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1. A number of results have been obtained recently concerning the structure
of the collineation group G of a finite projective plane II (see [10], [11], and
[12]). One situation that has not been handled in those papers is the case
where G fixes a line of II. The purpose of this paper is to give the structure of
G when G fixes a line q of 17 and the following is satisfied.

Hypothesis H. (i) q has n + points, n odd.
(ii) G contains no Baer involutions.
(iii) G contains at most one involutory homology with given center and axis.

Throughout, if X is a collineation group of 1-I we let X represent the action
of X on q as a permutation of the points of q. In the following theorem let
be the subgroup of central collineations in X with axis q.

THEOREM 1. If G is a collineation group of a finite projective plane 1-I fixing
a line q of 1-I and satisfying Hypothesis H, then G is solvable or G contains a
normal subgroup H such that G/H is solvable and such that one of the following
holds"

(i) H has a normal subgroup N such that N is solvable and H/N PSL2(r),
r odd.

(ii) H/O(R) - Psp(4, r), solvable.
(iii) I/Z(H) 0() - As. Ex 6.

(iv) H/Z(H). 0(I) " G1 x G2 where Gi is isomorphic to PSL2(r) (r odd)
or

As"El6 is explained below. Collineation groups of the above type are
known to exist except for (iii) and (v) for G
The results of I-2] are a special case of Theorem 1. Instances where H(iii)

does not hold have been handled in [12]. Cases where G does not fix a line
of 1-I have been considered in [10] and [12]. Nothing is known in general if
H(ii) does not hold.
We list several recent results in group theory but first we give some definitions.

DEFINIWION 1.1. Let S be a Sylow 2-subgroup of a group G. G is said to be
fusion simple if:

(1) G has no subgroups of index 2.
(2) Every involution of Z(S) is conjugate in G to another involution in S.
(3) o() ().
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DEFINITION 1.2. A 2-subgroup S is said to be of sectional 2-rank at most m
if for every subgroup T of S and every homomorphic image R of T, the ele-
mentary abelian subgroups of R have order at most

DEFINITION 1.3. A group G is said to be quasisimple if G G’ and G/Z(G)
is simple.

THEOREM 2 [7]. If G is a finite simple group of sectional 2-rank at most 4,
then G is isomorphic to one of the groups in the following list.

(I) Odd characteristic. L2(q), LD(q), UD(q), G2(q), O(q), Psp(4, q), q odd,
Gz(q), q an odd power of 3, L4(q), q (mod 8) or U4(q), q 5 (mod 8),
Ls(q), q 3 (mod 4), and Us(q), q (mod 4).

(H) Even characteristic. L2(8), L2(16), L3(4), U3(4), or Sz(8).
(III) Alternating. A7, As, A9, Axo, or Axx.
(IV) Sporadic. Mia, MI2 M22, M23 J1, J2, J3, MC, or L.

(The explanation of the symbols can be found in [7] and [13].)

COROLLARY B. If G is a quasisimple group of 2-rank 2 with O(G) 1, then
either G is simple or G - Sp(4, q), q odd.

(2-rank 2 means the Sylow 2-subgroups of G contain elementary abelian
subgroups of order at most 4.)

COROLLARY C. If G is a nonsolvable fusion-simple group of sectional 2-rank
at most 4, then one of the following holds"

(i) G’ is simple.
(ii) G’ is the direct product of two simple groups of sectional 2-rank 2.
(iii) G’ is the direct product of a simple group of sectional 2-rank 2 and

Zzn x Zzn for some n.
(iv) G’ is a nontrivial extension ofE8 or E16 by As, A6, AT, or L3(2).

THEOREM 3 ([14], Four Generator Theorem). Let S be a 2-group with no
normal abelian subgroup of rank 3. Then every subgroup of S can be generated
by four (or fewer) elements.
A subgroup of rank 3 is elementary abelian subgroup of order 8.

