ON COLLINEATION GROUPS THAT FIX A LINE OF
A FINITE PROJECTIVE PLANE

BY
TERRY CZERWINSKI

1. A number of results have been obtained recently concerning the structure
of the collineation group G of a finite projective plane II (see [10], [11], and
[12]). One situation that has not been handled in those papers is the case
where G fixes a line of I1. The purpose of this paper is to give the structure of
G when G fixes a line ¢ of IT and the following is satisfied.

Hypothesis H. (i) g hasn + 1 points, 7 odd.
(ii) G contains no Baer involutions.
(iii) G contains at most one involutory homology with given center and axis.

Throughout, if X is a collineation group of IT we let X represent the action
of X on g as a permutation of the points of g. In the following theorem let X
be the subgroup of central collineations in X with axis g.

THEOREM 1. If G is a collineation group of a finite projective plane 11 fixing
a line q of 11 and satisfying Hypothesis H, then G is solvable or G contains a
normal subgroup H such that G[H is solvable and such that one of the following
holds:

(i) H has a normal subgroup N such that N is solvable and H|N = PSL,(r),
r odd.

(i) H/O(H) = Psp(4, r), A solvable.

(i) H/Z(H)- OH) = As - Eq.

(ivy H/Z(H)-OH) = G, x G, where G, is isomorphic to PSL,(r) (r odd)
or A,.

As - E|¢ is explained below. Collineation groups of the above type are
known to exist except for (iii) and (v) for G =~ A4,.

The results of [2] are a special case of Theorem 1. Instances where H(iii)
does not hold have been handled in [12]. Cases where G does not fix a line
of IT have been considered in [10] and [12]. Nothing is known in general if
H(ii) does not hold.

We list several recent results in group theory but first we give some definitions.

DEerFINITION 1.1.  Let S be a Sylow 2-subgroup of a group G. G is said to be
fusion simple if':

(1) G has no subgroups of index 2.

(2) Every involution of Z(S) is conjugate in G to another involution in S.

(3) 0(G) = <D).

Received September 12, 1975.
221



222 TERRY CZERWINSKI

DEFINITION 1.2. A 2-subgroup S is said to be of sectional 2-rank at most m
if for every subgroup T of S and every homomorphic image R of T, the ele-
mentary abelian subgroups of R have order at most 2™.

DerINITION 1.3. A group G is said to be quasisimple if G = G’ and G/Z(G)
is simple.

THEOREM 2 [7]. If G is a finite simple group of sectional 2-rank at most 4,
then G is isomorphic to one of the groups in the following list.

(1) Odd characteristic. LZ(q)a L3(q)a Us(q)’ Gz(‘])a Di(q)’ Psp(4, q)’ q Odd,
Gl(q), q an odd power of 3, L,(q), q # 1 (mod 8) or U,lq), g # 5 (mod 8),
Ly(q), g = 3 (mod 4), and Us(q), g = 1 (mod 4).

(II) Even characteristic. L,(8), L,(16), L;(4), Us(4), or Sz(8).

(III) Alternating. A4, Ag, Ag, Ayg, OF Ayy.

V) Sporadic. M\, My, My, My3, Jy, Jy, J3, M€, or L.

(The explanation of the symbols can be found in [7] and [13].)

COROLLARY B. If G is a quasisimple group of 2-rank 2 with O(G) = 1, then
either G is simple or G =~ Sp(4, q), q odd.

(2-rank 2 means the Sylow 2-subgroups of G contain elementary abelian
subgroups of order at most 4.)

CoroLLARY C. If G is a nonsolvable fusion-simple group of sectional 2-rank
at most 4, then one of the following holds:

(i) G’ is simple.
(i) G’ is the direct product of two simple groups of sectional 2-rank 2.
(iii)) G’ is the direct product of a simple group of sectional 2-rank 2 and
Z,n X Z,n for some n.
(iv) G’ is a nontrivial extension of Eg or E ¢ by As, Ag, A7, or L3(2).

THEOREM 3 ([14], Four Generator Theorem). Let S be a 2-group with no
normal abelian subgroup of rank 3. Then every subgroup of S can be generated
by four (or fewer) elements.

A subgroup of rank 3 is elementary abelian subgroup of order 8.

