2[c)) (6)
2 mod c
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and

((y)) _y- [y] 1/2 if yqZ
[o ifyZ

is the usual "sawtooth" function of period 1.
Since Dedekind, several other proofs of (5) have been given and the sums

s(d, c) have been much studied and generalized (see [5, pp. 438-446]). One
recent proof, given by Goldstein and de La Torr6 [-2] used the functional
equations of certain congruence zeta-functions to generalize the ((s)((s + 1)
proof of (2) to a proof of (5).

In this note a proof of (5) is given in which the role of ((s)((s + 1) is essen-
tially played by L(s, 7.)L(s + 1, ;t) for various Dirichlet characters ;t. The idea
is that the general transformation law (5) for log r/(z) should be a consequence
of "twisted" functional equations related to (2). The approach seems to be at
least superficially similar to that used in Weil’s theorem ]-9] (or see [6, Chapter
V]). It is also related to some recent joint work of the author and L. Goldstein
[4] (see especially Examples 3.2, 3.3, 3.4).

In the course of the proof some functions fx(z) are introduced. These turn
out to be integrals of the third kind for H*/F(N) and may be of some interest
in themselves. They transform according to the rule

fx(z) 7.(d)fx(az) ri 7.(t)s(d tc, No)
rood N

for all Fo(N). The derivatives f(z) are related to division values of
Weierstrass :-functions. This subject will be explored in another paper.

In giving yet another proof (and not a particularly short one at that) for a
well-known formula, one feels obligated to say something about the motivation
behind the proof. In this case the idea is to show that the formula (5) is
equivalent to a collection of functional equations for Dirichlet series with
Euler products. The existence of an Euler product seems to make the technique
susceptible to an adelic interpretation and in this way it may be generalized to
various analogs of log r/for number fields. These functions play a central role
in the development of class number formulas over certain algebraic number
fields (see [3]).
The author would like to thank the referee for his careful reading of this

paper and his useful suggestions for simplifying and shortening the proofs of
Propositions 2 and 3. In particular, he pointed out that Lemma 3 in a recent
paper [7] of Shimura could be used. The author also would like to thank Larry
Goldstein for his helpful comments.

2. Letf(z) be the function defined by (3), let c be a positive integer and let
;t be a Dirichlet character mod c. Define

fx(z) ;t(r)f((z + r)[c) (7)
mod c
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The transformation law (5) is equivalent to the assertion of the following
theorem.

THEOREM 1.

where

If 7. is a Dirichlet character mod c, then

fz(z) (-1)f(-z -1) + rci Z(v)s(v, c) + fix(z)
rood

(8)

Now let (z- d)/c. Then

az + b -z -1 + a
az and z= cz + d.

c,+d c

(c) L modc Z rood
,(-d).(v)s(v, c)

+b(c) (c(Z+Z-X)+ 1/21og())] (11)

zi
(z + z -) (.)-rcis(d, c) + + 1/2 log_

fix(z)= {:(c) n(.c(Z+Z-1)+1/21og) ifxisprincipal (9)

if is nonprincipal.

Most of this note is devoted to a proof of Theorem 1. But before proceeding
with this proof, it will be shown that Theorem implies the transformation law
(5). The converse is also easy and may be seen by simply reversing the steps.
As a first step, observe that the character sum in (7) may be inverted to give

f(z + n) .(n)f(z) (10)
c (c) mo

where the sum is over all characters Z mod c and n is any integer which is
relatively prime to c. Next let

o__(ca
Then, by (10),

,(Z- d_f(.-z-t+a_ =__1 (g(_d)fz(z,_ x(a)f(-z-t)).

Since ad + bc 1 (rood c), z(a) (- 1)(- d). Thus,

f(z d_ f(,-z-t + ( d)(fz(z) z( 1)f(z-t)).
k )k/CC (C) x mod

But by Theorem 1, the above expression is equal to
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Plug into the above formula to get

ni
(d+ a) + (z- ax) + 1/2log cz....+ d

f(z) f(az) rcis(d, c) + -c -Since log r/(z) rtiz/12 f(z), the transformation law (5) follows immediately.
Theorem will be proved by proving a functional equation for the Mellin

transform of fz(z). This functional equation is a direct consequence of the
functional equation of L(s, 7.).

