INCOMPRESSIBILITY AND FIBRATIONS

BY
Jay E. Goldfeather

0. Introduction

Let $f: X \rightarrow Y$ and let $A \subseteq Y$ with $i: A \rightarrow Y$ the inclusion. The map f can be compressed into A if there is a map $\bar{f}: X \rightarrow A$ such that $i \circ \bar{f} \simeq f$. If Y is a CW complex then a map $f: X \rightarrow Y$ is incompressible if it does not compress into any smaller skeleton. In particular, if Y is infinite dimensional, f is incompressible. if it does not compress into any finite skeleton.

If the induced homomorphism

$$
f_{j}: H_{j}(X ; G) \rightarrow H_{j}(Y ; G) \quad\left(\text { or } f^{j}: H^{j}(Y ; G) \rightarrow H^{j}(X ; G)\right)
$$

is nonzero for some $j>N$, then f cannot compress into Y^{N}. However, f_{j} identically zero for all $j>N$ is not a sufficient condition for f compressing into Y^{N}.

For example, Weingram [5] has shown that every nontrivial map

$$
f: \Omega S^{2 n+1} \rightarrow K\left(Z_{p^{r}}, 2 n\right)
$$

is incompressible, yet f_{j} and f^{j} (any coefficients) are identically zero for all $j>2 n p r$.

Suppose $n m$ is even and let \bar{m} be m if n is even and $m / 2$ if n is odd. Let $f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$ be a nontrivial map so that it represents a cohomology class $x \in H^{n m}\left(\Omega S^{n+1} ; Z_{p^{r}}\right)$ with $p^{r-j} x=0$ for some $j, 0 \leq j<r$. Let $N_{k}(m, s, p)$ be the number of factors of p in $p^{s k}(m!)^{k} /(k m)!$ and let

$$
M=\left\{(m, s, p) \mid \lim _{k} \sup N_{k}(m, s, p)=+\infty\right\}
$$

The following theorem is proved.
Theorem 2.2. If $(\bar{m}, r-j, p) \in M$, then $f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$ is incompressible.

For example, nontrivial maps

$$
f_{k}: \Omega S^{2 n+1} \rightarrow K\left(Z_{p^{r}}, 2 n p^{k}\right) \text { and } g_{k}: \Omega S^{2 n+2} \rightarrow K\left(Z_{p^{r}},(4 n+2) p^{k}\right)
$$

are incompressible for all $k=0,1,2, \ldots$ Except for f_{0}, the incompressibility of these maps are not derivable by the methods of [5].

Sections 3 and 4 deal with applications of Theorem 2.2. In particular, the following are proved:

Received March 1, 1976.

Corollary 3.7. Every nontrivial map

$$
f: \Omega S M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)
$$

is incompressible.
Corollary 3.8. Let G be finitely generated and abelian. Every nontrivial map $\Omega S M(Q / Z, 2 n-1) \rightarrow K(G, 2 n)$ is incompressible.

Let $\left(S^{n}\right)_{m}$ denote the m th reduced product of S^{n} and let $\operatorname{Im}_{k}(Y, X ; G)=$ and $\left\{x \in H_{k}(X ; G) \mid x=f_{*}(y)\right.$ for some $y \in H_{k}(Y ; G)$ and for some $\left.f: Y \rightarrow X\right\}$.

Theorem 4.1. Let X be a finite H-space and let

$$
y \in \operatorname{Im}_{n m}\left(\left(S^{n}\right)_{m}, X ; Z\right)
$$

where $n m$ is even.
(a) y cannot be of infinite order.
(b) Suppose $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}(y)=0$ where p_{i} is prime. Then for each $i=1, \ldots, k$ we have $\alpha_{i}<\bar{m}$ where \bar{m} is m if n is even and $m / 2$ if n is odd.

Theorem 4.3. Let X be a $(2 n-2)$-connected finite dimensional H-space (not of finite type). Then $\Pi_{2 n-1}(X)$ cannot contain $Z_{p^{\infty}}$ as a summand for any prime p.

All spaces will be assumed to be homotopic to simply connected CW complexes and $H^{*}(X), H_{*}(X)$ will be understood to have coefficient group the integers.

This paper contains results from part of the author's doctoral dissertation. I would like to thank Stephen Weingram for his guidance as my thesis advisor.

1. Fibrations and incompressibility

When studying the problem of whether a map $f: X \rightarrow B$ compresses into $A \subseteq B$, it suffices to assume that f is a fiber map. If not, there exists a fibration

$$
F \longrightarrow X^{\prime} \xrightarrow{f^{\prime}} B
$$

and a homotopy equivalence $v: X^{\prime} \rightarrow X$ such that $f^{\prime}=f \circ v$ and it follows that f^{\prime} compresses into A if and only if f does. Let X_{A} denote $f^{-1}(A)$ and f_{A} denote f restricted to X_{A}.

Definition 1.1. Let $A \subseteq X$ with $i: A \rightarrow X$ the inclusion. A map $r: X \rightarrow A$ is a coretraction if $i \circ r \simeq \mathrm{id}_{X}$.

Proposition 1.2. Let

$$
F \xrightarrow{i} X \xrightarrow{f} B
$$

be a fibration and let A be a subspace of B. Let $j_{A}: X_{A} \rightarrow X$ be induced by the inclusion $j: A \rightarrow B$. Then f can be compressed into A if and only if j_{A} admits a coretraction $r_{A}: X \rightarrow X_{A}$.

Proof. Suppose $r_{A}: X \rightarrow X_{A}$ exists such that $j_{A} r_{A} \simeq \mathrm{id}_{X}$. Then

$$
j \circ\left(f_{A} \circ r_{A}\right) \simeq f \circ j_{A} \circ r_{A} \simeq f
$$

so that f compresses into A.
Suppose f can be compressed into A. Then there exists $f: X \rightarrow A$ and a homotopy $h_{t}: X \rightarrow B$ such that $h_{0}=f$ and $h_{1}=i \circ \bar{f}$. By the covering homotopy property, there is a homotopy $\bar{h}_{t}: X \rightarrow X$ such that $\bar{h}_{0}=\operatorname{id}_{X}$ and $f \circ h_{i}=$ $i \circ \bar{f}$. Since Image $(i \circ \bar{f}) \subseteq A$ it follows that Image $\left(\bar{h}_{1}\right) \subseteq X_{A}$. Hence $j_{A} \circ \bar{h}_{1} \simeq$ $h_{0}=\mathrm{id}_{X}$. Let $r_{A}=\bar{h}_{1}$.