In this paper small letters p, q will represent lines, letters A, B will represent
points. AB is the line joining A and B, pq the intersection of p and q. PIq
means P lies on the line q. An involution is a group element of order 2.
Throughout, q will be the line fixed by G. 2 will be the action of the collineation
x on the fixed line q of 1-I. The group theoretic notation is standard and can be
found in [6], [9], and [13].
The geometric notation is also standard and is found in [3]. A well-known

theorem on collineations of projective planes states that the fixed point set of
a collineation or order 2 is either (i) a line, or (ii) a line with the point not on it,
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or (iii) a square root subplane. In this paper we are assuming all involutions
are of type (ii). [9, Theorem 20.9.7, p. 405.]

In Section 2 we prove the main result of this paper and in Section 3 we prove
results related to the structure of the 2-subgroups of collineation groups of
finite planes. These latter results are interesting in their own right and hope-
fully will prove useful in the general study of collineation groups of finite
projective planes.

I would like to thank the referee for suggestions that considerably shortened
the proof of Theorem 1.

2. In this section we give the proof of Theorem 1. The connection between
Theorems 2 and 3 follows easily from the following two lemmas.

LEMMA 2.1 [-3, 3.18, p. 120]. Let a and b be involutory homologies with
centers A and B and axis p and q, respectively. IfplB v AIq p then ab is an
involutory homology with axis AB and center pq. a, b, and ab are the only
involutory homologies having their respective centers and axis.

LEMMA 2.2. If G is a eollineation group satisfying Hypothesis H, then an
elementary abelian 2-subgroup of G has order at most 4, i.e., G has 2-rank at
most 4.

Proof Assume T is an elementary abelian 2-subgroup of G of order 8.
Let T= (a,b,c) where [a[ Ibl Ic[ 2 and Tis abelian. Let a and b
be as in Lemma 2.1 with A and B their centers. Let C be the center of ab.
Since c centralizes (a, b), c must fix the set {A, B, C} a triangle. Since c is an
involutory homology, c must fix each of the points A, B, C. One of these
points must be the center of c and the line through the remaining two must be
its axis. By Lemma 2.1, c (a, b) contradicting ]TI 8. This proves the
lemma.
Lemma 2.2 implies that G has 2-rank 2. This immediately implies that G

has normal 2-rank 2, i.e., if S Syl2(G) and T - S, T elementary abelian, then
TI is at most 4. Theorem 3 now implies that G has sectional 2-rank at most 4,
so we can apply Theorem 2 and its corollaries to G.

Before proceeding with the application of Theorem 2, we handle some trivial
cases. Throughout this section, q will be the line H fixed by G.
The following lemma shows that we can assume G contains involutions with

axis q.

LEMMA 2.3. Assume G is a collineation group satisfying Hypothesis H and
fixing the line q of H. If every involutory homology of G acts non-trivially on q,
then G is solvable or G has a normal subgroup H such that G/H is solvable and
H has a normal subgroup N such that H/N is isomorphic to A7 or SL2(q).

Proof Let S Syl2(G). Let d Z(S), idl 2. Let d fix points L and M
on q. Let e S (d}, lel 2. If e fixes L and M, since no two involutions
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can have the same center and the element, a de must have a center off q,
and its axis must be q since a fixes L and M. This contradicts the hypothesis of
our lemma, e commutes with d, so e fixes {L, M}. We have just seen that e
does not fix this set pointwise so e(L) M. From this last result we easily see
that ed de. d must be the only involution in S so S is cyclic or generalized
quaternion. By I-5] if ( G/O(G), c Z(d). The Sylow 2-subgroups of
( /(a) are cyclic or dihedral. If the Sylow 2-subgroups are cyclic, it is
well known that G is solvable, hence G is. If the Sylow 2-subgroups are dihedral
the lemma follows from Theorem 2.
We have just seen that if the condition of Lemma 2.3 holds then Theorem

follows. We can now assume that there are involutory homologies in G having
axis q. The following lemma shows that we can assume G fixes a point P of l-I.
The following is in 1-1; Satz 4.3.2.]

LEIMA 2.4. Let H be the subgroup of G generated by all homologies with
axis q. Then H contains an abelian normal subgroup T of elations with axis q
and T is transitive on the set of centers of homologies of H.

