INCOMPRESSIBILITY AND FIBRATIONS

BY

JAY E. GOLDFEATHER

0. Introduction

Let $f: X \to Y$ and let $A \subseteq Y$ with $i: A \to Y$ the inclusion. The map f can be compressed into A if there is a map $f: X \to A$ such that $i \circ f \simeq f$. If Y is a CW complex then a map $f: X \to Y$ is incompressible if it does not compress into any smaller skeleton. In particular, if Y is infinite dimensional, f is incompressible if it does not compressible if it does not compress into any finite skeleton.

If the induced homomorphism

$$f_i: H_i(X; G) \to H_i(Y; G) \quad (\text{or } f^j: H^j(Y; G) \to H^j(X; G))$$

is nonzero for some j > N, then f cannot compress into Y^N . However, f_j identically zero for all j > N is not a sufficient condition for f compressing into Y^N .

For example, Weingram [5] has shown that every nontrivial map

$$f: \Omega S^{2n+1} \to K(Z_{p^r}, 2n)$$

is incompressible, yet f_j and f^j (any coefficients) are identically zero for all j > 2npr.

Suppose *nm* is even and let \overline{m} be *m* if *n* is even and *m/2* if *n* is odd. Let $f: \Omega S^{n+1} \to K(Z_{p^r}, nm)$ be a nontrivial map so that it represents a cohomology class $x \in H^{nm}(\Omega S^{n+1}; Z_{p^r})$ with $p^{r-j}x = 0$ for some *j*, $0 \le j < r$. Let $N_k(m, s, p)$ be the number of factors of *p* in $p^{sk}(m!)^k/(km)!$ and let

$$M = \{(m, s, p) \mid \lim_{k} \sup N_{k}(m, s, p) = +\infty\}.$$

The following theorem is proved.

THEOREM 2.2. If $(\overline{m}, r - j, p) \in M$, then $f: \Omega S^{n+1} \to K(Z_{p^r}, nm)$ is incompressible.

For example, nontrivial maps

 $f_k: \Omega S^{2n+1} \to K(\mathbb{Z}_{p^r}, 2np^k)$ and $g_k: \Omega S^{2n+2} \to K(\mathbb{Z}_{p^r}, (4n+2)p^k)$

are incompressible for all k = 0, 1, 2, ... Except for f_0 , the incompressibility of these maps are not derivable by the methods of [5].

Sections 3 and 4 deal with applications of Theorem 2.2. In particular, the following are proved:

Received March 1, 1976.

COROLLARY 3.7. Every nontrivial map

 $f: \Omega SM(Z_{p^{\infty}}, 2n-1) \rightarrow K(Z_{p^{r}}, 2n)$

is incompressible.

COROLLARY 3.8. Let G be finitely generated and abelian. Every nontrivial map $\Omega SM(Q/Z, 2n - 1) \rightarrow K(G, 2n)$ is incompressible.

Let $(S^n)_m$ denote the *m*th reduced product of S^n and let $Im_k(Y, X; G) =$ and $\{x \in H_k(X; G) \mid x = f_*(y) \text{ for some } y \in H_k(Y; G) \text{ and for some } f: Y \to X\}.$

THEOREM 4.1. Let X be a finite H-space and let

$$y \in Im_{nm}((S^n)_m, X; Z)$$

where nm is even.

(a) y cannot be of infinite order.

(b) Suppose $p_1^{\alpha_1} \cdots p_k^{\alpha_k}(y) = 0$ where p_i is prime. Then for each i = 1, ..., k we have $\alpha_i < \overline{m}$ where \overline{m} is m if n is even and m/2 if n is odd.

THEOREM 4.3. Let X be a (2n - 2)-connected finite dimensional H-space (not of finite type). Then $\Pi_{2n-1}(X)$ cannot contain $Z_{p^{\infty}}$ as a summand for any prime p.

All spaces will be assumed to be homotopic to simply connected CW complexes and $H^*(X)$, $H_*(X)$ will be understood to have coefficient group the integers.

This paper contains results from part of the author's doctoral dissertation. I would like to thank Stephen Weingram for his guidance as my thesis advisor.

1. Fibrations and incompressibility

When studying the problem of whether a map $f: X \to B$ compresses into $A \subseteq B$, it suffices to assume that f is a fiber map. If not, there exists a fibration

$$F \longrightarrow X' \xrightarrow{f'} B$$

and a homotopy equivalence $v: X' \to X$ such that $f' = f \circ v$ and it follows that f' compresses into A if and only if f does. Let X_A denote $f^{-1}(A)$ and f_A denote f restricted to X_A .

DEFINITION 1.1. Let $A \subseteq X$ with $i: A \to X$ the inclusion. A map $r: X \to A$ is a coretraction if $i \circ r \simeq id_X$.

PROPOSITION 1.2. Let

$$F \xrightarrow{i} X \xrightarrow{f} B$$

be a fibration and let A be a subspace of B. Let $j_A: X_A \to X$ be induced by the inclusion $j: A \to B$. Then f can be compressed into A if and only if j_A admits a coretraction $r_A: X \to X_A$.

Proof. Suppose $r_A: X \to X_A$ exists such that $j_A r_A \simeq id_X$. Then

 $j \circ (f_A \circ r_A) \simeq f \circ j_A \circ r_A \simeq f$

so that f compresses into A.

Suppose f can be compressed into A. Then there exists $\overline{f}: X \to A$ and a homotopy $h_i: X \to B$ such that $h_0 = f$ and $h_1 = i \circ \overline{f}$. By the covering homotopy property, there is a homotopy $\overline{h}_i: X \to X$ such that $\overline{h}_0 = \operatorname{id}_X \operatorname{and} f \circ h_i = i \circ \overline{f}$. Since Image $(i \circ \overline{f}) \subseteq A$ it follows that Image $(\overline{h}_1) \subseteq X_A$. Hence $j_A \circ \overline{h}_1 \simeq \overline{h}_0 = \operatorname{id}_X$. Let $r_A = \overline{h}_1$.