Definition 1.3. Let G be an abelian group and p a prime. An element $g \in G$ has p-depth $\geq k$ if for some nonnegative integer s,

$$
g=p^{k} g_{1}+v \quad \text { where } p^{s} v=0 \text { and } p^{s+k} g_{1} \neq 0
$$

If g has p-depth $\geq k$ but not p-depth $\geq k+1$, then g has p-depth k and this will be denoted by $p[g]=k$.

Lemma 1.4. Let $h: G_{1} \rightarrow G_{2}$ be a homomorphism of abelian groups and suppose $h(g) \in G_{2}$ has infinite order for some $g \in G_{1}$. Then $p[g]=k$ implies $p[h(g)] \geq k$.

Proof. Let $g=p^{k} g_{1}+v$ where $p^{s} v=0$ and $p^{s+k} g_{1} \neq 0$ for some integer s. Then $h(g)=p^{k} h\left(g_{1}\right)+h(v)$ so that $p^{s} h(v)=0$ and since $h(g)$ has infinite order, $p^{s+k} h\left(g_{1}\right) \neq 0$. Hence $p[h(g)]$ is at least k.

Theorem 1.5. Let

$$
F \xrightarrow{i} X \xrightarrow{f} B
$$

be a fibration and let $j_{A}: X_{A} \rightarrow X$ be the inclusion induced by the inclusion $j: A \rightarrow B$. Suppose there exists $x \in H^{*}(X)$ such that x has infinite order, $p[x]=$ k but $p\left[j_{A}^{*}(x)\right]>k$. Then f cannot be compressed into A.

Proof. In the light of Proposition 1.2, it suffices to show j_{A} does not admit a coretraction r_{A}.

Suppose such a coretraction existed. Then $j_{A} \circ r_{A} \simeq \mathrm{id}_{X}$ so that $\mathrm{id}_{X}^{*}=$ $r_{A}^{*} j_{A}^{*}$. Then $x=\mathrm{id}_{X}^{*}(x)=r_{A}^{*}\left(j_{A}^{*}(x)\right)$. By Lemma 1.4, since x has infinite order,

$$
k=p[x]=p\left[r_{A}^{*} j_{A}^{*}(x)\right] \geq p\left[j_{A}^{*}(x)\right] .
$$

$p\left[j_{A}^{*}(x)\right]>k$ contradicts this, so no coretraction exists.
In order to make use of Theorem 1.5, it is necessary to know something about $H^{*}\left(X_{A}\right)$. Under certain conditions, this information can be obtained by examining $i^{*}: H^{*}(X) \rightarrow H^{*}(F)$, so we proceed in this direction.

Definition 1.6. Let $h: G_{1} \rightarrow G_{2}$ be a homomorphism of abelian groups and let $\left\{x_{k}\right\}$ be a sequence of distinct elements of $G_{1} . h$ is said to p-twist $\left\{x_{k}\right\}$ if the following hold.
(a) For all $k, p\left[x_{k}\right] \leq M$ for some nonnegative integer M.
(b) $p\left[h\left(x_{k}\right)\right]=\sigma_{k}$ where $\lim _{k} \sup \sigma_{k}=+\infty$.

If x_{k} is of infinite order for all k, then h freely p-twists $\left\{x_{k}\right\}$ if in addition $h\left(x_{k}\right)$ is of infinite order for all k.

Before stating the main theorem of this section, note that if

$$
F \xrightarrow{i} X \xrightarrow{f} B
$$

is a fibration and $X[N]=f^{-1}\left(B^{N}\right)$ then

is a map of fibrations.
Theorem 1.7. Let

$$
F \xrightarrow{i} X \xrightarrow{f} B
$$

be a fibration with the following properties:
(a) $H_{*}(B)$ is a finite p-group in each degree greater than 0.
(b) There exists a sequence $\left\{x_{k}\right\}$ such that $x_{k} \in H^{t_{k}}(X)$ and each x_{k} is of infinite order.
(c) There are an infinite number of integers N such that

$$
\operatorname{Ker}\left(H^{t_{k}}(X[N]) \rightarrow H^{t_{k}}(F)\right)
$$

is a finite group for all k.
(d) i^{*} freely p-twists $\left\{x_{k}\right\}$.

Then f is not compressible into any finite skeleton.
Before proving this theorem, it is necessary to recall some facts about the Serre cohomology spectral sequence of a fibration $F \rightarrow E \rightarrow B$ [4].
(1) $H^{n}(E)$ is filtered by

$$
H^{n}(E)=D^{0, n} \supseteq D^{1, n-1} \supseteq \cdots \supseteq D^{n, 0} \supseteq D^{n+1,-1}=0
$$

where $D^{j, n-j}=\operatorname{Ker}\left(H^{n}(E) \rightarrow H^{n}(E[j-1])\right)$.
(2) $E_{2}^{j, n-j}=H^{j}\left(B ; H^{n-j}(F)\right)$.
(3) $E_{\infty}^{j, n-j}=D^{j, n-j} / D^{j+1, n-j+1}$.
(4) $0 \rightarrow D^{1, n-1} \rightarrow H^{n}(X) \rightarrow E_{\infty}^{0, n} \rightarrow 0$ is exact.
(5) $\quad E_{\infty}^{0, n}=\operatorname{Im}\left(H^{n}(E) \rightarrow H^{n}(F)\right)$.

Let $w_{k}=j_{N}^{*}\left(x_{k}\right) \in H^{t_{k}}(X[N])$ so that $i_{N}^{*}\left(w_{k}\right)=p^{\sigma_{k}} y_{k}+v_{k}$ where y_{k} is of infinite order and for each k, there exists s_{k} such that $p^{s_{k}} v_{k}=0$. (This just specifies $i^{*}=i_{N}^{*} j_{N}^{*}$ as a free p-twisting.)

Lemma 1.8. Under the conditions of Theorem 1.7, there exists an integer $v(N)$ and for each k, an element $z_{k} \in H^{t_{k}}(X[N])$ such that $i_{N}^{*}\left(z_{k}\right)=p^{v(N)} y_{k}$ for all k.

Proof. Let $\left\{E_{r}, d_{r}\right\}$ be the spectral sequence of $F \rightarrow X \rightarrow B$ and $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}$ the spectral sequence of $F \rightarrow X[N] \rightarrow B^{N}$. Then the map $j: B^{N} \rightarrow B$ induces a map $E_{r} \rightarrow{ }^{\prime} E_{r}$ which commutes with the differential.