In this paper small letters p, ¢ will represent lines, letters A, B will represent
points. AB is the line joining A and B, pq the intersection of p and q. Plg
means P lies on the line g. An involution is a group element of order 2.
Throughout, g will be the line fixed by G. X will be the action of the collineation
x on the fixed line g of T1. The group theoretic notation is standard and can be
found in [6], [9], and [13].

The geometric notation is also standard and is found in [3]. A well-known
theorem on collineations of projective planes states that the fixed point set of
a collineation or order 2 is either (i) a line, or (ii) a line with the point not on it,



ON COLLINEATION GROUPS 223

or (iii) a square root subplane. In this paper we are assuming all involutions
are of type (ii). [9, Theorem 20.9.7, p. 405.]

In Section 2 we prove the main result of this paper and in Section 3 we prove
results related to the structure of the 2-subgroups of collineation groups of
finite planes. These latter results are interesting in their own right and hope-
fully will prove useful in the general study of collineation groups of finite
projective planes.

I would like to thank the referee for suggestions that considerably shortened
the proof of Theorem 1.

2. In this section we give the proof of Theorem 1. The connection between
Theorems 2 and 3 follows easily from the following two lemmas.

LemmA 2.1 [3, 3.18, p. 120]. Let a and b be involutory homologies with
centers A and B and axis p and q, respectively. If pIB # Alq # p then ab is an
involutory homology with axis AB and center pq. a, b, and ab are the only
involutory homologies having their respective centers and axis.

LemMma 2.2. If G is a collineation group satisfying Hypothesis H, then an
elementary abelian 2-subgroup of G has order at most 4, i.e., G has 2-rank at
most 4.

Proof. Assume T is an elementary abelian 2-subgroup of G of order 8.
Let T = <a, b, ¢) where |a| = |b] = |c]| = 2 and T is abelian. Let a and b
be as in Lemma 2.1 with 4 and B their centers. Let C be the center of ab.
Since ¢ centralizes {a, b), ¢ must fix the set {4, B, C} a triangle. Since c is an
involutory homology, ¢ must fix each of the points 4, B, C. One of these
points must be the center of ¢ and the line through the remaining two must be
its axis. By Lemma 2.1, ¢ € {a, b) contradicting |T| = 8. This proves the
lemma.

Lemma 2.2 implies that G has 2-rank 2. This immediately implies that G
has normal 2-rank 2, i.e., if S € Sy/,(G) and T <= S, T elementary abelian, then
|T| is at most 4. Theorem 3 now implies that G has sectional 2-rank at most 4,
so we can apply Theorem 2 and its corollaries to G.

Before proceeding with the application of Theorem 2, we handle some trivial
cases. Throughout this section, ¢ will be the line IT fixed by G.

The following lemma shows that we can assume G contains involutions with
axis q.

LeMMA 2.3. Assume G is a collineation group satisfying Hypothesis H and
fixing the line q of I1. If every involutory homology of G acts non-trivially on q,
then G is solvable or G has a normal subgroup H such that G|H is solvable and
H has a normal subgroup N such that H|N is isomorphic to A" or SL,(q).

Proof. Let S € Syl,(G). Let de Z(S), |d| = 2. Let d fix points L and M
ong. Letee S — {d}, |le] = 2. If e fixes L and M, since no two involutions
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can have the same center and the element, a = de must have a center off g,
and its axis must be ¢ since a fixes L and M. This contradicts the hypothesis of
our lemma. e commutes with d, so e fixes {L, M}. We have just seen that e
does not fix this set pointwise so e(L) = M. From this last result we easily see
that ed # de. d must be the only involution in S so S is cyclic or generalized
quaternion. By [5] if G = G/O(G), d € Z(G). The Sylow 2-subgroups of
G = G/{d) are cyclic or dihedral. If the Sylow 2-subgroups are cyclic, it is
well known that G is solvable, hence G is. If the Sylow 2-subgroups are dihedral
the lemma follows from Theorem 2.

We have just seen that if the condition of Lemma 2.3 holds then Theorem 1
follows. We can now assume that there are involutory homologies in G having
axis ¢q. The following lemma shows that we can assume G fixes a point P of IT.
The following is in [1; Satz 4.3.2.]

LemMA 2.4. Let H be the subgroup of G generated by all homologies with
axis q. Then H contains an abelian normal subgroup T of elations with axis q
and T is transitive on the set of centers of homologies of H.