DEFINITION 1.3. Let G be an abelian group and p a prime. An element $g \in G$ has p-depth $\geq k$ if for some nonnegative integer s,

$$g = p^k g_1 + v$$
 where $p^s v = 0$ and $p^{s+k} g_1 \neq 0$.

If g has p-depth $\geq k$ but not p-depth $\geq k + 1$, then g has p-depth k and this will be denoted by p[g] = k.

LEMMA 1.4. Let $h: G_1 \to G_2$ be a homomorphism of abelian groups and suppose $h(g) \in G_2$ has infinite order for some $g \in G_1$. Then p[g] = k implies $p[h(g)] \ge k$.

Proof. Let $g = p^k g_1 + v$ where $p^s v = 0$ and $p^{s+k} g_1 \neq 0$ for some integer s. Then $h(g) = p^k h(g_1) + h(v)$ so that $p^s h(v) = 0$ and since h(g) has infinite order, $p^{s+k} h(g_1) \neq 0$. Hence p[h(g)] is at least k.

THEOREM 1.5. Let

$$F \xrightarrow{i} X \xrightarrow{f} B$$

be a fibration and let $j_A: X_A \to X$ be the inclusion induced by the inclusion $j: A \to B$. Suppose there exists $x \in H^*(X)$ such that x has infinite order, p[x] = k but $p[j_A^*(x)] > k$. Then f cannot be compressed into A.

Proof. In the light of Proposition 1.2, it suffices to show j_A does not admit a coretraction r_A .

Suppose such a coretraction existed. Then $j_A \circ r_A \simeq id_X$ so that $id_X^* = r_A^* j_A^*$. Then $x = id_X^*(x) = r_A^*(j_A^*(x))$. By Lemma 1.4, since x has infinite order,

$$k = p[x] = p[r_A^* j_A^*(x)] \ge p[j_A^*(x)].$$

 $p[j_A^*(x)] > k$ contradicts this, so no coretraction exists.

In order to make use of Theorem 1.5, it is necessary to know something about $H^*(X_A)$. Under certain conditions, this information can be obtained by examining $i^* \colon H^*(X) \to H^*(F)$, so we proceed in this direction.

690

DEFINITION 1.6. Let $h: G_1 \to G_2$ be a homomorphism of abelian groups and let $\{x_k\}$ be a sequence of distinct elements of G_1 . *h* is said to *p*-twist $\{x_k\}$ if the following hold.

- (a) For all $k, p[x_k] \leq M$ for some nonnegative integer M.
- (b) $p[h(x_k)] = \sigma_k$ where $\lim_k \sup \sigma_k = +\infty$.

If x_k is of infinite order for all k, then h freely p-twists $\{x_k\}$ if in addition $h(x_k)$ is of infinite order for all k.

Before stating the main theorem of this section, note that if

$$F \xrightarrow{i} X \xrightarrow{f} B$$

is a fibration and $X[N] = f^{-1}(B^N)$ then

$$F \xrightarrow{\approx} F$$

$$\downarrow i_N \qquad \qquad \downarrow i$$

$$X[N] \xrightarrow{j_N} X$$

$$\downarrow f_N \qquad \qquad \downarrow f$$

$$B^N \longrightarrow B$$

is a map of fibrations.

THEOREM 1.7. Let

$$F \xrightarrow{i} X \xrightarrow{f} B$$

be a fibration with the following properties:

(a) $H_*(B)$ is a finite p-group in each degree greater than 0.

(b) There exists a sequence $\{x_k\}$ such that $x_k \in H^{t_k}(X)$ and each x_k is of infinite order.

(c) There are an infinite number of integers N such that

 $\operatorname{Ker} \left(H^{t_k}(X[N]) \to H^{t_k}(F) \right)$

is a finite group for all k.

(d) i^* freely p-twists $\{x_k\}$.

Then f is not compressible into any finite skeleton.

Before proving this theorem, it is necessary to recall some facts about the Serre cohomology spectral sequence of a fibration $F \rightarrow E \rightarrow B$ [4].

(1) $H^{n}(E)$ is filtered by

$$H^{n}(E) = D^{0,n} \supseteq D^{1,n-1} \supseteq \cdots \supseteq D^{n,0} \supseteq D^{n+1,-1} = 0$$

where $D^{j, n-j} = \text{Ker} (H^n(E) \to H^n(E[j-1])).$

- (2) $E_2^{j,n-j} = H^j(B; H^{n-j}(F)).$
- (3) $E_{\infty}^{\tilde{j},n-j} = D^{j,n-j}/D^{j+1,n-j+1}.$
- (4) $0 \to D^{1, n-1} \to H^n(X) \to E^{0, n}_{\infty} \to 0$ is exact.
- (5) $E^{0,n}_{\infty} = \operatorname{Im} (H^n(E) \to H^n(F)).$

Let $w_k = j_N^*(x_k) \in H^{t_k}(X[N])$ so that $i_N^*(w_k) = p^{\sigma_k}y_k + v_k$ where y_k is of infinite order and for each k, there exists s_k such that $p^{s_k}v_k = 0$. (This just specifies $i^* = i_N^* j_N^*$ as a free p-twisting.)

LEMMA 1.8. Under the conditions of Theorem 1.7, there exists an integer v(N) and for each k, an element $z_k \in H^{t_k}(X[N])$ such that $i_N^*(z_k) = p^{v(N)}y_k$ for all k.

Proof. Let $\{E_r, d_r\}$ be the spectral sequence of $F \to X \to B$ and $\{'E_r, 'd_r\}$ the spectral sequence of $F \to X[N] \to B^N$. Then the map $j: B^N \to B$ induces a map $E_r \to 'E_r$ which commutes with the differential.