Since $H^{*}(B)$ is a finite p group in each degree, for each k there exists an integer $\lambda(k)$ such that $p^{\lambda(k)} E_{2}^{k, 0}=0$. Then $p^{\lambda(k)} E_{j}^{k, t}=0$ for all $j \geq 2$ and $t \geq 0$ where

$$
\bar{\lambda}(k)=\max (\lambda(k), \lambda(k+1))
$$

(This is just a consequence of the Universal Coefficient Theorem.) Consider the differential ' $d_{2}:{ }^{\prime} E_{2}^{0, t_{k}} \rightarrow{ }^{\prime} E_{2}^{2, t_{k}-1}$. By naturality, $p^{\bar{\lambda}(2)}{ }^{\prime} d_{2}\left(y_{k}\right)=0$ for all k. Hence $p^{\lambda(2)} y_{k}$ is a 2 -cycle for all k. Similarly $p^{\bar{\lambda}(2)+\bar{\lambda}(3)} y_{k}$ is a 3 -cycle under ' d_{3} for all k and in general if $v(N)=\bar{\lambda}(2)+\cdots+\bar{\lambda}(N), p^{v(N)} y_{k}$ is a permanent cycle in $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}\left({ }^{\prime} d j=0\right.$ for $\left.j>N\right)$. Since $p^{v(N)} y_{k} \in E_{\infty}^{0, t_{k}}$ for all k and

$$
E_{\infty}^{0, t_{k}}=\operatorname{Im}\left(i_{N}^{*}: H^{t_{k}}(X[N]) \rightarrow H^{t_{k}}(F)\right)
$$

there exists $z_{k} \in H^{t_{k}}(X[N])$ such that $i_{N}^{*}\left(z_{k}\right)=p^{v(N)} y_{k}$.
Proof of Theorem 1.7. It suffices to show that f does not compress into B^{N} for any N satisfying (c).

Let M be such that $p\left[x_{k}\right] \leq M$ for all k. By Theorem 1.5 , it suffices to show that for every N satisfying (c), there exists k such that $p\left[j_{N}^{*}\left(x_{k}\right)\right] \geq M+1$.

Let $i^{*}\left(x_{k}\right)=p^{\sigma_{k}} y_{k}+v_{k}$ and $w_{k}=j_{N}^{*}\left(x_{k}\right)$ as in Lemma 1.8. Since $i_{\gtrless}^{*}\left(z_{k}\right)=$ $p^{v(N)} y_{k}$,

$$
i_{N}^{*}\left(w_{k}-p^{\sigma_{k}-v(N)} z_{k}\right)=v_{k} .
$$

But

$$
0 \longrightarrow D^{1, t_{k}-1} \xrightarrow{\alpha} H^{t_{k}}(X[N]) \xrightarrow{i_{N^{*}}} E_{\infty}^{0, t_{k}} \longrightarrow 0
$$

is exact, so that

$$
p^{s_{k}}\left(w_{k}-p^{\sigma_{k}-v(N)} z_{k}\right)=\alpha\left(\bar{v}_{k}\right) \quad \text { for some } \bar{v}_{k} \in D^{1, t_{k}-1}
$$

Condition (c) says that $D^{1, t_{k}-1}$ is a finite p group for all k so that $p^{j_{k}} \bar{v}_{k}=0$ for some $j_{k} \geq 0$. Hence $p^{j_{k}+s_{k}}\left(w_{k}-p^{\sigma_{k}-v(N)} z_{k}\right)=0$ which implies that

$$
w_{k}=p^{\sigma_{k}-v(N)} z_{k}+u_{k}=0 \quad \text { where } p^{j_{k}+s_{k}} u_{k}=0
$$

Since $\lim \sup \sigma_{k}=+\infty$ and $v(N)$ is fixed, we may choose k so that $\sigma_{k}-$ $v(N) \geq M+1$. Then $p\left[j_{N}^{*}\left(x_{k}\right)\right]=p\left[w_{k}\right] \geq M+1$.
2. Incompressibility conditions for maps $\Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$

In [5], Weingram proved that any nontrivial map

$$
f: \Omega S^{2 n+1} \rightarrow K\left(Z_{p^{r}}, 2 n\right)
$$

is incompressible. The proof utilizes the fact that any such map is homotopic to an H map and so induces a homomorphism of rings in homology. In this section a more general theorem is proved using cohomological techniques so that incompressibility conditions can be established for maps

$$
f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)
$$

which are not in general homotopic to H maps. In view of the following proposition, attention will be focused on the situation when $n m$ is even.

Proposition 2.1. If m is odd and p is an odd prime, any map

$$
f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)
$$

compresses into the $(n m+1)$-skeleton.
Proof. If n is even, all maps $\Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$ are trivial, so assume n is odd. For odd primes, $S_{(p)}^{n m}\left(S^{n m}\right.$ localized at p) is an H-space of dimension $n m+1$. The natural map $Z \rightarrow Z_{(p)}$ induces an epimorphism

$$
\operatorname{Hom}\left(Z_{(p)}, Z_{p^{r}}\right) \rightarrow \operatorname{Hom}\left(Z, Z_{p^{r}}\right)
$$

and hence an epimorphism $H^{n m}\left(S_{(p)}^{n m} ; Z_{p^{r}}\right) \rightarrow H^{n m}\left(S^{n m} ; Z_{p^{r}}\right)$. Let $\left(S^{n}\right)_{m}$ denote the James m th reduced product space of S^{n} and let $g:\left(S^{n}\right)_{m} \rightarrow S^{n m}$ be the map pinching the $(n m-1)$-skeleton to a point. Then g induces an epimorphism

$$
H^{n m}\left(S^{n m} ; Z_{p^{r}}\right) \rightarrow H^{n m}\left(\left(S^{n}\right)_{m} ; Z_{p^{r}}\right)
$$

Since $S_{(p)}^{n m}$ is an H-space, and the attaching maps for constructing $\Omega \mathrm{S}^{n+1}$ from $\left(S^{n}\right)_{m}$ are higher order Whitehead products, any map $h:\left(S^{n}\right)_{m} \rightarrow S_{(p)}^{n m}$ extends to

$$
\bar{h}: \Omega S^{n+1} \rightarrow S_{(p)}^{n m} .
$$

Hence $\bar{h}^{*}: H^{n m}\left(S_{(p)}^{n m} ; Z_{p^{r}}\right) \rightarrow H^{n m}\left(\Omega S^{n+1} ; Z_{p^{r}}\right)$ is an epimorphism so that any map $f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$ factors through $S_{(p)}^{n m}$ which is ($n m+1$)-dimensional. By the cellular approximation theorem, f compresses into the $(n m+1)$ skeleton.