We are assuming H - 1, so that a is an involutory homology in H with
center P and axis q. G GpT, T as above. Since T is abelian, from the state-
ment of Theorem 1, we see there is no loss in assuming G Gp. Now, since
G G, G fixes P and q and a Z(G), since by Hypothesis H, a is the only
involution with center P and axis q.
We now will show that we can assume G G’. Assume G contains a proper

normal subgroup H with G/H solvable. H satisfies Hypothesis H and IHI < Ial,
so by induction we can assume Theorem true for H. Clearly, Theorem now
holds true for G since G/H is solvable. We see there is no loss in assuming
G G’. Lemmas 2.3 and 2.4 have shown us we can assume there is an
a Z(G), lal 2. There is no loss in assuming O(G) 1. Theorem follows
from the following group theoretic result.

THEOREM 6. If G is a finite group of 2-rank at most 2, such that G G’,
O(G) 1, 2 IZ(G)I, then one of the following holds"

(a) GIN - PSL2(q), q odd, N a solvable subgroup of G.
(b) G/Z(G) - A Ea 6 Or A6 E 6.

(c) G - Sp(4, q), q odd.
(d) G/Z(G) - G Gz where Gi is isomorphic to PSLz(q) (q odd) or to AT.

Proof Assume G has 2-rank 1. If S Syl(G), S is cyclic or generalized
quaternion. Using G’ G and the argument used in the latter part of the
proof of Lemma 2.3 we get G/N isomorphic to PSL(2, q) (q odd) or to AT, N
a solvable normal subgroup of G. This is (a) in the statement of the theorem.

By Lemma 3.2 of [2], there is a normal 2-subgroup N of G such that t /N
is fusion simple (if necessary we consider groups of odd order fusion simple).
G is sectional 2-rank at most four by Lemma 2.2, so Corollary C of [-7] applies
to G.



ON COLLINEATION GROUPS 225

The group O2(ff,) need not be 1, so we will let M be the maximal normal
2-subgroup of G, with M t> N (N as above), GIN fusion simple. We will
concentrate our attention on M.
Assume M has a characteristic elementary abelian subgroup E with IEI > 2.

Since G has 2-rank 2, IEI- 4. Let a Z(G), lal 2. We can assume
E (a, b), Ibl 2. Since E is characteristic in M and G < M we have
G > E. Thus G t> C6(E). IG" C6(E)I < 6 and since G G’, we must have
E Z(G). There are no involutions c in G E, for then (c, E) would be an
elementary abelian group in G of order 8, which is impossible. G contains at
most three involutions, so the theorem follows from the argument given in
Section 3 of [2].
From now on we can assume M has no characteristic elementary abelian

subgroup of order 4. From 1-6, Theorem 4.9, p. 198] we have that M is the
central product of groups E and R where E 1, or E is extraspecial and either
R is cyclic, quaternion, dihedral, or semidihedral. E/Z(E) is elementary abelian
of order 4 for some k [6, Theorem 5.2(iii), p. 204]. M has sectional 2-rank at
most 4, M ERsoIE/Z(E)[ < 4andlE[ < 8. Let M/*(M). IfGacts
trivially on J, then d G/C(M) is a 2-group. Since G G’, this implies
G C6(M) and M is abelian. M has no characteristic elementary abelian
subgroups of order 4 so M is cyclic. We have that either M is cyclic or G acts
nontrivially on M.
We now take up the case where G acts nontrivially on M. G has sectional

2-rank at most 4, so I1-< 16. Clearly I1 >- 8 since G G’. Assume
I1 8. M ER and hence IEI 8 and R is cyclic. Clearly G must act
irreducibly on M since G G’, but this is clearly seen to be impossible if E is
extraspecial of order 8 and R is cyclic. Now assume that IMI 16 and G
acts irreducibly on . Since M ER, M must be extraspecial. In the
characteristic 2 case, the outer automorphism group of M is contained in one
of the 4-dimensional orthogonal groups over GF(2). This latter fact implies

Ct;(M) ’ As and part (b) of the theorem holds.
We now assume M is cyclic, so N is cyclic, GIN is fusion simple. In this case
M N. Also 2 INI. We apply Corollary C of [7]. If (i) holds, then G is a
quasisimple group. Corollary B of I-7] now applies. G is not simple because
2 IZ(G)I, so G Sp(4, q) and (c) of the theorem holds.