Since $H^*(B)$ is a finite p group in each degree, for each k there exists an integer $\lambda(k)$ such that $p^{\lambda(k)}E_2^{k,0} = 0$. Then $p^{\lambda(k)}E_j^{k,t} = 0$ for all $j \ge 2$ and $t \ge 0$ where

$$\tilde{\lambda}(k) = \max (\lambda(k), \lambda(k+1)).$$

(This is just a consequence of the Universal Coefficient Theorem.) Consider the differential $d_2: E_2^{0,t_k} \to E_2^{2,t_k-1}$. By naturality, $p^{\overline{\lambda}(2)} d_2(y_k) = 0$ for all k. Hence $p^{\lambda(2)}y_k$ is a 2-cycle for all k. Similarly $p^{\overline{\lambda}(2)+\overline{\lambda}(3)}y_k$ is a 3-cycle under d_3 for all k and in general if $v(N) = \overline{\lambda}(2) + \cdots + \overline{\lambda}(N)$, $p^{v(N)}y_k$ is a permanent cycle in $\{E_r, d_r\}$ (dj = 0 for j > N). Since $p^{v(N)}y_k \in E_{\infty}^{0,t_k}$ for all k and

$$E^{0, t_k}_{\infty} = \operatorname{Im} \left(i_N^* \colon H^{t_k}(X[N]) \to H^{t_k}(F) \right)$$

there exists $z_k \in H^{t_k}(X[N])$ such that $i_N^*(z_k) = p^{v(N)}y_k$.

Proof of Theorem 1.7. It suffices to show that f does not compress into B^N for any N satisfying (c).

Let *M* be such that $p[x_k] \leq M$ for all *k*. By Theorem 1.5, it suffices to show that for every *N* satisfying (c), there exists *k* such that $p[j_k^*(x_k)] \geq M + 1$.

Let $i^*(x_k) = p^{\sigma_k}y_k + v_k$ and $w_k = j_N^*(x_k)$ as in Lemma 1.8. Since $i_{\geq}^*(z_k) = p^{v(N)}y_k$.

$$i_N^*(w_k - p^{\sigma_k - v(N)}z_k) = v_k$$

But

$$0 \longrightarrow D^{1, t_k - 1} \xrightarrow{\alpha} H^{t_k}(X[N]) \xrightarrow{i_N^*} E_{\infty}^{0, t_k} \longrightarrow 0$$

is exact, so that

$$p^{s_k}(w_k - p^{\sigma_k - \nu(N)} z_k) = \alpha(\bar{v}_k) \text{ for some } \bar{v}_k \in D^{1, t_k - 1}$$

Condition (c) says that D^{1, t_k-1} is a finite p group for all k so that $p^{j_k} \bar{v}_k = 0$ for some $j_k \ge 0$. Hence $p^{j_k+s_k}(w_k - p^{\sigma_k-v(N)}z_k) = 0$ which implies that

$$w_k = p^{\sigma_k - v(N)} z_k + u_k = 0$$
 where $p^{j_k + s_k} u_k = 0$.

Since $\limsup \sigma_k = +\infty$ and v(N) is fixed, we may choose k so that $\sigma_k - v(N) \ge M + 1$. Then $p[j_N^*(x_k)] = p[w_k] \ge M + 1$.

2. Incompressibility conditions for maps $\Omega S^{n+1} \rightarrow K(Z_{n'}, nm)$

In [5], Weingram proved that any nontrivial map

$$f: \Omega S^{2n+1} \to K(\mathbb{Z}_{p^r}, 2n)$$

is incompressible. The proof utilizes the fact that any such map is homotopic to an H map and so induces a homomorphism of rings in homology. In this section a more general theorem is proved using cohomological techniques so that incompressibility conditions can be established for maps

$$f: \Omega S^{n+1} \to K(Z_{p^r}, nm)$$

which are not in general homotopic to H maps. In view of the following proposition, attention will be focused on the situation when nm is even.

PROPOSITION 2.1. If m is odd and p is an odd prime, any map

$$f: \Omega S^{n+1} \to K(Z_{p^r}, nm)$$

compresses into the (nm + 1)-skeleton.

Proof. If n is even, all maps $\Omega S^{n+1} \to K(Z_{p^r}, nm)$ are trivial, so assume n is odd. For odd primes, $S_{(p)}^{nm}$ (S^{nm} localized at p) is an H-space of dimension nm + 1. The natural map $Z \to Z_{(p)}$ induces an epimorphism

Hom $(Z_{(p)}, Z_{p^r}) \twoheadrightarrow$ Hom (Z, Z_{p^r})

and hence an epimorphism $H^{nm}(S_{(p)}^{nm}; Z_{p^r}) \to H^{nm}(S^{nm}; Z_{p^r})$. Let $(S^n)_m$ denote the James *m*th reduced product space of S^n and let $g: (S^n)_m \to S^{nm}$ be the map pinching the (nm - 1)-skeleton to a point. Then g induces an epimorphism

$$H^{nm}(S^{nm}; \mathbb{Z}_{p^r}) \to H^{nm}((S^n)_m; \mathbb{Z}_{p^r}).$$

Since $S_{(p)}^{nm}$ is an *H*-space, and the attaching maps for constructing ΩS^{n+1} from $(S^n)_m$ are higher order Whitehead products, any map $h: (S^n)_m \to S_{(p)}^{nm}$ extends to

$$\bar{h}: \Omega S^{n+1} \to S^{nm}_{(p)}$$

Hence $\bar{h}^*: H^{nm}(S_{(p)}^{nm}; Z_{p^r}) \twoheadrightarrow H^{nm}(\Omega S^{n+1}; Z_{p^r})$ is an epimorphism so that any map $f: \Omega S^{n+1} \to K(Z_{p^r}, nm)$ factors through $S_{(p)}^{nm}$ which is (nm + 1)-dimensional. By the cellular approximation theorem, f compresses into the (nm + 1)-skeleton.