We are assuming H # 1, so that a is an involutory homology in H with
center P and axis ¢. G = G,T, T as above. Since T is abelian, from the state-
ment of Theorem 1, we see there is no loss in assuming G = G,. Now, since
G = G, G fixes P and g and a € Z(G), since by Hypothesis H, a is the only
involution with center P and axis g.

We now will show that we can assume G = G’. Assume G contains a proper
normal subgroup H with G/H solvable. H satisfies Hypothesis H and |H| < |G|,
so by induction we can assume Theorem 1 true for H. Clearly, Theorem 1 now
holds true for G since G/H is solvable. We see there is no loss in assuming
G = G'. Lemmas 2.3 and 2.4 have shown us we can assume there is an
a e Z(G), |a| = 2. There is no loss in assuming O(G) = 1. Theorem 1 follows
from the following group theoretic result.

THEOREM 6. If G is a finite group of 2-rank at most 2, such that G = G’,
0(G) = 1, 2| |Z(G)|, then one of the following holds :

(@) G/N =~ PSL,(q), q odd, N a solvable subgroup of G.

(b) G/Z(G) = A5 E,g0r Ag " Eys.

©) G = Sp(4, q), q odd.

(d) G/Z(G) = G, x G, where G, is isomorphic to PSL,(q) (q 0odd) or to A,.

Proof. Assume G has 2-rank 1. If S e Syl,(G), S is cyclic or generalized
quaternion. Using G’ = G and the argument used in the latter part of the
proof of Lemma 2.3 we get G/N isomorphic to PSL(2, q) (g odd) or to 4,, N
a solvable normal subgroup of G. This is (a) in the statement of the theorem.

By Lemma 3.2 of [2], there is a normal 2-subgroup N of G such that G = G/N
is fusion simple (if necessary we consider groups of odd order fusion simple).
G is sectional 2-rank at most four by Lemma 2.2, so Corollary C of [7] applies
to G.
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The group 0,(G) need not be 1, so we will let M be the maximal normal
2-subgroup of G, with M = N (N as above), G/N fusion simple. We will
concentrate our attention on M.

Assume M has a characteristic elementary abelian subgroup E with |E| > 2.
Since G has 2-rank 2, |E| = 4. Let ae Z(G), |al = 2. We can assume
E = {a, b, |b| = 2. Since E is characteristic in M and G <« M we have
G > E. Thus G = C4(E). |G: C4(E)| < 6 and since G = G’, we must have
E = Z(G). There are no involutions ¢ in G — E, for then {¢, £) would be an
elementary abelian group in G of order 8, which is impossible. G contains at
most three involutions, so the theorem follows from the argument given in
Section 3 of [2].

From now on we can assume M has no characteristic elementary abelian
subgroup of order 4. From [6, Theorem 4.9, p. 198] we have that M is the
central product of groups E and R where E = 1, or E is extraspecial and either
R is cyclic, quaternion, dihedral, or semidihedral. E/Z(E) is elementary abelian
of order 4* for some k [6, Theorem 5.2(iii), p. 204]. M has sectional 2-rank at
most 4, M = ERso |E/Z(E)| < 4and |E| < 8. Let M = M/®(M). If G acts
trivially on M, then G = G/Cgz(M) is a 2-group. Since G = G’, this implies
G = Cg(M) and M is abelian. M has no characteristic elementary abelian
subgroups of order 4 so M is cyclic. We have that either M is cyclic or G acts
nontrivially on M.

We now take up the case where G acts nontrivially on M. G has sectional
2-rank at most 4, so |M| < 16. Clearly |M| = 8 since G = G'. Assume
[IM| = 8. M = ER and hence |E| = 8 and R is cyclic. Clearly G must act
irreducibly on M since G = G’, but this is clearly seen to be impossible if E is
extraspecial of order 8 and R is cyclic. Now assume that |[M| = 16 and G
acts irreducibly on M. Since M = ER, M must be extraspecial. In the
characteristic 2 case, the outer automorphism group of M is contained in one
of the 4-dimensional orthogonal groups over GF(2). This latter fact implies
G = Cyx(M) = As and part (b) of the theorem holds.

We now assume M is cyclic, so N is cyclic, G/N is fusion simple. In this case
M = N. Also 2| |N|. We apply Corollary C of [7]. If (i) holds, then G is a
quasisimple group. Corollary B of [7] now applies. G is not simple because
2| 1Z(G)|, so G = Sp(4, q) and (c) of the theorem holds.