If (ii) holds, 6 GIN L x L2 where L and L2 are simple groups of
sectional 2-rank 2. Let L be a subgroup of G such that L N and L/N L.
If L has 2-rank 2 and N c L’ :/: 1, then L - Sp(4, q) by Corollary B. This
is impossible since Sp(4, q) has sectional 2-rank 4 and Lt does not. Thus if L
has 2-rank 2, we must have L’ c N 1. If L’ has 2-rank 2, then L has an
elementary abelian group of order 8 which is impossible. Thus L’ has 2-rank 1,
implying that its Sylow 2-subgroups are quaternion. But [_5] implies there is a
z Z(L’), which is impossible since L’ = L, which is simple. We now have
that L has 2-rank 1 and as was seen in the first part of the proof of this theorem,
this implies L isomorphic to PSL2(q) (q odd) or to A 7. The same holds for
L2, so part (d) of the theorem holds. Part (iii) of Corollary C cannot hold since
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we are assuming G G’. If (iv) holds, then as we saw above, part (b) of the
theorem holds.

3. In this section we give some results on 2-subgroups of collineation groups.
These results are interesting in their own right and hopefully will prove useful
in further classification of collineation groups of finite projective planes.

LEMMA 3.1. Let a, b, c, and d be involutory homologies actiny on a finite
projective plane H. Let a have center P and axis q, and assume b, c, and d,
centralize a, and have centers on q. Assume b, c, and d all interchanye the points
L and M on q. If S (b, c, d) is a 2-yroup containiny no Baer involutions,
then the subyroup of Sfixing L and M, is cyclic or yeneralized quaternion.

I,roof Let x be the points of the line I,L excluding {P, L} and let y be the
points of I’M excluding (P, M}. Call these sets the x and y axis, respectively.
Let T x w y. S acts faithfully as a permutation group on T, with b, c, and d
interchanging x and y. Since Ibl 2 we can order the points of T so that b
has the permutation matrix

 01,
(I the (n 1) (n 1) identity matrix, n the order of H). For any col-
lineation z in S let x(z) and y(z) represent the action of z on the x and y
axis, respectively. Since I1 Idl 2, if we let x(bc) C and x(bd) D,
then y(bc) C- and y(bd) D-1, respectively. Since S is a 2-group, Ibcl,
Ibdl, ICI, IDI are all powers of 2.

Let G (bc, bd). Assume C and D commute. Let e G, e (bc)i(bd)j,
lel 2. x(e) CiD, y(e) C-iD-j, (x(e)) -t D-JC -i, and D-C -i,.,

C-iD-. Inverses and conjugates have the same order, so Ix(e)l y(e)l 2.
e is a homology since lel 2, and it acts nontrivially on the x and y axis.
e fixes I,, L, M so the axis of e is q and from Lemma 2.1, e a. Thus G con-
tains one element of order two, is abelian, and hence cyclic. Thus the lemma is
proved and from now on we assume C and D do not commute.
We have ab ba, so if we let x(a) A, then y(A) A.
By the argument of the previous paragraph the element of order two in (bc)

and (bd) is a. Thus A (C) and A (D). Let E be the largest power of C
such that E (C) c (D), but E2 6 (C) (3 (D). Let F be the corresponding
power of D. E and F must exist if C and D do not commute. We can assume.
E2 F2. Let e (b, c) with x(e) E, y(e) E-, and let f (b, d) with
x(f) Fand y(f) F- . E-Fis conjugate to FE- , and FE- is (EF- )- .
Thus E-F and EF- fix the same number of points. If E and F commute,
then e-f would have order two and so e-f a by the argument we used
above. But then f ea, and F EA (C), a contradiction to the choice of
F. Thus E and F do not commute.