Assuming, then, that *nm* is even, the procedure will be to show when the conditions of Theorem 1.7 are satisfied for $X = \Omega S^{n+1}$ and $B = K(Z_{p^r}, nm)$. We begin by recalling some facts about $H^*(\Omega S^{n+1})$ and $H_*(K(Z_{p^r}, nm))$.

(1) If n is even, $H^*(\Omega S^{n+1})$ is a divided power ring with generators $x^{(k)}$ in dimension nk satisfying the relation

$$x^{(k)}x^{(s)} = \binom{k}{s} x^{(k+s)}.$$

(2) If n is odd, $H^*(\Omega S^{n+1})$ contains a divided power ring with generators $x^{(k)}$ in dimension 2nk satisfying the relation in (1).

(3) In either (1) or (2), $x^{(k)}$ is not divisible by p so that for all $k, p[x^{(k)}] = 0$. (4) If $\mu: H^*(\Omega S^{n+1}) \to H^*(\Omega S^{n+1}; Z_p)$ is the coefficient reduction map, then $H^*(\Omega S^{n+1}; Z_{pr})$ is (contains) a divided power ring with generators $x_r^{(k)} =$ $\mu(x^{(k)})$ for *n* even (*n* odd).

(5) $H_*(K(Z_{p^r}, nm))$ is a finite p group in each degree.

The key to applying Theorem 1.7 is to verify that i^* is a free *p*-twisting of $\{x_k\}$. This would be straightforward if for example $i^*(x_1) = py_1$ and $x_k = x_1^k$. Then $i^*(x_k) = p^k y_1^k$ so that $\sigma_k \ge k$ and hence is unbounded. The problem arises when $x_1^k = a_k x_k$. Then if $i^*(x_1) = p y_1$, $i^*(x_k) = p^{k-p[a_k]} y_k + v_k$ where $a_k v_k = 0$. It is possible that $\limsup (k - p[a_k]) \neq \infty$.

Let $S_p(m)$ denote the number of factors of a prime p in m! Note that $S_p(m) =$ $\sum_{i=1}^{p} [m/p^{i}]$ where [] denotes the greatest integer.

Let $N_k(m, s, p) = sk + kS_p(m) - S_p(km)$ so that $N_k(m, s, p)$ is the number of factors of p in $p^{ks}(m!)^k/(km)!$. Let

$$\mathcal{M} = \{(m, s, p) \mid \lim_{k} \sup N_{k}(m, s, p) = +\infty\}.$$

Weingram [5] showed that $(1, s, p) \in \mathcal{M}$ for all s and primes p. The proof that there are other triples (m, s, p) in \mathcal{M} is number theoretic and is contained in the appendix.

Let mn be even and let $f: \Omega S^{n+1} \to K(Z_{p^n}, mn)$ be a nontrivial map. If ι is the fundamental class in $H^{nm}(K(Z_{p^r}, nm); Z_{p^r})$, and \overline{m} is m if n is even and m/2if n is odd, then $f^*(i) = up^j x_r^{(m)}$ where u is a unit in Z_{pr} and $0 \le j < r$.

THEOREM 2.2. If $(\overline{m}, r - j, p) \in \mathcal{M}$, then $f: \Omega S^{n+1} \to K(Z_{n^r}, nm)$ is incompressible.

The proof will follow two lemmas. Unless it is necessary to specify more precisely, Ω will denote ΩS^{n+1} and K will denote $K(Z_{p^r}, nm)$.

LEMMA 2.3. Let G be an extension of Z by Z_{p^r} . That is,

$$0 \longrightarrow Z \xrightarrow{\alpha} G \xrightarrow{\beta} Z_{p^r} \longrightarrow 0$$

is exact. Then:

(a) $G \cong Z \oplus G'$ where $p^k G' = 0$ for some $k \leq r$.

(b) If G is a nontrivial extension (i.e., $G \not\cong Z \oplus Z_{n^r}$) then $\alpha(1) = p^s y + v$ where $0 < s \leq r$ and $p^{r-s}v = 0$.

Proof. (a) is obvious. Let y be a free generator in G and let $\alpha(1) = my + v$. $\beta(p^r y) = 0$ implies there is a k such that $\alpha(k) = p^r y$. Hence $p^r y = kmy + kv$ so that $km = p^r$. This implies $m = p^s$ and $k = p^{r-s}$ where $0 < s \le r$. (s = 0 implies the sequence splits so that G would be a trivial extension.) Also $p^{r-s}v = 0$ since β is a monomorphism on the torsion subgroup of G.

LEMMA 2.4. A nontrivial map $f: \Omega \to K$ satisfies conditions (a), (b), and (c) of Theorem 1.7.

Proof. (a) is just statement (5) at the beginning of this section. For the sequence in (b) take the generators $x^{(k)}$.

Note that t_k is even. Condition (c) is equivalent to saying there are infinitely many N such that D^{1, t_k-1} in the filtration of $H^{t^k}(\Omega[N])$ is a finite p group for all k. But D^{1, t_k-1} is a finite p group if E_2^{j, t_k-j} is a finite p group for $j = 1, \ldots, N$. But E_{∞}^{j, t_k-1} is a finite p group if E_2^{j, t_k-1} is a finite p group for $j = 1, \ldots, N$. Since $E_2^{j, t_k-j} = H^j(K^N; H^{t_k-j}(F))$ where F is the fiber of the map $f: \Omega \to K$, and $H^j(K^N)$ is a finite p group for $j = 1, \ldots, N-1$ by (a) and the Universal Coefficient Theorem, it is only necessary to check if $H^N(K^N, H^{t_k-N}(F))$ is a finite p group. But (a) implies $H^*(F; Q) \cong H^*(\Omega; Q)$ so $H^*(F)$ is a finite p group in all degrees which are not multiples of n. There are infinitely many N such that $t_k - N$ is not a multiple of n for all k and (c) follows.