Assuming, then, that $n m$ is even, the procedure will be to show when the conditions of Theorem 1.7 are satisfied for $X=\Omega S^{n+1}$ and $B=K\left(Z_{p^{r}}, n m\right)$. We begin by recalling some facts about $H^{*}\left(\Omega S^{n+1}\right)$ and $H_{*}\left(K\left(Z_{p^{r}}, n m\right)\right.$.
(1) If n is even, $H^{*}\left(\Omega S^{n+1}\right)$ is a divided power ring with generators $x^{(k)}$ in dimension $n k$ satisfying the relation

$$
x^{(k)} x^{(s)}=\binom{k}{s} x^{(k+s)}
$$

(2) If n is odd, $H^{*}\left(\Omega S^{n+1}\right)$ contains a divided power ring with generators $x^{(k)}$ in dimension $2 n k$ satisfying the relation in (1).
(3) In either (1) or (2), $x^{(k)}$ is not divisible by p so that for all $k, p\left[x^{(k)}\right]=0$.
(4) If $\mu: H^{*}\left(\Omega S^{n+1}\right) \rightarrow H^{*}\left(\Omega S^{n+1} ; Z_{p^{r}}\right)$ is the coefficient reduction map, then $H^{*}\left(\Omega S^{n+1} ; Z_{p^{r}}\right)$ is (contains) a divided power ring with generators $x_{r}^{(k)}=$ $\mu\left(x^{(k)}\right)$ for n even (n odd).
(5) $H_{*}\left(K\left(Z_{p^{r}}, n m\right)\right)$ is a finite p group in each degree.

The key to applying Theorem 1.7 is to verify that i^{*} is a free p-twisting of $\left\{x_{k}\right\}$. This would be straightforward if for example $i^{*}\left(x_{1}\right)=p y_{1}$ and $x_{k}=x_{1}^{k}$. Then $i^{*}\left(x_{k}\right)=p^{k} y_{1}^{k}$ so that $\sigma_{k} \geq k$ and hence is unbounded. The problem arises when $x_{1}^{k}=a_{k} x_{k}$. Then if $i^{*}\left(x_{1}\right)=p y_{1}, i^{*}\left(x_{k}\right)=p^{k-p\left[a_{k}\right]} y_{k}+v_{k}$ where $a_{k} v_{k}=0$. It is possible that $\lim \sup \left(k-p\left[a_{k}\right]\right) \neq \infty$.

Let $S_{p}(m)$ denote the number of factors of a prime p in m ! Note that $S_{p}(m)=$ $\sum_{i=1}^{p}\left[m / p^{i}\right]$ where [] denotes the greatest integer.

Let $N_{k}(m, s, p)=s k+k S_{p}(m)-S_{p}(k m)$ so that $N_{k}(m, s, p)$ is the number of factors of p in $p^{k s}(m!)^{k} /(k m)$!. Let

$$
\mathscr{M}=\left\{(m, s, p) \mid \lim _{k} \sup N_{k}(m, s, p)=+\infty\right\}
$$

Weingram [5] showed that $(1, s, p) \in \mathscr{M}$ for all s and primes p. The proof that there are other triples (m, s, p) in \mathscr{M} is number theoretic and is contained in the appendix.

Let $m n$ be even and let $f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, m n\right)$ be a nontrivial map. If \imath is the fundamental class in $H^{n m}\left(K\left(Z_{p^{r}}, n m\right) ; Z_{p^{r}}\right)$, and \bar{m} is m if n is even and $m / 2$ if n is odd, then $f^{*}(l)=u p^{j} x_{r}^{(m)}$ where u is a unit in $Z_{p^{r}}$ and $0 \leq j<r$.

Theorem 2.2. If $(\bar{m}, r-j, p) \in \mathscr{M}$, then $f: \Omega S^{n+1} \rightarrow K\left(Z_{p^{r}}, n m\right)$ is incompressible.

The proof will follow two lemmas. Unless it is necessary to specify more precisely, Ω will denote ΩS^{n+1} and K will denote $K\left(Z_{p^{r}}, n m\right)$.

Lemma 2.3. Let G be an extension of Z by $Z_{p^{r}}$. That is,

$$
0 \longrightarrow Z \xrightarrow{\alpha} G \xrightarrow{\beta} Z_{p^{r}} \longrightarrow 0
$$

is exact. Then:
(a) $G \cong Z \oplus G^{\prime}$ where $p^{k} G^{\prime}=0$ for some $k \leq r$.
(b) If G is a nontrivial extension (i.e., $G \not \equiv Z \oplus Z_{p^{r}}$) then $\alpha(1)=p^{s} y+v$ where $0<s \leq r$ and $p^{r-s} v=0$.

Proof. (a) is obvious. Let y be a free generator in G and let $\alpha(1)=m y+v$. $\beta\left(p^{r} y\right)=0$ implies there is a k such that $\alpha(k)=p^{r} y$. Hence $p^{r} y=k m y+k v$ so that $k m=p^{r}$. This implies $m=p^{s}$ and $k=p^{r-s}$ where $0<s \leq r .(s=0$ implies the sequence splits so that G would be a trivial extension.) Also $p^{r-s} v=$ 0 since β is a monomorphism on the torsion subgroup of G.

Lemma 2.4. A nontrivial map $f: \Omega \rightarrow K$ satisfies conditions (a), (b), and (c) of Theorem 1.7.

Proof. (a) is just statement (5) at the beginning of this section. For the sequence in (b) take the generators $x^{(k)}$.

Note that t_{k} is even. Condition (c) is equivalent to saying there are infinitely many N such that $D^{1, t_{k}-1}$ in the filtration of $H^{t^{k}}(\Omega[N])$ is a finite p group for all k. But $D^{1, t_{k}-1}$ is a finite p group if $E_{\infty}^{j, t_{k}-j}$ is a finite p group for $j=$ $1, \ldots, N$. But $E_{\infty}^{j, t_{k}-1}$ is a finite p group if $E_{2}^{j, t_{k}-1}$ is a finite p group for $j=$ $1, \ldots, N$. Since $E_{2}^{j, t_{k}-j}=H^{j}\left(K^{N} ; H^{t_{k}-j}(F)\right)$ where F is the fiber of the map $f: \Omega \rightarrow K$, and $H^{j}\left(K^{N}\right)$ is a finite p group for $j=1, \ldots, N-1$ by (a) and the Universal Coefficient Theorem, it is only necessary to check if $H^{N}\left(K^{N}\right.$, $H^{t_{k}-N}(F)$) is a finite p group. But (a) implies $H^{*}(F ; Q) \cong H^{*}(\Omega ; Q)$ so $H^{*}(F)$ is a finite p group in all degrees which are not multiples of n. There are infinitely many N such that $t_{k}-N$ is not a multiple of n for all k and (c) follows.