If X is a Dirichlet character defined mod c, the Gauss-Ramanujan sums
Zk(;t; C) are defined by

Zk(); C) )(r)e2’ak’/c (k e Z). (12)
mod

The function f(z) has a Fourier expansion

f(z) a_ (k)e2"k (13)
k=l

where a_ l(k) }2alk d-1. It is now an easy consequence of the definition (7)
that fx(z) has the Fourier expansion

fz(z) k(Z; c)a-l(k)e2"k’/c. (14)
k=l

It is now easy to write down the Mellin transform offx(z). It is

F(s, )(,) (2z/c)-W(s)(s, x) (15)

where b(s, Z) is the Dirichlet series

cD(s, 7.) "Ok(7.; c)a-(k)k-. (16)
k=l

By Mellin inversion,

fg (z/i)-F(s, ;t) ds. (17)L(z)

Thus, Theorem is a routine consequence of the following theorem about
F(s, ) (see, for example, [4] or [6]).

THEOREM 1’. (a) F(s, )) X(-1)F(-s, ;).

(b) F(s, )O rci 7(v)s(v, c).
1

mod S

s+l 1))
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is an entire function and is bounded (uniformly) in vertical strips. (6x 0 if X is
not principal and fix ifX is principal. Thus, usually, F(s, Z) only has a sinyle
simple pole at 0.)

Theorem 1’ will be proved by expressing b(s, X) in terms of Dirichlet L-series
for which the functional equation and the residues are well known. Since the
theorem is needed for arbitrary characters, and the functional equation of the
L-series is nice only for primitive characters, it is necessary to relate g to
the primitive character inducing it.

Let g be a character mod c. Then c =/N where is the conductor of the
primitive character .1 which induces mod c and

X(m) xl(m) la(d) (m Z) (18)
a (m, N)

where # is the Mdbius function. This notation is usedfor the rest of this paper.

The proof of Theorem 1’ will be broken up into three propositions. Proposi-
tion is the crucial one and will be proved following the statement of the three
propositions.

PROPOSITION 1. Let Z be a primitive character modulo its conductor le. Let
z(Z) *t(X, ) denote the usual Gauss sum attached to ..

(a) b(s, Z) z(.)L(s, .)L(s + 1, ).
(b) F(s, X) X(-1)F(-s, ).
(c) If X is nonprincipal (/e > 1) then F(s, Z) is re#ular except possibly for a

simple pole at s 0 and

Res F(s, Z) ds niL(O, z)L(O, .).
s=0

(d) If Z is principal ( 1) then

1 rr(lF(s) + +-
is entire.

s+l

PROPOSITION 2. Let

H(s, X) #(d)#(e).(d)(e)a(c/lCde)d-’es
de lc//

where a (k) -,n k d. Then

(a) b(s, Z) (clt)-’(s, zt)H(s, Z)and
(b) F(s, .) F(s, zi)H(s, Z).

PROPOSITION 3. (a) If Z is nonprincipal (1e > 1), then

X(v)s(v, c) H(O, z)L(O, z)L(O, ).
rood
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(b) If X is principal (/e 1), then H(O, X) gp(c) and H(+_ 1, X) (c)/c.

It is easy to see that Theorem 1’ is a direct consequence of Propositions 1, 2,
and 3. First, Theorem l’(a) follows from Propositions l(b) and 2(b) upon
noting that

H(s, X) H(-s, .) and X(-1) (-1).
Second, Theorem l’(b) follows from Proposition 2(b) and Propositions 2(c)
and 3(a) (respectively 2(d) and 3(b)) if is nonprincipal (respectively : is
principal).
The proofs of Propositions 2 and 3 are purely combinatorial in nature.

These propositions merely serve the purpose of reducing the proof ofTheorem 1’
to the case of a primitive character which is handled by Proposition 1. Never-
theless, these proofs are fairly complicated and will be given in Section 3. On
the other hand, the proof of Proposition is quite easy. It depends directly on
the functional equation of the Dirichlet L-series L(s, ) for a primitive character
g mod . This functional equation is stated below, for convenience, in an
asymmetrical form.

L(1- s, )-
i2- (2 F((s + e)/2)F((-s + e)/2)L(s, Z) (19)
<x) k/] r(-s + )

where e 0 or 1, respectively, according as (- 1) + or 1, respectively.

Proof of Proposition 1. (a) Since Z is primitive, z(Z) (k)(Z) for all
integers k. Thus by (16),

(s, z) E (z)-x(k)k
k=l

(z) E (k)-(k)k
k=l

z(z)L(s, )L(s + , ).
(b) By (15),

(s, z) r(s)(s, z) r(s)(z)(s, )(s + , ).