Proof of Theorem 2.2. In view of Lemma 2.4, it suffices to prove that if $i: F \to \Omega$ is the inclusion of the fiber then i^* is a free *p*-twisting of $x^{(k)}$.

The fibration

$$F \xrightarrow{i} \Omega \xrightarrow{f} K$$

induces a fibration

$$\Omega K \xrightarrow{j} F \xrightarrow{i} \Omega$$

Since Ω is (n - 1)-connected and ΩK is (nm - 2)-connected, by Serres exact sequence

$$0 = H^{nm-1}(\Omega; Z_{p^r}) \xrightarrow{i^*} H^{nm-1}(F; Z_{p^r}) \xrightarrow{j^*} H^{nm-1}(\Omega K; Z_{p^r})$$
$$\xrightarrow{\tau} H^{nm}(\Omega; Z_{p^r})$$

is exact. But $\tau(i) = up^j x_r^{(\overline{m})}$ so that

$$H^{nm-1}(F; Z_{pr}) = \ker \tau = Z_{pj}$$

where Z_{p^0} is understood to mean the zero group.

Similarly the sequence

$$0 = H^{nm-1}(\Omega K) \longrightarrow H^{nm}(\Omega) \xrightarrow{i^*} H^{nm}(F) \longrightarrow H^{nm}(\Omega K) \longrightarrow H^{nm+1}(\Omega) = 0$$

is exact, and reduces to $0 \longrightarrow Z \xrightarrow{i^*} H^{nm}(F) \longrightarrow Z_{p^r} \longrightarrow 0.$

By the Universal Coefficient Theorem,

$$Z_{p^j} = H^{nm-1}(F; Z_{p^r}) = H^{nm-1}(F) \otimes Z_{p^r} \oplus \operatorname{Tor} (H^{nm}(F); Z_{p^r})$$

so that the torsion subgroup of $H^{nm}(F)$ has order p^j , $0 \le j < r$. By Lemma 2.3, $i^*(x^{(\overline{m})}) = p^{r-j}y_{\overline{m}} + v_{\overline{m}}$ where $p^j v_{\overline{m}} = 0$ and $y_{\overline{m}}$ is of infinite order. But

$$(x^{(\overline{m})})^k = \frac{(\overline{m}k)!}{(\overline{m}!)^k} x^{(\overline{m}k)}$$

so that

$$i^*(x^{(\overline{m}k)}) = \frac{p^{k(r-j)}(\overline{m}!)^k}{(\overline{m}k)!} y^k_{\overline{m}} + T_{\overline{m}k} \text{ where } p^j(\overline{m}k)! T_{\overline{m}k} = 0$$

Let λ_k be the number of factors of p in

$$\frac{p^{k(r-j)}(\overline{m}!)^k}{(\overline{m}k)!} y_{\overline{m}}^k.$$

Then $\lambda_k \ge N_k(\overline{m}, r - j, p)$ which by hypothesis has $\lim \sup = \infty$. Hence i^* is a free *p*-twisting.

3. Moore spaces

Let $M(Z_{p^j}, 2n - 1)$ be a Moore space. In this section it is shown that under certain conditions, given N there is an integer j such that no nontrivial map $\Omega SM(Z_{p^{j+k}}, 2n - 1) \rightarrow K(Z_{p^r}, 2n)$ compresses into the N skeleton for all $k \geq 0$. Although it is not proved that such a map cannot compress into a higher dimensional skeleton, this result does imply that every nontrivial map

$$\Omega SM(Z_{p^{\infty}}, 2n-1) \to K(Z_{p^{r}}, 2n)$$

is incompressible. We begin by establishing some conditions to detect whether the composition of incompressible maps is incompressible.

Recall the proof of Theorem 1.7.

(a) $i^*(x_k) = p^{\sigma_k} y_k + v_k$ where $p^{s_k} v_u = 0$ for some integer $s_k \ge 0$. (b) $j^*_N(x_k) = p^{\sigma_k - v(N)} z_k + u_k$ where $p^{s_k + j_k} u_k = 0$ for some $j_k \le m_k$ with $p^{m_k} D^{1, t_k - 1} = 0$.

THEOREM 3.1. Let

$$F \xrightarrow{i} X \xrightarrow{f} B$$

be a fibration satisfying the conditions of Theorem 1.7 and let r(N) be the smallest integer such that $p^{r(N)}H^i(B) = 0$ for $0 < i \le N$. Let $g: Y \to X$. If for all k, $p^{s_k+Nr(N)}g^*(x_k) \ne 0$ and $p[g^*(x_k)] \le K$ for some fixed integer K, then $f \circ g$ does not compress into B^N .

Proof. In the filtration of $H^*(X[N])$, D^{1, t_k-1} is obtained by finding N extensions by groups G_i with $p^{r(N)}G_i = 0$. Hence $p^{Nr(N)}D^{1, t_k-1} = 0$ so that

696

 $j_k \leq Nr(N)$ for all k. Now

$$\begin{array}{ccc} Y[N] \xrightarrow{g_N} X[N] \\ & \downarrow_{J_N} & \downarrow_{J_N} \\ & Y \xrightarrow{g} & X \end{array}$$

is a commutative diagram. Suppose $f \circ g$ compresses into B^N . Then there exists $h: Y \to Y[N]$ such that $j_N h \simeq id_Y$. Hence

$$g^{*}(x_{k}) = h^{*}j^{*}_{N}(g^{*}(x_{k})) = h^{*}g^{*}_{N}(j^{*}_{N}(x_{k})) = p^{\sigma_{k}-\nu(N)}h^{*}g^{*}_{N}(z_{k}) + h^{*}g^{*}_{N}(u_{k})$$

Let $\lambda_k = s_k + Nr(N)$ and $\tau_k = \lambda_k + \sigma_k - v(N)$. Then

$$p^{\lambda_k}h^*g_N^*(u_k) = h^*g_N^*(p^{\lambda_k}u_k) = 0$$

so that $p^{\tau_k}h^*g_N^*(z_k) = p^{\lambda_k}g^*(x_k) \neq 0$. Choose k so large that $\sigma_k - v(N) \geq K + 1$. Then $p[g^*(x_k)] > K$.