If (i) holds, G = G/N =~ L, x L, where L, and L, are simple groups of
sectional 2-rank 2. Let L be a subgroup of G such that L > N and L/N =~ L,.
If L has 2-rank 2 and N n L’ # 1, then L =~ Sp(4, q) by Corollary B. This
is impossible since Sp(4, ¢) has sectional 2-rank 4 and L, does not. Thus if L
has 2-rank 2, we must have L' n N = 1. If L' has 2-rank 2, then L has an
elementary abelian group of order 8 which is impossible. Thus L’ has 2-rank 1,
implying that its Sylow 2-subgroups are quaternion. But [5] implies there is a
z € Z(L'), which is impossible since L’ =~ L,, which is simple. We now have
that L has 2-rank 1 and as was seen in the first part of the proof of this theorem,
this implies L, isomorphic to PSL,(q) (¢ odd) or to 4,. The same holds for
L,, so part (d) of the theorem holds. Part (iii) of Corollary C cannot hold since
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we are assuming G = G’. If (iv) holds, then as we saw above, part (b) of the
theorem holds.

3. In this section we give some results on 2-subgroups of collineation groups.
These results are interesting in their own right and hopefully will prove useful
in further classification of collineation groups of finite projective planes.

LemMma 3.1. Let a, b, ¢, and d be involutory homologies acting on a finite
projective plane T1. Let a have center P and axis q, and assume b, ¢, and d,
centralize a, and have centers on q. Assume b, ¢, and d all interchange the points
L and M on q. If S = <b, ¢, d) is a 2-group containing no Baer involutions,
then the subgroup of S fixing L and M, is cyclic or generalized quaternion.

Proof. Let x be the points of the line PL excluding {P, L} and let y be the
points of PM excluding {P, M}. Call these sets the x and y axis, respectively.
Let T = x v y. S acts faithfully as a permutation group on T, with b, ¢, and d
interchanging x and y. Since |b| = 2 we can order the points of T so that b
has the permutation matrix

0 I
o

(I the (n — 1) x (n — 1) identity matrix, »n the order of IT). For any col-
lineation z in Sy, let x(z) and y(z) represent the action of z on the x and y
axis, respectively. Since |c| = |d| = 2, if we let x(bc) = C and x(bd) = D,
then y(bc) = C~! and y(bd) = D!, respectively. Since S is a 2-group, |bc|,
|bd|, |C|, |D| are all powers of 2.

Let G = {bc, bd). Assume C and D commute. Let e € G, e = (bc)'(bd)’,
le| = 2. x(e) = C'DJ, y(e) = C™'D7I, (x(e)) ™! = D~IC”, and D™IC™ ! ~
C~iD7J. Inverses and conjugates have the same order, so |x(e)| = |y(e)| = 2.
e is a homology since |e¢] = 2, and it acts nontrivially on the x and y axis.
e fixes P, L, M so the axis of e is ¢ and from Lemma 2.1, ¢ = a. Thus G con-
tains one element of order two, is abelian, and hence cyclic. Thus the lemma is
proved and from now on we assume C and D do not commute.

We have ab = ba, so if we let x(a) = A, then y(4) = A.

By the argument of the previous paragraph the element of order two in {bc)
and {(bd) is a. Thus 4 € (C) and 4 € (D). Let E be the largest power of C
such that E ¢ {(C)> n (D), but E?2 € {C) n {D). Let F be the corresponding
power of D. E and F must exist if C and D do not commute. We can assume
E? = F%, Let e e (b, ¢) with x(e) = E, y(e) = E~!, and let fe {b, d) with
x(f) = Fandy(f) = F~'. E"'Fisconjugateto FE™*,and FE~!is(EF ')~ 1.
Thus E~'F and EF~*! fix the same number of points. If E and F commute,
then e™!f would have order two and so e”!f = a by the argument we used
above. But then f = ea, and F = EA € {C), a contradiction to the choice of
F. Thus E and F do not commute.

