
A CHARACTERIZATION OF PSL(4, q), q EVEN, q > 4

BY

PETER J. LAMBERT

1. Introduction

We prove the following result"

THEOREM. Let G be a group with the same character table as PSL(4, q),
q even, q > 4. The G - PSL(4, q).

The argument hinges on properties of G derived from the class algebra in
Section 3 which, taken in conjunction with Suzuki’s work on (C)-groups in
I-8] and [9!, enable us to obtain three subgroups of G isomorphic to SL(2, q)
satisfying the conditions of K. W. Phan’s characterization of special linear
groups in [7].
The theorem has already been proved by different methods when q 2

(PSL(4, 2) As; see [4]) and when q 4 (see [6]). In the present proof, all
results up to and including (6.1) can be obtained for the case q 4 with a little
extra difficulty. But Phan’s theorem in [7], which excludes the case q 4, is
not so easily adaptable.
The reader is referred to Section 2 of !-4] where techniques of obtaining

group-theoretical information from a character table are discussed: results
2.1-2.8 in [4] will be used frequently in the present paper and will be referred
to henceforth as A2.1-A2.8. Most of the notation is standard; if g G then
o(g) denotes the order of 9 and if n is a positive integer then n(n) denotes the
set of primes dividing n.

2. Products of transvections in SL(4, q)

A transvection in SL(4, q) is a conjugate of

The q nonidentity elements in the center of the Sylow 2-subgroup
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of SL(4, q) are all transvections. One can verify the following statement con-
cerning the class algebra of SL(4, q) by vector space calculations of the kind
exhibited in Section 2 of [-5].

(2.1) There are q / 2 nonidentity classes of SL(4, q) containin9 products of
two transvections, represented by the elements

cz+l

The number of ways in which the element
0 aeGF(q).

can be expressed as a product of two transvections is q + N, where N, is
the number of solutions in GF(q) of the quadratic equation x2 + ax. + O.

3. The class algebra of G

By A2.8, G and PSL(4, q) SL(4, q) have isomorphic class algebras. In
particular, if rg is the class of G corresponding in the character table to the class
of transvections in SL(4, q), and if , .L,, /(t GF(q)*) correspond to the
respective classes of the other elements listed in (2.1), then

cg2 {1} w cg w w 5’ w {’, E GF(q)*}

and if z= e ,///,(= and rg then

#(z, tt)o q + N,.

The following table is compiled by computing the orders of the elements of
SL(4, q) listed in (2.1), and their centralizers, and using A2.3 and A2.5:

Primes dividing order
Class Centralizer order of an element

cg q6(q 1)(q 1) 2
qS(q2 1) 2

.Z’ q4(q 1) 2
t’ q(q2 1)(q l)(q + N,) odd

It is evident from centralizer orders and a remark in Section 2 that rg is the



A CHARACTERIZATION OF PSL(4, q), q EVEN, q > 4 257

only class of G containing 2-elements central in Sylow 2-subgroups of G;
therefore cg contains involutions.

3.1) For each o GF(q)* the element z, ///l, has the same order as

1 oq-1

and is conjugate to its inverse but to no other power of itself.

Proof In SL(4, q) the classes of elements of odd order which are products
of two transvections are in 1-1 correspondence with the distinct classes of
elements of odd order in the subgroup

SL(2, q).

Each such element lies inside a cycle of order q _+ and is conjugate to its
inverse but to no other power. Further, elements of a given odd order generate
conjugate cyclic subgroups.

Consequently, once we establish the orders of the elements z, GF(q)* it
will follow from A2.6 that each is conjugate to its inverse but to no other power.

ra raLet e _+ and suppose q + e riP,2 ..pr. It is enough to identify
the orders of the pi-elements in r2 for each i. The orders of the elements of
composite order can then progressively be determined using A2.7.

Suppose the element

of SL(4, q) has order q + e and let o(za) n. If zt tlt2 is a solution of the
equation (za tt)G then (tl, t2) D2, contains n solutions, whence
n < q + e. ByA2.5, n(n) 4: n(q + e). Nowz+1 zaandbyA2.6,

fl+l

is conjugate to its (n + 1)st power, whence n - 0 or -2 mod q + e. There-
fore n q + e. Thus we identify the order of the prpart of z for each i. It
follows from A2.6 and previous remarks that the classes of p-elements in cg2
form a orbits under the action of field automorphisms on the character table,



258 PETER J. LAMBERT

and that the elements in each orbit have the same order as they generate con-
jugate cycles. If we number the orbits so that the jth orbit contains elements
which in the SL(4, q) case have order p then we have

(i) the ath orbit contains elements of order a,
Pi and

(ii) an element in the jth orbit is not conjugate to its (p’ + 1)st power if
k < j (A2.6).

In view of this there is only one way to assign orders to the orbits and the result
is proved.