Since e andfcentralize e2 f2, (e,f) t> (e2). Sincef2 (e2), (e,f)/(e2)
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is a dihedral group. Let # ef. (e, f) (e, #), and every element in (e,
can be written in the form e#. Suppose e# has order two. Then x(e#)
Ei(EF).i and y(ei#) E--(E-F-) have order dividing 2. These two
matrices must have the same order. For we have E-F- E-(EF)-E.
Thus

E-(E-F-)= E-(E-F-X)= E-’E-(EF)-E.
This matrix is conjugate to ((EF)-JE-)E-E (EF)-E-. This matrix in
turn is [E(EF)] -. Thus e9 has order two on both the x and y axis, and
since there are no Baer involutions, again by Lemma 2.1, eg a. Thus
(e, 9) has only one element of order two, so it is cyclic or generalized quaternion.
If the group is cyclic, then E and F commute, which we have shown is not the
case.
We now have to handle the possibility of G being larger than (e, f). e2 =f2

so lel Ifl 4. Let h (), Ihl 4. Then (e, h) is quaternion. Assume
there exists an r

_
(bc) with r 2 e. (e) <:1 (r, h) and r 2 (e), h2 (e) so

(r, h)/(e) is dihedral. We have r-(rh)r (rh)-Xe for some i. h2 e2 and
/.
-2 e- yield 1. We compute directly that (rh)- e(rh)2 e- so

r-(rh)2r (rh) -2. We also see (rh)2 C(e). Let k (rh)2. Since e-x ea,
E- EA. Also F- FA so x(9i) y(9) for allg(g). Let x(h)
y(h) H. Let x(k) K, x(r) R so K= RHRH. But we also have
y((rh)2) R- HR- H RHRH, because R2 E, H- 1EH E- x, and
H2 E2. Thus y((rh)2) K. We have shown r-akr k- so every element
in (r, k) can be written as rk. Assume ]rik 2. Assume RK 1. Then
K R-i. r centralizes e and inverts k, so [r ikJl 2 implies IKI [R-1 < 2.
But then y(r k) R- iK RiK x(r ik) which is impossible. Then
IRKJ 2. By the same argument IR-K 2 implying rk a. Thus
(r, k) is cyclic or generalized quaternion. Since e Z(r, k) and [el 4,
(r,k) must be cyclic, r inverts k so Ik[ _< 2. It is clear that Irhl > 2, so
Ikl 2, and Irhl 4. Also (rh)2 e2 h2. This and (rh)4 gives
h-rh r -, so (r, h) is generalized quaternion.

Suppose Il > Ihl. We can assume 92= h. r normalizes (e, h) since
[(r, h)" (e, h)] 2 and g normalizes (e, h) by similar reasoning, r and
generate distinct nontrivial automorphisms of (e, h) of order two. But the
automorphism group of the quaternion group (e, h) is isomorphic to A 3. Thus
3 IS[ which is impossible. Thus we conclude that if r (e), then lgl 4 and
(e, f) is a quaternion group. Also, (r, h) is a generalized quaternion group
containing (e, f).
Now assume bd (f). We can assume (bd)2 f, and using the same argu-

ment we used for r, we get bd acting on (e,f) as an automorphism of order
two, distinct from the action of r or (e, f). This is impossible. Thus if r
we get bd (f).
The last obstacle is to show (r, f) (bc, bd) is generalized quaternion.

This is the case if (bc) (e). If (bc) (e), we can proceed by induction,
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assuming (r2,f) is generalized quaternion, so that (r,f)/(r 2) is dihedral,
and then we can use the arguments that we used for (r, h) to show (r, f) is
generalized quaternion.

All this is under the assumption r (e). If r (e) then either bd (f)
or bd (f). The former is trivial and the latter would just involve repeating
the argument we used for r. Thus the lemma is proved.

LEMMA 3.2. Let S be a 2-group satisfying Hypothesis H, and containing an
involution d with center L and axis MP, P not on q. Then"

(i) Q Cs(b) c SLt is cyclic or generalized quaternion.
(ii) If c S, It] 2, c(M) L and if b and e are chosen so that Ibel is

maximal then Q = N(b, c).
(iii) There are at most 4 classes of involutions in S interchanging L and M,

all involutions of S are in (b, c, Q) and I-S: (b, e, d, Q)] < 4.