Proof of Theorem 2.2. In view of Lemma 2.4, it suffices to prove that if $i: F \rightarrow \Omega$ is the inclusion of the fiber then i^{*} is a free p-twisting of $x^{(k)}$.

The fibration

$$
F \xrightarrow{i} \Omega \xrightarrow{f} K
$$

induces a fibration

$$
\Omega K \xrightarrow{j} F \xrightarrow{i} \Omega .
$$

Since Ω is $(n-1)$-connected and ΩK is $(n m-2)$-connected, by Serres exact sequence
$0=H^{n m-1}\left(\Omega ; Z_{p^{r}}\right) \xrightarrow{i^{*}} H^{n m-1}\left(F ; Z_{p^{r}}\right) \xrightarrow{j^{*}} H^{n m-1}\left(\Omega K ; Z_{p^{r}}\right)$

$$
\xrightarrow{\tau} H^{n m}\left(\Omega ; Z_{p^{r}}\right)
$$

is exact. But $\tau(\imath)=u p^{j} x_{r}^{(\bar{m})}$ so that

$$
H^{n m-1}\left(F ; Z_{p^{r}}\right)=\operatorname{ker} \tau=Z_{p^{j}}
$$

where $Z_{p^{0}}$ is understood to mean the zero group.
Similarly the sequence
$0=H^{n m-1}(\Omega K) \longrightarrow H^{n m}(\Omega) \xrightarrow{i^{*}} H^{n m}(F) \longrightarrow H^{n m}(\Omega K) \longrightarrow H^{n m+1}(\Omega)=0$
is exact, and reduces to $0 \longrightarrow Z \xrightarrow{i^{*}} H^{n m}(F) \longrightarrow Z_{p^{r}} \longrightarrow 0$.

By the Universal Coefficient Theorem,

$$
Z_{p^{j}}=H^{n m-1}\left(F ; Z_{p^{r}}\right)=H^{n m-1}(F) \otimes Z_{p^{r}} \oplus \operatorname{Tor}\left(H^{n m}(F) ; Z_{p^{r}}\right)
$$

so that the torsion subgroup of $H^{n m}(F)$ has order $p^{j}, 0 \leq j<r$. By Lemma 2.3, $i^{*}\left(x^{(\bar{m})}\right)=p^{r-j} y_{\bar{m}}+v_{\bar{m}}$ where $p^{j} v_{\bar{m}}=0$ and $y_{\bar{m}}$ is of infinite order. But

$$
\left(x^{(\bar{m})}\right)^{k}=\frac{(\bar{m} k)!}{(\bar{m}!)^{k}} x^{(\bar{m} k)}
$$

so that

$$
i^{*}\left(x^{(\bar{m} k)}\right)=\frac{p^{k(r-j)}(\bar{m}!)^{k}}{(\bar{m} k)!} y_{\bar{m}}^{k}+T_{\bar{m} k} \quad \text { where } p^{j}(\bar{m} k)!T_{\bar{m} k}=0
$$

Let λ_{k} be the number of factors of p in

$$
\frac{p^{k(r-j)}(\bar{m}!)^{k}}{(\bar{m} k)!} y_{\bar{m}}^{k}
$$

Then $\lambda_{k} \geq N_{k}(\bar{m}, r-j, p)$ which by hypothesis has lim sup $=\infty$. Hence i^{*} is a free p-twisting.

3. Moore spaces

Let $M\left(Z_{p^{j}}, 2 n-1\right)$ be a Moore space. In this section it is shown that under certain conditions, given N there is an integer j such that no nontrivial map $\Omega \mathrm{S} M\left(Z_{p^{j+k}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ compresses into the N skeleton for all $k \geq 0$. Although it is not proved that such a map cannot compress into a higher dimensional skeleton, this result does imply that every nontrivial map

$$
\Omega S M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)
$$

is incompressible. We begin by establishing some conditions to detect whether the composition of incompressible maps is incompressible.

Recall the proof of Theorem 1.7.
(a) $i^{*}\left(x_{k}\right)=p^{\sigma_{k}} y_{k}+v_{k}$ where $p^{s_{k}} v_{u}=0$ for some integer $s_{k} \geq 0$.
(b) $j_{N}^{*}\left(x_{k}\right)=p^{\sigma_{k}-v(N)} z_{k}+u_{k}$ where $p^{s_{k}+j_{k}} u_{k}=0$ for some $j_{k} \leq m_{k}$ with $p^{m_{k}} D^{1, t_{k}-1}=0$.

Theorem 3.1. Let

$$
F \xrightarrow{i} X \xrightarrow{f} B
$$

be a fibration satisfying the conditions of Theorem 1.7 and let $r(N)$ be the smallest integer such that $p^{r(N)} H^{i}(B)=0$ for $0<i \leq N$. Let $g: Y \rightarrow X$. If for all k, $p^{s_{k}+N r(N)} g^{*}\left(x_{k}\right) \neq 0$ and $p\left[g^{*}\left(x_{k}\right)\right] \leq K$ for some fixed integer K, then $f \circ g$ does not compress into B^{N}.

Proof. In the filtration of $H^{*}(X[N]), D^{1, t_{k}-1}$ is obtained by finding N extensions by groups G_{i} with $p^{r(N)} G_{i}=0$. Hence $p^{N r(N)} D^{1, t_{k}-1}=0$ so that
$j_{k} \leq \operatorname{Nr}(N)$ for all k. Now

is a commutative diagram. Suppose $f \circ g$ compresses into B^{N}. Then there exists $h: Y \rightarrow Y[N]$ such that $\bar{j}_{N} h \simeq \mathrm{id}_{Y}$. Hence

$$
g^{*}\left(x_{k}\right)=h^{*} j_{N}^{*}\left(g^{*}\left(x_{k}\right)\right)=h^{*} g_{N}^{*}\left(j_{N}^{*}\left(x_{k}\right)\right)=p^{\sigma_{k}-v(N)} h^{*} g_{N}^{*}\left(z_{k}\right)+h^{*} g_{N}^{*}\left(u_{k}\right)
$$

Let $\lambda_{k}=s_{k}+\operatorname{Nr}(N)$ and $\tau_{k}=\lambda_{k}+\sigma_{k}-v(N)$. Then

$$
p^{\lambda_{k}} h^{*} g_{N}^{*}\left(u_{k}\right)=h^{*} g_{N}^{*}\left(p^{\lambda_{k}} u_{k}\right)=0
$$

so that $p^{\tau_{k}} h^{*} g_{N}^{*}\left(z_{k}\right)=p^{\lambda_{k}} g^{*}\left(x_{k}\right) \neq 0$. Choose k so large that $\sigma_{k}-v(N) \geq$ $K+1$. Then $p\left[g^{*}\left(x_{k}\right)\right]>K$.