This contradicts Theorem 1.5 so that $f \circ g$ cannot compress into B^N .

Let

$$g_i: \Omega SM(Z_{p^j}, 2n-1) \to \Omega S^{2n+1}$$

be induced by \bar{g}_j : $SM(Z_{p^j}, 2n-1) \to S^{2n+1}$ representing the generator in $\prod_{2n}(Z_{p^j}; S^{2n+1}) = Z_{p^j}$. Let $w_{k,j} = g_j^*(x^{(k)})$. By comparing the spectral sequences of the path fibrations over S^{2n+1} and $SM(Z_{p^j}, 2n-1)$ it is easily seen that $w_{k,j}$ generates a copy of Z_{p^j} in $H^{2nk}(\Omega SM(Z_{p^j}, 2n-1); Z)$.

LEMMA 3.2. For every map $f_j: \Omega SM(Z_{p^j}, 2n-1) \to K(Z_{p^r}, 2n)$ there exists a map $f: \Omega S^{2n+1} \to K(Z_{p^r}, 2n)$ such that $f \circ g_j \simeq f_j$.

Proof. $\overline{f}^*(\iota) = up^s w_{1,j}$ where u is a unit in Z_{p^j} and $0 \le s \le j$. Let $f: \Omega S^{2n+1} \to K(Z_{p^r}, 2n)$ represent

$$up^{s}x_{r}^{(1)} \in H^{2n}(\Omega S^{2n+1}; Z_{p^{r}}).$$

Since the map f in Lemma 3.2 satisfies the conditions of Theorem 1.7, we would like to apply Theorem 3.1 to the map g_j . However, without further information on s_k , we cannot determine if $p^{s_k+Nr(N)}w_{k,j} \neq 0$ for any j. The following lemmas show that there is a subsequence $\{k_s\}$ such that $s_{k_s} \leq j$ for all k_s .

LEMMA 3.3. Let p be prime.

(a)
$$\binom{kp^s}{p^s} \not\equiv 0 \mod p \text{ for } 0 < k \leq p - 1.$$

(b)
$$\binom{p^{s+1}}{p^s} = pu \quad where \ (u, p) = 1.$$

(c)
$$\binom{t_k}{t_{k-1}} \not\equiv 0 \mod p \quad if t_k = p^k + \cdots + p + 1.$$

Proof. An easy exercise in binomial coefficients.

LEMMA 3.4. Let $h: R_1 \rightarrow R_2$ be a ring homomorphism. Suppose the torsion parts of R_1 and R_2 considered as groups under + are p groups and

$$h(x_1) = p^{\alpha_1}y_1 + u_1, \qquad h(x_2) = p^{\alpha_2}y_2 + u_2$$

where for some integers s_1 and s_2 , $p^{s_1}u_1 = 0$, $p^{s_2}u_2 = 0$, $(s_2 + \alpha_1) > s_1$, $(s_1 + \alpha_2) > s_2$.

- (a) If $x_1x_2 = mx_3$ where (m, p) = 1, then $h(x_3) = p^{\alpha_1 + \alpha_2}y_3 + u_3$ where $p^{s_3}u_3 = 0$, $s_3 = \min(s_1, s_2)$.
- (b) If $x_1x_2 = pmx_3$ where (m, p) = 1, then $h(x_3) = p^{\alpha_1 + \alpha_2 - 1}y_3 + u_3$ where $p^{s_3}u_3 = 0$, $s_3 = 1 + \min(s_1, s_2)$.

Proof. Only (a) is proved as the proof of (b) is similar.

$$mh(x_3) = h(x_1)h(x_2)$$

= $(p^{\alpha_1}y_1 + u_1)(p^{\alpha_2}y_2 + u_2)$
= $p^{\alpha_1 + \alpha_2}y_1y_2 + u_2p^{\alpha_1}y_1 + u_1p^{\alpha_2}y_2 + u_1u_2$

Let $my_3 = y_1y_2$ and $mu_3 = u_2p^{\alpha_1}y_1 + u_1p^{\alpha_2}y_2 + u_1u_2$. If $s_3 = \min(s_1, s_2)$, then $p^{s_3}mu_3 = 0$. Since (m, p) = 1, it follows that $p^{s_3}u_3 = 0$.

LEMMA 3.5. Let

$$F \xrightarrow{i} \Omega S^{2n+1} \xrightarrow{f} K(Z_{p^r}, 2n)$$

be a fibration where $f^*(\iota) = up^s x_r^{(1)}$ with u a unit in Z_{p^r} and $0 \le s < r$.

(a) $i^*(x^{(p^t)}) = p^{\alpha_t}y_t + v_t$ with $p^{s+t}v_t = 0$.

(b) $i^*(x^{(k_t)}) = p^{\tau_t} \bar{y}_t + u_t$ where $k_t = p^t + \cdots + p + 1$, $p^s u_t = 0$ and $\lim_t \tau_t = +\infty$.

Proof. (a) From the proof of Theorem 2.2 we have $i^*(x^{(1)}) = p^{r-s}y_0 + v_0$ where $p^s v_0 = 0$. Hence by repeated applications of 3.3 and 3.4,

$$i^{*}(x^{(p)}) = p^{p(r-s)-1}y_1 + v_1$$
 where $p^{s+1}v_1 = 0$

Suppose inductively that $i^*(x^{(p^{t-1})}) = p^{\alpha_t - 1}y_{t-1} + v_{t-1}$ where

$$\alpha_{t-1} = p^{t-1}(r-s) - (p^{t-1}-1)/p - 1$$
, and $p^{s+t-1}v_{t-1} = 0$.