(3.2) Let N be a subgroup of G all of whose 2-elements lie in c. Then a
Sylow 2-subgroup ofN is either normal or a T.I. set. In the latter case, N has a
single class of involutions.

Proof. We may assume that N has two distinct Sylow 2-subgroups V and
14/’. Suppose V Wc is not empty. Ift V Wc c and v
w W c and o(vw) k then (t, v, w) D2k or D2k X Z2, the former
only ifk 4and (vw)2 t. Ifkis odd, t(vw) (tv)w2 has twice odd
order, a contradiction. If k is a power of 2 then by hypothesis vw c and
V, W commute, a contradiction. Therefore V and 14/’ intersect trivially. Let
x, y e N c . If o(xy) is odd, then x is conjugate to y in (x, y). If not, then
(x, y) is contained in a Sylow 2-subgroup T of N. Let z N \T. Then x
is conjugate to z in (x, z) and z is conjugate to y in (z, y). It follows that all
2-elements in N are conjugate in N.

4. A subgroup of G isomorphic to SL(2, q) x SL(2, q) x Zq_,
There is a self-centralizing element A in GL(2, q) of order q2 which is

conjugate to Aq but to no other power of A. Let # belong to the class in G
corresponding in the character table to the class in SL(4, q) of

where 2 (det A)-. By considering the centralizer in SL(4, q) and applying
A2.3 we have IC()I q(q 1). Now

commutes with the transvection
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Hence by A2.7 there exists commuting with g and the class of gt corre-
sponds to the class of

It follows that IC(t)l q(q 1).

(4.1) The order ofg is q2 and Ca(g) L1 x (g) where L1 SL(2, q).

Proof. If o(g) n then, by A2.5, n(n) n(q
also haven[q 2 1. Sinceg"+l g,

is conjugate to its (n + l)st power (A2.6).
follows that n q 1.

Since

2_ 1). As g Ca(gt) we

Therefore n + q or q2. It

commutes with transvections but no other 2-elements in SL(4, q), the 2-
elements of Ca(g) lie in cg (A2.7). By (3.2), a Sylow 2-subgroup of Ca(g) is
normal or a T.I. set. Since

IC(o)" C6(ot)l qZ
the latter is true and Ca(g) has q2 1 involutions. It follows that in C"
Ca(g)/(g) (of order q(q2 1)) there are. q + trivially intersecting Sylow
2-subgroups. By a result of Suzuki in [8-1, SL(2, q). The multiplier of
SL(2, q) is trivial when q is even, q > 4 (see [2]) whence Ca(g)

It follows from the structure of SL(2, q) that the elements of odd order in

L1 lie in (cg c Lx)2. The q classes of elements of odd order in Lx are, by
(3.1), in 1-1 correspondence with {’, GF(q)*}; there is no fusion in G
of distinct classes in Lx. Let b be an element of Lx of order q + 1, and let
U gq+l.

(4.2) Ca(b) (b) x L2 x (u) where L2 , SL(2, q).

Proof The class of b is one of the ’, and the class of u is known since u
is the (q 1)-part ofg; therefore the class of bu is known (A2.7). By consider-
ing what happens in SL(4, q) we can deduce that:

(i) IC6(b)l--- q(q2 1)2.
(ii) IC(bu)l IC(b)l, i.e., Ca(bu)= Ca(b).
(iii) C6(b) meets cg but no other class of 2-elements of G.
(iv) If s Ca(b) c cg then IC(bs)l q(q2 1).
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Arguing as in (4.1) we deduce that Ca(b)/(bu) has order q(q2 1) and q +
T.I. Sylow 2-subgroups, and that Ca(b) SL(2, q) x (bu) as required.
The class of G containing u corresponds in the character table to the class of

SL(4, q) containing

where (#) GF(q)*. The centralizer in SL(4, q) of this element is isomorphic
to SL(2, q) x SL(2, q) Zq_l.

(4.3) Ca(u) LI L2

Proof. Since L c (L2 (it))_ LI c Ca(b), it is plain that L and
L2 (u) intersect trivially. That their product equals Ca(u) is immediate
from order considerations (A2.3). It remains to be shown that Li " Ca(u)
(i 1, 2).

In SL(4, q) there is only one class of elements whose 2-parts lie in cg and
whose 2’-parts are conjugate to

#-
The centralizer of such an element has order q2(q2 1)(q 1). It follows
from A2.7 and A2.3 that if e Li c then

IC(u)" C(ut)l q2 IL’ C,(t)l.
Thus the involutions in L form a conjugate class of Ca(u) and since they
generate L, L is normal as required.

(4.4) The class consists of involutions.