This contradicts Theorem 1.5 so that $f \circ g$ cannot compress into B^{N}.
Let

$$
g_{j}: \Omega S M\left(Z_{p^{j}}, 2 n-1\right) \rightarrow \Omega S^{2 n+1}
$$

be induced by $\bar{g}_{j}: S M\left(Z_{p}, 2 n-1\right) \rightarrow S^{2 n+1}$ representing the generator in $\Pi_{2 n}\left(Z_{p^{j}} ; S^{2 n+1}\right)=Z_{p^{j}}$. Let $w_{k, j}=g_{j}^{*}\left(x^{(k)}\right)$. By comparing the spectral sequences of the path fibrations over $S^{2 n+1}$ and $\operatorname{SM}\left(Z_{p^{j}}, 2 n-1\right)$ it is easily seen that $w_{k, j}$ generates a copy of $Z_{p^{j}}$ in $H^{2 n k}\left(\Omega S M\left(Z_{p^{j}}, 2 n-1\right) ; Z\right)$.

Lemma 3.2. For every map $\vec{f}_{j}: \Omega S M\left(Z_{p^{j}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ there exists a map $f: \Omega S^{2 n+1} \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ such that $f \circ g_{j} \simeq \bar{f}_{j}$.

Proof. $\bar{f}^{*}(\imath)=u p^{s} w_{1, j}$ where u is a unit in $Z_{p^{j}}$ and $0 \leq s \leq j$. Let $f: \Omega S^{2 n+1} \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ represent

$$
u p^{s} x_{r}^{(1)} \in H^{2 n}\left(\Omega S^{2 n+1} ; Z_{p^{r}}\right) .
$$

Since the map f in Lemma 3.2 satisfies the conditions of Theorem 1.7, we would like to apply Theorem 3.1 to the map g_{j}. However, without further information on s_{k}, we cannot determine if $p^{s_{k}+N r(N)} w_{k, j} \neq 0$ for any j. The following lemmas show that there is a subsequence $\left\{k_{s}\right\}$ such that $s_{k_{s}} \leq j$ for all k_{s}.

Lemma 3.3. Let p be prime.

$$
\begin{equation*}
\binom{k p^{s}}{p^{s}} \not \equiv 0 \bmod p \text { for } 0<k \leq p-1 \tag{a}
\end{equation*}
$$

(b)

$$
\binom{p^{s+1}}{p^{s}}=p u \quad \text { where }(u, p)=1
$$

$$
\begin{equation*}
\binom{t_{k}}{t_{k-1}} \not \equiv 0 \bmod p \quad \text { if } t_{k}=p^{k}+\cdots+p+1 \tag{c}
\end{equation*}
$$

Proof. An easy exercise in binomial coefficients.
Lemma 3.4. Let $h: R_{1} \rightarrow R_{2}$ be a ring homomorphism. Suppose the torsion parts of R_{1} and R_{2} considered as groups under + are p groups and

$$
h\left(x_{1}\right)=p^{\alpha_{1}} y_{1}+u_{1}, \quad h\left(x_{2}\right)=p^{\alpha_{2}} y_{2}+u_{2}
$$

where for some integers s_{1} and $s_{2}, p^{s_{1}} u_{1}=0, p^{s_{2}} u_{2}=0,\left(s_{2}+\alpha_{1}\right)>s_{1}$, $\left(s_{1}+\alpha_{2}\right)>s_{2}$.
(a) If $x_{1} x_{2}=m x_{3}$ where $(m, p)=1$, then
$h\left(x_{3}\right)=p^{\alpha_{1}+\alpha_{2}} y_{3}+u_{3} \quad$ where $p^{s_{3}} u_{3}=0, s_{3}=\min \left(s_{1}, s_{2}\right)$.
(b) If $x_{1} x_{2}=p m x_{3}$ where (m, p)=1, then
$h\left(x_{3}\right)=p^{\alpha_{1}+\alpha_{2}-1} y_{3}+u_{3} \quad$ where $p^{s_{3}} u_{3}=0, s_{3}=1+\min \left(s_{1}, s_{2}\right)$.
Proof. Only (a) is proved as the proof of (b) is similar.

$$
\begin{aligned}
m h\left(x_{3}\right) & =h\left(x_{1}\right) h\left(x_{2}\right) \\
& =\left(p^{\alpha_{1}} y_{1}+u_{1}\right)\left(p^{\alpha_{2}} y_{2}+u_{2}\right) \\
& =p^{\alpha_{1}+\alpha_{2}} y_{1} y_{2}+u_{2} p^{\alpha_{1}} y_{1}+u_{1} p^{\alpha_{2}} y_{2}+u_{1} u_{2}
\end{aligned}
$$

Let $m y_{3}=y_{1} y_{2}$ and $m u_{3}=u_{2} p^{\alpha_{1}} y_{1}+u_{1} p^{\alpha_{2}} y_{2}+u_{1} u_{2}$. If $s_{3}=\min \left(s_{1}, s_{2}\right)$, then $p^{s_{3}} m u_{3}=0$. Since $(m, p)=1$, it follows that $p^{s_{3}} u_{3}=0$.

Lemma 3.5. Let

$$
F \xrightarrow{i} \Omega S^{2 n+1} \xrightarrow{f} K\left(Z_{p^{r}}, 2 n\right)
$$

be a fibration where $f^{*}(\imath)=u p^{s} x_{r}^{(1)}$ with u a unit in $Z_{p^{r}}$ and $0 \leq s<r$.
(a) $i^{*}\left(x^{\left(p^{t}\right)}\right)=p^{\alpha_{t}} y_{t}+v_{t}$ with $p^{s+t} v_{t}=0$.
(b) $i^{*}\left(x^{\left(k_{t}\right)}\right)=p^{\tau_{t}} \bar{y}_{t}+u_{t}$ where $k_{t}=p^{t}+\cdots+p+1, p^{s} u_{t}=0$ and $\lim _{t} \tau_{t}=+\infty$.