Since e and f centralize * = 2, (e, f> & {e*). Since f? e {(e?), e, fD/{e*)
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is a dihedral group. Let g = ef. <{e,f> = (e, g, and every element in {e, g)>
can be written in the form e'g’. Suppose e'g’ has order two. Then x(e'g’) =

E'(EF) and y(e'¢’) = ET'(E"'F~')Y have order dividing 2. These two
matrices must have the same order. For we have E~'F~! = E"Y(EF)™'E.
Thus

E“(E~'F~ 'Y = E"E~'F Y)Y = E"'E~Y(EF)™JE.

This matrix is conjugate to (EF) JE~Y)E™E = (EF)"JE~'. This matrix in
turn is [E(EF)’]™!. Thus e'g’ has order two on both the x and y axis, and
since there are no Baer involutions, again by Lemma 2.1, ¢'g’ = a. Thus
{e, g> has only one element of order two, so it is cyclic or generalized quaternion.
If the group is cyclic, then £ and F commute, which we have shown is not the
case.

We now have to handle the possibility of G being larger than {e, f). €* = f2
solel =|fl=4. Lethe (g), |hl = 4. Then (e, h) is quatermon Assume
there exists an r € {bc) with r* = e. {(e> < (r, k) and r? € {e), h® € {e) so
{r, h)/{e) is dihedral. We have r~(rh)r = (rh)~'e' for some i. h* = e* and
r~2 = e ! yield i = —1. We compute directly that (rh)~le(rh)> = e~ ! so
r~Y(rh)*r = (rh)~2. We also see (rh)*> € C(e). Let k = (rh)®. Since e™! = ea,
E™! = EA. Also F! = FA so x(g') = y(g") for all g' € {(g). Let x(h) =
y(h) = H. Let x(tk) = K, x(r) = R so K= RHRH. But we also have
y((rh)®) = R"'HR'H = RHRH, because R* = E, H"'EH = E™!, and
H? = E2. Thus y((rh)®>) = K. We have shown r “kr = k™! so every element
in ¢r, k> can be written as r'k/. Assume |rk’| = 2. Assume R'’K’ = 1. Then
K7 = R™'. rcentralizes e and inverts k, so |r'k/| = 2implies |K’| = |R™/| < 2.
But then y(r'k’) = R™ 'K/ = R'K/ = x(r'’k’) = 1 which is impossible. Then
|R'K’] = 2. By the same argument |R™‘KJ| = 2 implying r'k/ = a. Thus
{r, k) is cyclic or generalized quaternion. Since e € Z{r, k) and |e| = 4,
{r, k) must be cyclic. r inverts k so |k| < 2. It is clear that |rh| > 2, so
|k| =2, and |rh| = 4. Also (rh)*> = e* = h*. This and (rh)* = 1 gives
h™'rh = r~1, so {r, h) is generalized quaternion.

Suppose |g| > |h|. We can assume g?> = h. r normalizes {e, 1) since
[{r, B): e, BY] = 2 and g normalizes <{e, h) by similar reasoning. r and g
generate distinct nontrivial automorphisms of <e, 4> of order two. But the
automorphism group of the quaternion group {e, A) is isomorphic to 4;. Thus
3| |S| which is impossible. Thus we conclude that if r ¢ {e), then |g| = 4 and
{e, f> is a quaternion group. Also, {r, h) is a generalized quaternion group
containing {e, f.

Now assume bd ¢ {f). We can assume (bd)*> = f, and using the same argu-
ment we used for r, we get bd acting on {e, f> as an automorphism of order
two, distinct from the action of r or (e, f). This is impossible. Thus if r ¢ <{e)>,
we get bd e {f).

The last obstacle is to show (r, f) = <{bc, bd) is generalized quaternion.
This is the case if (bc)? € {e). If (bc)* ¢ {e), we can proceed by induction,
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assuming {r2, f) is generalized quaternion, so that {r, f>/{r?) is dihedral,
and then we can use the arguments that we used for {r, &> to show {r, ) is
generalized quaternion.

All this is under the assumption r e {e). If r ¢ {e) then either bd € {f>
or bd ¢ {f>. The former is trivial and the latter would just involve repeating
the argument we used for r. Thus the lemma is proved.

LEMMA 3.2. Let S be a 2-group satisfying Hypothesis H, and containing an
involution d with center L and axis MP, P not on q. Then:

(i) Q = Cx(b) N Sy is cyclic or generalized quaternion.

(i) IfcesS, |c| =2, (M) =L and if b and ¢ are chosen so that |bc| is
maximal then Q <= N{b, ¢).