Thus, by (19), applied to L(s + 1, ) L(1 (-s), ),

F(s, Z) F(s)z(z)L(s, )

(2;) F((-s + e)/2)r((s+ e)12)L(-s,x
r(s + )

Since e 0 or 1, F(s + e) sF(s) and so

(.) ( )F(s,x)-
s"

r -s+, r S +, (s,)(-s,). (o)

Since (- 1)" (- 1), F(s, 2) X(- 1)F(-s, ).
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(c) If X is nonprincipal, L(s, X) is entire. If 0, the zeros of L(s, ) and
L(-s, Z) cancel the simple poles of F(-s/2) and F(s/2) at the even integers so
that F(s, .) is entire. If -1, the zeros of L(s, ) and L(-s, )0 at the odd
integers cancel the poles of F((-s + 1)/2) and F((s + 1)/2) but an extra simple
pole with residue niL(O, x)L(O, ) is introduced by the factor s-t. Observe that
if 0, L(0, )0 0 anyway, so the assertion follows.

(d) If Z is principal, F(s, )0 1/2F(- s/2)F(s/2)(s)(- s), where (s) is the
Riemann zeta function. Thus (d) follows from standard facts (functional
equation and ((0)= -1/2) about the zeta-function. (See i-7] or !-6, p. 1-44]
or [4].)

3. In this section, Propositions 2 and 3 are proved. As mentioned above,
the proofs are combinatorial rather than analytic. The formulas for non-
primitive characters follow formally from those for primitive characters. The
lemma below, which is used in both proofs, is a slight generalization of the
lemma of Shimura I-7, Lemma 3] referred to in the introduction. Indeed, in
the proof of Proposition 2, Shimura’s lemma appears as (22) and the analogous
formula in the proof of Proposition 3 is (25).

LEMMA. Let Xl be a primitive character with conductor. Let N be a positive
integer and let ) be the character mod/N induced by ). Let g(y) be a periodic
function ofy with period and let k be an integer. Then

x(m,# m(_.)mod [N

( kd (k X Zl(fl) X a kN N)dN"(d)Zl(d)’ (NZ)] ,mod, ,modN/(kd, N,

Proof.

7.(m) g m(__)rood

(m nd)
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Proof of Proposition 2. It is easy to see that (b) follows directly from (a).
To prove (a), apply Lemma 1 with y(y) exp (2rciy) to evaluate the Gauss-
Ramanujan sum Zk(X; C). Use the standard identity

exp2ri(..,,y,,+) {;2r if r= 1. (21)
modr r if r >

Thus, if z(Xl) zl(X;te) is the usual Gauss sum,

Now,

b(s, ;) zk(Z; c)a-(k)k
k=l

"c(z,)N d -lla(d)z(d)(kd/N)a_

z(,)N d -’(d)z,(d)(N/d) ,(n)a_,(nN/d)n
din n=l

z(z)N -’ d-av(d)x(d)d i(n)n
din

x e-iv(e)a_ i(n/e)a_ (N/de)
el (n, N/d)

,(x)N -" d-(d)(d)d" E e-v(e)a_ (N/de)x(e)e-"
din elN/d

x (m)a_(m)m
m=l

z(Zi) i(m)a_i(m)m- N- E v(d)v(e)x(d)(e) dm=l delN

x a_ l(N/de)de

N-(s, .,)H(s, .).

ProofofProposition 3(a). The key fact is the following version of Dirichlet’s
class number formula. If ;t is a nonprincipal character whose conductor divides
c then

L(O, 7.) Z(v)((v/c)). (23)
rood

For primitive ;t with conductor c, this is an immediate consequence of the usual
formula for L(1, ;t) (see [1, p. 336]) and the functional equation (19) for L(s, .).
It is easy to see that it is valid even if X is not primitive or if c is not equal to the
conductor.
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Now apply Lemma with g(y)= ((y)). Instead of (21), use the easily
verified identity

rood
(24)

This gives

mod IN

Then,

mod
].(m)s(m, c)

E
m, k mod IN

=-L(O, 7.,) v(d))(.,(d)
d N k mod/N

=-L(O, X,) Z p(d)7.(d) Z b
din blN/d

,1 ((k, k N k

k k/b
k modN
(k,N/d)=b

(b (k, N/d))

-L(O, ),) Z p(d))(,(d)b Z
bd N mod lCN/b ((-It;b)) la(e))l(r)

(r.N/bd)

(r k/b)

-L(O,z,) Z
bde] N

p(d )x (d)p(e). (e)b
,mod/N/be N/b

L(O, z1)L(O, ) de[NE la(d)la(e))(.,(d),(e)a, (’e)
L(O, 7.,)L(O, ,)H(O, 7.).

(t r/e)

(by (23))

Finally, the proof of 3(b) is a simple combinatorial manipulation and is
omitted.
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