Proof Since b interchanges L and M, the only involution in SLM centralizing
b is a. This gives (i).
LettQ, lt.] 4. db bdaso(bdt)2 lsincet 2 a. LetcS, lel 2,

(L)c M such that ]be] is maximal. By Lemma 3.1, (b(bdt), be) is cyclic or
generalized quaternion. (be) < (dt, be) because Ibel is maximal. Thus
dt N((bc)). If Q is generalized quaternion, it is generalized by its elements
of order 4, so Q c N((b, c)). If Q is cyclic, let Q (r) and let r-act e.
(be, be) is cyclic or generalized quaternion. If it is cyclic, then be (be) and
Q N(bc). If (be, be) is generalized quaternion, since [bel Ibcl and Ibel
is maximal, be (be) or ]bel 4. In the former case Q c N(b, e). In the
latter case (be)-abbe ba and dbe C(b) c SzM. Idbe] 4, so let dbe,

(r). By the same reasoning Idbel 4, dbe C(b)c Szt and we can
assume dbc t. Thus c e and (ii) follows.

Let x be any involution of S with (L)x M. (bx, be) is cyclic or generalized
quaternion. If it is cyclic, by the choice of e, bx (be) and x (b, e). (b, e)
has two classes of involutions interchanging L and M. Call these classes Ca
and C2. If (bx, be) is generalized quaternion then x C(be) and Ibxl 4.
bxbx a, so xbx ba. Then dx Cs(b) (Q, b) and x (b, d, Q) c C(be).
If Q is generalized quaternion let Q (e, f), f-aef e-1, Ifl 4. We have
seen [bdfei[ 2 since Ife[ 4. We get two classes of involutions in (b, e, d, Q)"

C3 {bdfeZi+a Z} and C4 {bdfe2 Z}.

If s (e), isl 4, let C {bds, bdsa} a set of involutions. Let u (bc),
[ul 4. Q normalizes (be) and Q, at most inverts be, so we can assume
sC(bc). Thus lusl 2 since u2 s2 a. We can also assume us d.
But then

{bds, bdsa} {bus, ba} Ca w C2.
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If Ixl 2, (L)x M, x (b, d, Q) (b, d, a), x bdt for some 6 Q.
Ix[ 2and bd= bdaimpliesbdtbdt andat 2 1, so [t[ 4. Thus the
C’s contain all the involutions of S interchanging L and M. If Q is cyclic
x 6 (b, d, Q), x as above, then x bdt or x bdta, the unique element of
order four in Q. As before {bdt, bdta}

_
C1 u C2.

Let H be the group generated by the Ci’s. S t> H because it is generated by
involutions and H

___
(b, c, d, Q) since we have shown the latter group con-

tains all the involutions of S. The Ci’s are complete conjugacy classes in H.
Let y S, h C and let y-lhy Cj. Let g-lhg be an arbitrary element of C,
gH. Lety-lgy kH. We have

y-ly-hgy k-y-lhyk Cj,

so S permutes the classes C as sets. Ns(C) (b, c, d, Q) so IS: (b, c, d, Q)] <
4 and (iii) follows.

In the following lemma we assume the notation of Lemma 3.2.

LEMMA 3.3. Let S be as in 3.2 and assume there is an involutory homology d
in S with center L and axis PM. If Q is 9eneralized quaternion, there is no
homology k with center P and axis q such that [k[ 4.

Proof Assume k exists. Then [-k, i] for all involutions with center
on qand axis throughP. Thusk6C(b), k6Q. a6Q, andbd bda forb
as in Lemma3.2. Thus Ibdt[ 2forall t6Q, It[ 4. Hence [-k, bdt]
since bdt is an involution acting nontrivially on q. However, [k, b] I-k, d]
so [k,t] for all t6Q, It[ 4. This is impossible if Q is generalized
quaternion and k 6 Q, [k[ 4.
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