(ili) There are at most 4 classes of involutions in S interchanging L and M,
all involutions of S are in {b, ¢, Q> and [S: (b, ¢, d, Q)] < 4.

Proof. Since b interchanges L and M, the only involution in S}, centralizing
b is a. This gives (i).

Lette Q,|t| = 4. db = bdaso (bdt)* = 1sincet? = a. Letce S, |c| = 2,
(L)c = M such that |bc| is maximal. By Lemma 3.1, {b(bdt), bc) is cyclic or
generalized quaternion. <bc) <a {dt, bc) because |bc| is maximal. Thus
dt € N(Kbc)). If Q is generalized quaternion, it is generalized by its elements
of order 4, so Q = N({b, ¢). If Q is cyclic, let Q = {r) and let r "cr = e.
<be, bc) is cyclic or generalized quaternion. If it is cyclic, then be € {bc) and
Q < N{bc). If {be, bc) is generalized quaternion, since |be| = |bc| and |bc|
is maximal, be € {bc) or |be| = 4. In the former case Q = N(b, ¢). In the
latter case (be) 'bbe = ba and dbe € C(b) N Spy. |dbe| = 4, so let t = dbe,
te {r). By the same reasoning |dbc| = 4, dbc € C(b) n S;, and we can
assume dbc = t. Thus ¢ = e and (ii) follows.

Let x be any involution of S with (L)x = M. {bx, bc) is cyclic or generalized
quaternion. If it is cyclic, by the choice of ¢, bx € {bc) and x € (b, ¢). <b, ¢)
has two classes of involutions interchanging L and M. Call these classes C;
and C,. If <{bx, bc) is generalized quaternion then x € C(bc) and |bx| = 4.
bxbx = a, so xbx = ba. Then dx e C4(b) = {Q, b) and x € (b, d, Q) n C(bc).
If Q is generalized quaternion let Q = (e, f>,f 'ef = e~ !, |f| = 4. We have
seen |bdfe’| = 2 since | fe'| = 4. We get two classes of involutions in {b, ¢, d, Q) :

C; = {bdfe*'*' |ie Z} and C, = {bdfe*' |ie Z}.

If se<e), |s| = 4, let C = {bds, bdsa} a set of involutions. Let u € {bc),
lul = 4. Q normalizes {bc) and ¢ € Q, at most inverts bc, so we can assume
s € C(bc). Thus |us| = 2 since u?> = s> = a. We can also assume us = d.
But then

{bds, bdsa} = {bus, ba} = C, U C,.
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If |x] =2, (L)x =M, xe<b,d, Q) — {b,d, ay, x = bdt for some te Q.
|x| = 2 and bd = bda implies bdthdt = 1 and at®> = 1, so |t| = 4. Thus the
C;’s contain all the involutions of S interchanging L and M. If Q is cyclic
x €<b, d, O, x as above, then x = bdt or x = bdta, t the unique element of
order four in Q. As before {bdt, bdta} = C, v C,.

Let H be the group generated by the C;’s. S = H because it is generated by
involutions and H < (b, ¢, d, Q) since we have shown the latter group con-
tains all the involutions of S. The C;’s are complete conjugacy classes in H.
Letye S, he C;andlet y~'hy € C;. Let g~ 'hg be an arbitrary element of C,,
ge H. Let y 'gy = ke H. We have

y ' hgy = k™'y " 'hyk € C,,

so S permutes the classes C; as sets. Ng(C;) = <b,¢,d, Q> so[S:<b,c,d, Q)] <
4 and (iii) follows.
In the following lemma we assume the notation of Lemma 3.2.

LeEMMA 3.3, Let S be as in 3.2 and assume there is an involutory homology d
in S with center L and axis PM. If Q is generalized quaternion, there is no
homology k with center P and axis q such that k| = 4.

Proof. Assume k exists. Then [k, i] = 1 for all involutions / with center
on g and axis through P. Thus k € C(b), k € Q. ae Q, and bd = bda for b
as in Lemma 3.2. Thus |bdf| = 2 for all 1€ Q, |¢| = 4. Hence [k, bdt] = 1
since bdt is an involution acting nontrivially on g. However, [k, b] = [k,d] = 1
so [k, 2] =1 for all teQ, |t| = 4. This is impossible if Q is generalized
quaternion and k € Q, |k| = 4.
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