Proof It was shown in Section 3 that ! is a class of 2-elements. Since a
Sylow 2-subgroup of Ca(u) is elementary abelian it suffices to prove that
meets Ca(u). This is immediate from A2.7 because in SL(4, q),

(4.5)

1,,

1
commutes with

Na(Li) L x L2 x (u)(i 1,2).

-1

Proof By (4.2), Ca(Lx)= L2 (U). Therefore g L2 x (u). We may
write g vu, v L2 of order q + 1. Since v e cg 2 the centralizer order of v is
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given in Section 3. In fact, CG(v)= L (V) (tt). Hence Co(L2)=
L1 x (u). By (3.1) the elements of odd order in L are conjugate to their
inverses but to no other powers. The subgroup of the automorphism group of
SL(2, q) not inducing further conjugation in the (q + 1)-cycles is SL(2, q)
itself. Hence NG(Li)/C(Li) Li. The result follows.

(4.6) There is an involution z such that

No((u))

where u* u-1 and L] L2.

Proof Since
0 I(-]1) inverts (--]#--)

the latter element can be written as a product of two conjugates in SL(4, q) of
the former. Then by A2.8, u
inverting u. We can show by familiar arguments that u is conjugate to u-1 but
to no other power. Thus N((u)) C(u). (z). Now L1 x L2 is a charac-
teristic subgroup of CG(u) and so by the Krull-Schmidt theorem, z interchanges
or normalizes the L (i 1, 2). Since z N(L3 (by (4.5)) the result is proved.

(4.7) (i) An element of odd order in 2 lies in a unique conjugate of Lt.
(ii) If c Li has odd order and belongs to the cycBc subgroup (Co) of order

q +_ in Lt, the centralizer of c in G is

Prooj Part (ii) follows directly from the order of C(e) given in Section 3.
From the equation ILt: C.,(c)I’[G: N(Lt)I IG: CG(e)I it follows that two
distinct conjugates of Lt cannot both contain a given conjugate of e.

5. A subgroup of G isomorphic to GL(3, q)

In SL(4, q) every element of the subgroup

commutes with the element

which has order q and is not conjugate to any proper power of itself. It
follows from A2.5, A2.7 and remarks in Sections 3-4 that there is an element a
in the corresponding class of G which commutes with the element b e L1
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defined in Section 4. The following facts also derive from equivalent statements
about SL(4, q). Let H C(a). Then

[HI q3(q3_ 1)(q2 1)(q- 1);

the 2-elements in H lie in cg w La; if x, y H c (respectively, H c c) then
ax and ay are conjugate in G and IC(ax)[ q3(q_ 1)2 (respectively,
qE(q_ 1)).

In particular, H c cf and H c Aa are classes of H, and the order of a divides
q 1. It can be shown that the order ofaisexactlyq- by the methods
used in proving (3.1).

(5.1) L < H; there is an element w L2 oforder q such that N(L)
L, x <w> x <u>.
ProoJ By definition, a C(b) (b> x L2 <U>. Therefore, there is an

element w of order q in L2 such that a 6 (w) x (u). It follows that L1
centralizes a and

Nn(Lx) H& (Lx x Lz x (u))= Cz,z<,>(a)= L x (w) x (u).

(5.2) H is a (C)-tIroup.

Proof. H cg and H c 5e are the only classes of 2-elements in H. The
centralizer of an element in H .La has order q2(q 1) and is thus 2-closed.
Let L c . We show that K Cn(t) is 2-closed by proving that if p is
an odd prime dividing IKI, a Sylow p-subgroup of K has a normal p-comple-
ment; the intersection of these complements for all such p is the (necessarily
unique) Sylow 2-subgroup of K.

IKI q3(q_ 1)2. If C,(t)= V then V x <w> x <u> is contained in K.
Let P be the Sylow p-subgroup of K contained in (w) x (u). By the Burnside
Transfer Theorem (cf. [3, Theorem 7.4.3] for instance) it is enough to show that
P < Z(Nr(P)). Now ifx Ntc(P) then (Lx x .P) L x P, i.e., L’ < C(P).
By (4.7(ii)) (applied to L2) C(P) L x (w) x (u) whence L L, i.e.,
x Nn(L) C(P) by (5.1). The result is proved.

(5.3) Ifq (3) then H does not contain a sub9roup isomorphic to PSL(3, q).

Proof Let co be an element of GF(q) of order 3. In PSL(3, q), the element

has a nonabelian centralizer of order (q- 1)2 (q + 4). Suppose that /-/

contains a subgroup isomorphic to PSL(3, q). It follows easily that there must
be an element of order 3 in H c f 2 whose centralizer contains a nonabelian
subgroup of order (q 1). But by (4.7) the centralizer in G of such an element
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is isomorphic to SL(2, q) x Zq_ x Zq_ which has no nonabelian subgroup
of the required order.

(5.4) H , GL(3, q).