By repeated applications of 3.3 and 3.4, $i^*(x^{(p^t)}) = p^{\alpha_t}y_t + v_t$ where

$$\alpha_t = p\alpha_{t-1} - 1 = p^t(r-s) - (p^t-1)/(p-1)$$
 and $p^{s+t}v_t = 0$.

(b) $x^{(k_0)} = x^{(1)}$ so that $i^*(x^{(k_0)}) = p^{\alpha_0}y_0 + u_0$ where $p^s u_0 = 0$. Suppose inductively that $i^*(x^{(k_{t-1})}) = p^{\tau_{t-1}}\bar{y}_{t-1} + u_{t-1}$ where $\tau_{t-1} = \alpha_{t-1} + \tau_{t-2}$, $\tau_0 = \alpha_0$, and $p^s u_{t-1} = 0$. By 3.3, since

$$x^{(k_{t-1})} \cdot x^{(p_t)} = \begin{pmatrix} k_t \\ k_{t-1} \end{pmatrix} x^{(k_t)},$$

we have $i^*(x^{(k_t)}) = p^{\alpha_t + \tau_{t-1}} \overline{y}_t + u_t$ where $p^s u_t = 0$ provided $\tau_{t-1} > t$. But $\tau_t = \sum_{i=0}^t \alpha_i$ so this is easily verified as well as the fact that $\lim_t \tau_t = +\infty$.

THEOREM 3.6. Let $f_j: \Omega SM(Z_{p^i}, 2n-1) \to K(Z_{p^r}, 2n)$ be a nontrivial map so that $f_j^*(i) = up^s w_{1,j}$ where u is a unit and $s < \min(j, r)$. Let r(N) be the smallest integer such that $p^{r(N)}H^i(K(Z_{p^r}, 2n)) = 0$ for $0 < i \le N$. Then for all $j \ge Nr(N) + s + 1$, f_j is not compressible into the N skeleton.

Proof. By Lemma 3.5(b), $s_{k_t} + Nr(N) = s + Nr(N)$. But if $j \ge Nr(N) + s + 1$. $p^j w_{1,j} \ne 0$ and so Theorem 3.1 applies.

COROLLARY 3.7. Any nontrivial map $f: \Omega SM(Z_{p^{\infty}}, 2n - 1) \rightarrow K(Z_{p^{r}}, 2n)$ is incompressible.

Proof. Such a nontrivial map implies that there exists an integer k such that if $h_j: \Omega SM(Z_{p^j}, 2n-1) \rightarrow \Omega SM(Z_{p^{\infty}}, 2n-1)$ is the natural inclusion, then fh_j is nontrivial for all $j \geq k$. f compressible contradicts Theorem 3.6.

COROLLARY 3.8. Let G be finitely generated and abelian. Every nontrivial map $\Omega SM(Q/Z, 2n - 1) \rightarrow K(G, 2n)$ is incompressible.

Proof. Since $Q/Z \cong \bigoplus_{p \in \mathbb{P}} Z_{p^{\infty}}$, such a nontrivial map implies the existence of a nontrivial map $\Omega SM(Z_{p^{\infty}}, 2n-1) \to K(Z_{p^{r}}, 2n)$ for some prime p.

4. Incompressibility and H-spaces

In this section some of the previous results are applied to deduce certain properties of *H*-spaces. We begin by stating a well-known result of James.

THEOREM (James [2]). X is a retract of ΩSX if and only if X is an H-space.

Let $\text{Im}_k(Y; X; G) = \{x \in H_k(X; G) \mid x = f_*(y) \text{ for some } y \in H_k(Y; G) \text{ and some } f: Y \to X\}$. Note that $\text{Im}_k(S^k, X; Z)$ is the image of the Hurewicz map in dimension k.

THEOREM 4.1. Let X be a finite H-space and let $y \in \text{Im}_{nm}$ ($(S^n)_m, X; Z$) where nm is even.

(a) y cannot be of infinite order.

(b) Suppose $p_1^{\alpha_1} \cdots p_k^{\alpha_k} y = 0$ where p_i is prime. Then for each $i = 1, \ldots, k$ we have $\alpha_i < \overline{m}$ where \overline{m} is m if n is even and is m/2 if n is odd.

Proof. (a) Suppose y is of infinite order, where $y = f^*(x)$ for some $f: (S^n)_m \to X$. Then, for all primes p, there is an integer j such that the coefficient reduction map $\mu: H_{nm}(X; Z) \to H_{nm}(X; Z_{p^j})$ is such that $\mu(y) \neq 0$. Hence

 $f^*: H^{nm}(X; Z_{p^j}) \rightarrow H^{nm}((S^n)_m; Z_{p^j})$

is nontrivial. Choose p so that $m \le p - 1$. Then the composition

$$(S^n)_m \xrightarrow{f} X \longrightarrow K(Z_{p^j}, nm)$$

is nontrivial. Since X is an H-space and the obstruction to extending f to \overline{f} : $\Omega S^{n+1} \to X$ are higher order spherical Whitehead products, the composition

$$\Omega S^{n+1} \xrightarrow{f} X \longrightarrow K(Z_{p^j}, nm)$$

is nontrivial. By A.3 in the appendix, $(m, 1, p) \in \mathcal{M}$ and hence this composition is incompressible by Theorem 2.2. This contradicts the finite dimensionality of X.

(b) Suppose $p_1^{\alpha_1} \cdots p_k^{\alpha_k} y = 0$ and $\alpha_i \ge \overline{m}$ for some *i*. Then there is an integer *j* and a map $g: X \to K(\mathbb{Z}_{p_i,l}, nm)$ such that $(g \circ f)^*(\iota) = p^{j-\alpha_i} x_j^{(m)}$. But by A.3, $(m, \alpha_i, p) \in \mathcal{M}$ so that $g \circ f$ is incompressible. Again this contradicts the finite dimensionality of X.