Proof. (a) From the proof of Theorem 2.2 we have $i^{*}\left(x^{(1)}\right)=p^{r-s} y_{0}+v_{0}$ where $p^{s} v_{0}=0$. Hence by repeated applications of 3.3 and 3.4 ,

$$
i^{*}\left(x^{(p)}\right)=p^{p(r-s)-1} y_{1}+v_{1} \quad \text { where } p^{s+1} v_{1}=0
$$

Suppose inductively that $i^{*}\left(x^{\left(p^{t-1}\right)}\right)=p^{\alpha_{t}-1} y_{t-1}+v_{t-1}$ where

$$
\alpha_{t-1}=p^{t-1}(r-s)-\left(p^{t-1}-1\right) / p-1, \quad \text { and } \quad p^{s+t-1} v_{t-1}=0
$$

By repeated applications of 3.3 and $3.4, i^{*}\left(x^{\left(p^{t}\right)}\right)=p^{\alpha_{t}} y_{t}+v_{t}$ where

$$
\alpha_{t}=p \alpha_{t-1}-1=p^{t}(r-s)-\left(p^{t}-1\right) /(p-1) \quad \text { and } \quad p^{s+t} v_{t}=0
$$

(b) $x^{\left(k_{0}\right)}=x^{(1)}$ so that $i^{*}\left(x^{\left(k_{0}\right)}\right)=p^{\alpha_{0}} y_{0}+u_{0}$ where $p^{s} u_{0}=0$. Suppose inductively that $i^{*}\left(x^{\left(k_{t-1}\right)}\right)=p^{\tau_{t-1}} \bar{y}_{t-1}+u_{t-1}$ where $\tau_{t-1}=\alpha_{t-1}+\tau_{t-2}$, $\tau_{0}=\alpha_{0}$, and $p^{s} u_{t-1}=0$. By 3.3, since

$$
x^{\left(k_{t-1}\right)} \cdot x^{\left(p_{t}\right)}=\binom{k_{t}}{k_{t-1}} x^{\left(k_{t}\right)}
$$

we have $i^{*}\left(x^{\left(k_{t}\right)}\right)=p^{\alpha_{t}+\tau_{t-1}} \bar{y}_{t}+u_{t}$ where $p^{s} u_{t}=0$ provided $\tau_{t-1}>t$. But $\tau_{t}=\sum_{i=0}^{t} \alpha_{i}$ so this is easily verified as well as the fact that $\lim _{t} \tau_{t}=+\infty$.

Theorem 3.6. Let $f_{j}: \Omega S M\left(Z_{p^{j}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ be a nontrivial map so that $f_{j}^{*}(\imath)=u p^{s} w_{1, j}$ where u is a unit and $s<\min (j, r)$. Let $r(N)$ be the smallest integer such that $p^{r(N)} H^{i}\left(K\left(Z_{p^{r}}, 2 n\right)\right)=0$ for $0<i \leq N$. Then for all $j \geq N r(N)+s+1, f_{j}$ is not compressible into the N skeleton.

Proof. By Lemma 3.5(b), $s_{k_{t}}+N r(N)=s+N r(N)$. But if $j \geq N r(N)+$ $s+1 . p^{j} w_{1, j} \neq 0$ and so Theorem 3.1 applies.

Corollary 3.7. Any nontrivial map $f: \Omega S M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ is incompressible.

Proof. Such a nontrivial map implies that there exists an integer k such that if $h_{j}: \Omega S M\left(Z_{p^{j}}, 2 n-1\right) \rightarrow \Omega S M\left(Z_{p \infty}, 2 n-1\right)$ is the natural inclusion, then $f h_{j}$ is nontrivial for all $j \geq k . f$ compressible contradicts Theorem 3.6.

Corollary 3.8. Let G be finitely generated and abelian. Every nontrivial map $\Omega S M(Q / Z, 2 n-1) \rightarrow K(G, 2 n)$ is incompressible.

Proof. Since $Q / Z \cong \oplus_{p \in \mathrm{P}} Z_{p^{\infty}}$, such a nontrivial map implies the existence of a nontrivial map $\Omega S M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ for some prime p.

4. Incompressibility and H-spaces

In this section some of the previous results are applied to deduce certain properties of H-spaces. We begin by stating a well-known result of James.

Theorem (James [2]). X is a retract of $\Omega S X$ if and only if X is an H-space.
Let $\operatorname{Im}_{k}(Y ; X ; G)=\left\{x \in H_{k}(X ; G) \mid x=f_{*}(y)\right.$ for some $y \in H_{k}(Y ; G)$ and some $f: Y \rightarrow X\}$. Note that $\operatorname{Im}_{k}\left(S^{k}, X ; Z\right)$ is the image of the Hurewicz map in dimension k.

Theorem 4.1. Let X be a finite H-space and let $y \in \operatorname{Im}_{n m}\left(\left(S^{n}\right)_{m}, X ; Z\right)$ where $n m$ is even.
(a) y cannot be of infinite order.
(b) Suppose $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} y=0$ where p_{i} is prime. Then for each $i=1, \ldots, k$ we have $\alpha_{i}<\bar{m}$ where \bar{m} is m if n is even and is $m / 2$ if n is odd.

Proof. (a) Suppose y is of infinite order, where $y=f^{*}(x)$ for some $f:\left(S^{n}\right)_{m} \rightarrow X$. Then, for all primes p, there is an integer j such that the coefficient reduction map $\mu: H_{n m}(X ; Z) \rightarrow H_{n m}\left(X ; Z_{p^{j}}\right)$ is such that $\mu(y) \neq 0$. Hence

$$
f^{*}: H^{n m}\left(X ; Z_{p^{j}}\right) \rightarrow H^{n m}\left(\left(S^{n}\right)_{m} ; Z_{p^{j}}\right)
$$

is nontrivial. Choose p so that $m \leq p-1$. Then the composition

$$
\left(S^{n}\right)_{m} \xrightarrow{f} X \longrightarrow K\left(Z_{p^{j}}, n m\right)
$$

is nontrivial. Since X is an H-space and the obstruction to extending f to f : $\boldsymbol{\Omega} \mathbf{S}^{\boldsymbol{n + 1}} \rightarrow X$ are higher order spherical Whitehead products, the composition

$$
\Omega S^{n+1} \xrightarrow{\tilde{f}} X \longrightarrow K\left(Z_{p^{j}}, n m\right)
$$

is nontrivial. By A. 3 in the appendix, $(m, 1, p) \in \mathscr{M}$ and hence this composition is incompressible by Theorem 2.2. This contradicts the finite dimensionality of X.
(b) Suppose $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} y=0$ and $\alpha_{i} \geq \bar{m}$ for some i. Then there is an integer j and a map $g: X \rightarrow K\left(Z_{p_{i}}, n m\right)$ such that $(g \circ f)^{*}(t)=p^{j-\alpha_{i}} x_{j}^{(m)}$. But by A.3, $\left(m, \alpha_{i}, p\right) \in \mathscr{M}$ so that $g \circ f$ is incompressible. Again this contradicts the finite dimensionality of X.