Proof. It is clear from the sizes of the classes H c cg and H Aa that H
has no nontrivial normal 2-subgroup. By a theorem of Suzuki in [9], there are
normal subgroups H1, H2 in H such that H2 _< Z(H1), H/H1 and H2 have
odd order and HI/H2 is a simple (C)-group or the linear fractional group M9

over the noncommutative near-field of 9 elements. Since H contains all the
2-elements of H, H > L1 and Z(H1)< Cn,(L)= (w) x (u). Also if
y H o then Z(H) is contained in Cn(y) which is the product of (a) and
a 2-group. Therefore Z(H) < (a), i.e., H2 < (a). Since H/H2 contains a
full Sylow 2-subgroup of H and q > 4, H/H2 4: M9; thus H/H2 is simple
and H2 H c (a). The order of H1/H2 H(a)/(a) is divisible by
qa(q2 l) (because L < H and IH/HI[ is odd) and divides [H/(a)[
qa(q3 l)(q2 1). The only group in Suzuki’s list of simple (C)-groups
having this property is PSL(3, q). The multiplier of PSL(3, q) can be found in
Feit’s paper [2]. If q 2 (3), PSL(3, q) SL(3, q) has trivial multiplier, i.e.,
H , SL(3, q) HE and it follows from order considerations that H g

SL(3, q) x (a), GL(3, q). If q (3) the multiplier of PSL(3, q) has
2’-part Z3 and so

H PSL(3, q) H2 or H , SL(3, q) x H where H2 H x Z3.

By (5.3) the former cannot occur. It follows that H has a normal subgroup

J SL(3, q) (a) , {X GL(3, q) det X is a cube}
of index 3.

Clearly L < J. If L c cg then by (5.1), Cn(t) > (w) x (u)
Zq-1 x Z-l. But Ifa(t)l [qa(q 1)2]/3. Hence there exists h (w) x
(u)\J and H (J, h). Now h acts on J (in particular on the SL(3, q) con-
tained in J) and centralizes La (see (5.1)). By considering the automorphisms
of SL(3, q) (cf. Ill for example) it is easily checked that in these circumstances
h induces a diagonal automorphism on the SL(3, q). Also I-h, a] (we can
prove that Z(H) (a) by the method used to prove Z(H1) < (a) above). It
follows that H GL(3, q), as required.

6. Identification of G

(6.1) There is a conjugate L3 of the subgroup La and an element v L3 of
order q such that

(L1, L3) (L2, L3) SL(3, q), (w, v) , (w’, v) , Zq-1 x Zq_,

where z is as defined in (4.6).
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Proof. In the isomorphism b: H--. GL(3, q) we may take b(L1)= L
where

L= {(X__].)detX= 1}
by combining b with a conjugation map if necessary. Now N(L) L x C(L)
where C(L) is the subgroup

contained in the diagonal subgroup D of GL(3, q). It follows that

qb(Cn(LI)) ((w) x (u)) < D.

Consider the subgroup H c H of H. H c H C,(ae) and

In c n*l >_ Inl2/Ial ((q2 / q / 1)/(q2 / 1)}(q- 1)‘3

Now a*e(w) x (u) and weL Lx.
r/z(r/ L) if necessary we may assume that

Replacing z by an element

(" )b(w*) /- e D.

Already q(u) D so that now b(ae) D. The centralizer of an element in D*
is either D or a subgroup E x Zq_ x Zq_ containing D, where E equals
either

{(11)" detX= 1} or {( )" o6+fl= 1}
and is conjugate in GL(3, q) to L. It follows from the inequality derived for
IH c Hel that there is a conjugate L3 of Lx in G such that

H c H L3 Zq_ Zq_ 1.

In addition, (Lx, L3) , SL(3, q). Since z normalizes H c He, L La and

(L2, L3) (Li, L3)" ’ SL(3, q).

Now (we) x (w) (u) centralizes both a and a and by order considerations,
L3 c ((w’) x (w) x (u))has order q- and is thus cyclic. Say

L c ((w’) (w) (u))= (v).

By the nature of the construction, (we) x (w) x (u) normalizes L1, L2, and
Z3, each of whose normalizer in H is isomorphic to SL(2, q) x Zq_ x Zq_ 1.
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The relations

<w, v> <w, v> z_ z_,
(L3, w) , (L3, w7 ’ GL(2, q), (L, v) , (Lz, v) ’ GL(2, q)

follow, since z normalizes (v) and by (4.7(ii)) no power of w or w lies in L
and no power of v lies in Lx or L2. (Q.E.D)

The conditions on the subgroups L, Lz, L derived in (6.1) are precisely
those in the hypothesis of K. W. Phan’s Theorem in [7]. The conclusion is
that (since q > 4) G is a homomorphic image of SL(4, q). But SL(4, q) is
simple. Hence, we get the final result, G - SL(4, q) PSL(4, q).
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