Remark. If m = 1, the above theorem says that the image of the Hurewicz map in even dimensions is zero for finite simply connected *H*-spaces. (See Browder [1] and Weingram [5].)

THEOREM 4.2. Let X be a (2n - 2)-connected finite H-space of dimension N. Let r(N) be the smallest integer such that $p^{r(N)}H^i(K(Z_p, 2n)) = 0, 0 < i \leq N$. Let $j \geq Nr(N) + 1$. Then $\prod_{2n-1}(X)$ has no p torsion of order greater than p^{j-1} .

Proof. Suppose $x \in \Pi_{2n-1}(X)$ is such that $p^m x = 0$, $m \ge j$, but $p^{m-1}x \ne 0$. Let $f: S^{2n-1} \to X$ represent x. Then f lifts to $\overline{f}: M(Z_{p^m}, 2n-1) \to X$ and since $\Pi_{2n-1}(X) \cong H_{2n-1}(X)$ via the Hurewicz map, the induced map

$$f^*: H^{2n}(X; Z_p) \to H^{2n}(M(Z_{p^m}, 2n-1); Z_p)$$

is nonzero. Then

$$M(Z_{p^m}, 2n - 1) \xrightarrow{f} X \longrightarrow K(Z_p, 2n)$$

is nontrivial and since X is an H-space, f extends to

$$\Omega SM(Z_{p^m}, 2n-1) \rightarrow X$$

Hence $\Omega SM(Z_{p^m}, 2n - 1) \rightarrow X \rightarrow K(Z_p, 2n)$ is nontrivial and by Theorem 3.6 does not compress into the N skeleton. This contradicts that X is N dimensional.

Remark. If it could be proved that $\Omega SM(Z_{p^j}, 2n-1) \to K(Z_{p^r}, 2n)$ is incompressible for all *j*, a proof similar to the above would imply that $\Pi_{2n-1}(X)$ has no *p* torsion if *X* is a (2n - 2)-connected finite *H*-space. For n = 2, and except for elements of order two this has been proved by Lin [3] by entirely different methods.

THEOREM 4.3. Let X be a (2n - 2)-connected finite dimensional H-space (not of finite type). Then $\Pi_{2n-1}(X)$ cannot contain $Z_{p^{\infty}}$ as a summand for any prime p.

Proof. Suppose $\Pi_{2n-1}(X) = Z_{p^{\infty}} \oplus G$. Then there is a map

 $f: M(\mathbb{Z}_{n^{\infty}}, 2n-1) \to X$

such that $f^*: H^{2n}(X; Z_p) \to H^{2n}(N(Z_{p^{\infty}}, 2n - 1); Z_p)$ is nonzero. This implies there is a nontrivial map

$$\Omega SM(Z_{p^{\infty}}, 2n-1) \to X \to K(Z_{p}, 2n).$$

By 3.7 this map is incompressible, contradicting the finite dimensionality of X. 🔳

Appendix

Let $N_k(m, s, p) = sk + kSp(m) - S_p(km)$ where p is a prime and $S_p(m)$ is the number of factors of p in m!. Let

$$\mathcal{M} = \{m, s, p\} \mid \lim_{k} \sup N_{k}(m, s, p) = +\infty\}.$$

LEMMA A.1. (a) $S_p(p^r) = (p^r - 1)/p - 1$ (b) $S_p(p^r - 1) = (p^r - 1)/(p - 1) - r$ (c) $S_p(p^rm) = m(p^r - 1)/(p - 1) + S_p(m)$

- (d) $S_p(m(p^r-1)) \le m(p^r-1)/(p-1) r.$

Proof. Only (a) is proved as (b), (c), and (d) follow by similar arguments.

$$S_p(p^r) = \sum_{i=1}^{\infty} \left[p^r / p^i \right] = p^{r-1} + \dots + p + 1 = (p^r - 1)/(p - 1).$$

PROPOSITION A.2. If $m/(p-1) \leq S_p(m) + s$ then $(m, s, p) \in \mathcal{M}$.

Proof. Let $k_i = p^j - 1$. Then by A.1(d), $S_p(k_i m) \le m(p^j - 1)/(p - 1) - j$. Hence

$$N_{kj}(m, s, p) = s(p^{j} - 1) + (p^{j} - 1)S_{p}(m) - S_{p}(k_{j}m)$$

$$\geq p^{j}(s + S_{p}(m) - m/(p - 1)) + j + K$$

where $K = m/(p-1) + S_p(m) - s$. Since $m/(p-1) \le S_p(m) + s$, $\lim_{k \to \infty} N_{k_k} = 0$ $+\infty$ so lim sup $N_k(m, s, p) = +\infty$.

COROLLARY A.3. (a) $(p^r, s, p) \in \mathcal{M}$ for all $r \ge 0$, $s \ge 1$ and all primes p. (b) $(m, s, p) \in \mathcal{M}$ if $m \leq s(p - 1)$.

(c) For all m and s, there exists a prime q such that $(m, s, p) \in \mathcal{M}$ for all primes $p \geq q$.

Proof. In each case it is easily verified that $m/(p-1) \leq S_p(m) + s$ so A.2 applies.

JAY E. GOLDFEATHER

BIBLIOGRAPHY

- 1. W. BROWDER, Torsion in H spaces, Ann. of Math., vol. 74 (1961), pp. 24-51.
- 2. I. M. JAMES, Reduced product spaces, Ann. of Math., vol. 62 (1955), pp. 170-197.
- 3. J. P. LIN, *H spaces with finitely generated cohomology algebras*, Doctoral Dissertation, Princeton Univ., 1974.
- 4. J. P. SERRE, Homologie singuliere des espaces fibres, Ann. of Math., vol. 54 (1951), pp. 425-505.
- 5. S. WEINGRAM, On the incompressibility of certain maps, Ann of Math., vol. 93 (1971), pp. 476-485.

THE UNIVERSITY OF WISCONSIN-MILWAUKEE MILWAUKEE, WISCONSIN