Remark. If $m=1$, the above theorem says that the image of the Hurewicz map in even dimensions is zero for finite simply connected H-spaces. (See Browder [1] and Weingram [5].)

Theorem 4.2. Let X be $a(2 n-2)$-connected finite H-space of dimension N. Let $r(N)$ be the smallest integer such that $p^{r(N)} H^{i}\left(K\left(Z_{p}, 2 n\right)\right)=0,0<i \leq N$. Let $j \geq \operatorname{Nr}(N)+1$. Then $\Pi_{2 n-1}(X)$ has no p torsion of order greater than p^{j-1}.

Proof. Suppose $x \in \Pi_{2 n-1}(X)$ is such that $p^{m} x=0, m \geq j$, but $p^{m-1} x \neq 0$. Let $f: S^{2 n-1} \rightarrow X$ represent x. Then f lifts to $f: M\left(Z_{p^{m}}, 2 n-1\right) \rightarrow X$ and since $\Pi_{2 n-1}(X) \cong H_{2 n-1}(X)$ via the Hurewicz map, the induced map

$$
f^{*}: H^{2 n}\left(X ; Z_{p}\right) \rightarrow H^{2 n}\left(M\left(Z_{p^{m}}, 2 n-1\right) ; Z_{p}\right)
$$

is nonzero. Then

$$
M\left(Z_{p^{m}}, 2 n-1\right) \xrightarrow{\bar{f}} X \longrightarrow K\left(Z_{p}, 2 n\right)
$$

is nontrivial and since X is an H-space, f extends to

$$
\Omega S M\left(Z_{p^{m}}, 2 n-1\right) \rightarrow X
$$

Hence $\Omega S M\left(Z_{p^{m}}, 2 n-1\right) \rightarrow X \rightarrow K\left(Z_{p}, 2 n\right)$ is nontrivial and by Theorem 3.6 does not compress into the N skeleton. This contradicts that X is N dimensional.

Remark. If it could be proved that $\Omega S M\left(Z_{p^{j}}, 2 n-1\right) \rightarrow K\left(Z_{p^{r}}, 2 n\right)$ is incompressible for all j, a proof similar to the above would imply that $\Pi_{2 n-1}(X)$ has no p torsion if X is a $(2 n-2)$-connected finite H-space. For $n=2$, and except for elements of order two this has been proved by Lin [3] by entirely different methods.

Theorem 4.3. Let X be a $(2 n-2)$-connected finite dimensional H-space (not of finite type). Then $\Pi_{2 n-1}(X)$ cannot contain $Z_{p^{\infty}}$ as a summand for any prime p.

Proof. Suppose $\Pi_{2 n-1}(X)=Z_{p^{\infty}} \oplus G$. Then there is a map

$$
f: M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow X
$$

such that $f^{*}: H^{2 n}\left(X ; Z_{p}\right) \rightarrow H^{2 n}\left(N\left(Z_{p^{\infty}}, 2 n-1\right) ; Z_{p}\right)$ is nonzero. This implies there is a nontrivial map

$$
\Omega S M\left(Z_{p^{\infty}}, 2 n-1\right) \rightarrow X \rightarrow K\left(Z_{p}, 2 n\right)
$$

By 3.7 this map is incompressible, contradicting the finite dimensionality of X.

Appendix

Let $N_{k}(m, s, p)=s k+k S p(m)-S_{p}(k m)$ where p is a prime and $S_{p}(m)$ is the number of factors of p in $m!$. Let

$$
\left.\mathscr{M}=\{m, s, p)) \mid \lim _{k} \sup N_{k}(m, s, p)=+\infty\right\}
$$

Lemma A.1. (a) $S_{p}\left(p^{r}\right)=\left(p^{r}-1\right) / p-1$
(b) $S_{p}\left(p^{r}-1\right)=\left(p^{r}-1\right) /(p-1)-r$
(c) $S_{p}\left(p^{r} m\right)=m\left(p^{r}-1\right) /(p-1)+S_{p}(m)$
(d) $\quad S_{p}\left(m\left(p^{r}-1\right)\right) \leq m\left(p^{r}-1\right) /(p-1)-r$.

Proof. Only (a) is proved as (b), (c), and (d) follow by similar arguments.

$$
S_{p}\left(p^{r}\right)=\sum_{i=1}^{\infty}\left[p^{r} / p^{i}\right]=p^{r-1}+\cdots+p+1=\left(p^{r}-1\right) /(p-1)
$$

Proposition A.2. If $m /(p-1) \leq S_{p}(m)+s$ then $(m, s, p) \in \mathscr{M}$.
Proof. Let $k_{j}=p^{j}-1$. Then by A.1(d), $S_{p}\left(k_{j} m\right) \leq m\left(p^{j}-1\right) /(p-1)-j$. Hence

$$
\begin{aligned}
N_{k_{j}}(m, s, p) & =s\left(p^{j}-1\right)+\left(p^{j}-1\right) S_{p}(m)-S_{p}\left(k_{j} m\right) \\
& \geq p^{j}\left(s+S_{p}(m)-m /(p-1)\right)+j+K
\end{aligned}
$$

where $K=m /(p-1)+S_{p}(m)-s$. Since $m /(p-1) \leq S_{p}(m)+s, \lim _{j} N_{k_{j}}=$ $+\infty$ so $\lim \sup N_{k}(m, s, p)=+\infty$.

Corollary A.3. (a) $\left(p^{r}, s, p\right) \in \mathscr{M}$ for all $r \geq 0, s \geq 1$ and all primes p.
(b) $(m, s, p) \in \mathscr{M}$ if $m \leq s(p-1)$.
(c) For all m and s, there exists a prime q such that $(m, s, p) \in \mathscr{M}$ for all primes $p \geq q$.

Proof. In each case it is easily verified that $m /(p-1) \leq S_{p}(m)+s$ so A. 2 applies.

Bibliography

1. W. Browder, Torsion in H spaces, Ann. of Math., vol. 74 (1961), pp. 24-51.
2. I. M. James, Reduced product spaces, Ann. of Math., vol. 62 (1955), pp. 170-197.
3. J. P. Lin, H spaces with finitely generated cohomology algebras, Doctoral Dissertation, Princeton Univ., 1974.
4. J. P. Serre, Homologie singuliere des espaces fibres, Ann. of Math., vol. 54 (1951), pp. 425-505.
5. S. Weingram, On the incompressibility of certain maps, Ann of Math., vol. 93 (1971), pp. 476-485.

The University of Wisconsin-Milwaukee
Milwaukee, Wisconsin

