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O. Introduction

Letf: X Y and let A
___

Y with i" A Y the inclusion. The mapfcan be
compressed into A if there is a map f: X A such that f -.f. If Y is a CW
complex then a mapf: X Y is incompressible if it does not compress into any
smaller skeleton. In particular, if Y is infinite dimensional, f is incompressible
if it does not compress into any finite skeleton.

If the induced homomorphism

fj" Hi(X; G) H1(Y; G) (orfi" Hi(Y G) H’i(X; G))

is nonzero for some j > N, then f cannot compress into Y U. However, f
identically zero for all j > N is not a sufficient condition for f compressing
into Y N.
For example, Weingram [5] has shown that every nontrivial map

f: ’)S2n+l K(Zpr, 2n)

is incompressible, yet f. and fJ (any coefficients) are identically zero for all
j > 2npr.

Suppose nm is even and let be rn if n is even and m/2 if n is odd. Let
f: fS,+ K(Zpr, nm) be a nontrivial map so that it represents a cohomology
class xeH"m(fS"+l;Zpr) with pr-Jx 0 for some j, 0_<j < r. Let
Nk (m, s, p) be the number of factors of p in psk(m !)k/(km)! and let

M ((m, s, p) lim sup Nk(m, s, p) + oz }.
k

The following theorem is proved.

THEOREM 2.2. If (, r j, p) e M, then f: fS"+x K(Zp,, nm) is in-
compressible.
For example, nontrivial maps

A" S2"+1 K(Zp, 2npk) and lk" ’S2"+ 2 K(Zvr, (4n + 2)pk)

are incompressible for all k 0, 1, 2, Except for fo, the incompressibility
of these maps are not derivable by the methods of [5].

Sections 3 and 4 deal with applications of Theorem 2.2. In particular, the
following are proved"
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COROLLARY 3.7.

is incompressible.

Every nontrivial map

f: fSM(Zp=, 2n 1) K(Zp., 2n)

COROLLARY 3.8. Let G be finitely generated and abelian. Every nontrivial
map fSM(Q/Z, 2n 1) K(G, 2n) is incompressible.

Let (S"),, denote the mth reduced product of S" and let Imk(Y, X; G)
and (x Hk(X; G) x f,(y) for some y Hk(Y G) and for some f: Y - X}.

THEOREM 4.1. Let X be a finite H-space and let

y Imnm((Sn)m, X; Z)
where nm is even.

(a) y cannot be of infinite order.
(b) Suppose p]’ pk(y) 0 wherepi isprime. Thenfor each 1,..., k

we have < where is m if n is even and m/2 if n is odd.

THEOREM 4.3. Let X be a (2n 2)-connectedfinite dimensional H-space (not
offinite type). Then I’I2,_ I(X) cannot contain Zp= as a summandfor anyprimep.

All spaces will be assumed to be homotopic to simply connected CW com-
plexes and H*(X), H.(X) will be understood to have coefficient group the
integers.

This paper contains results from part of the author’s doctoral dissertation.
I would like to thank Stephen Weingram for his guidance as my thesis advisor.

1. Fibrations and incompressibility

When studying the problem of whether a map f: X B compresses into
A

___
B, it suffices to assume thatfis a fiber map. If not, there exists a fibration

F____.X, Y__,B

and a homotopy equivalence v: X’ X such thatf’ f v and it follows that
f’ compresses into A if and only iff does. Let Xa denotef-I(A) andfA denote
f restricted to XA.

DEFINITION 1.1. Let A
_
X with i: A X the inclusion. A map r" X A

is a coretraction if r - idx.

PROPOSITION 1.2. Let
Fi X y__ B

be a fibration and let A be a subspace of B. Let Ja: Xa X be induced by the
inclusion j: A B. Then f can be compressed into A if and only ifja admits a
coretraction ra" X Xa.
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Proof. Suppose r," X XA exists such that j,ra - idx. Then

J(fa ra) -foja ra -f
so thatf compresses into A.
Suppose f can be compressed into A. Then there exists f: X A and a

homotopy ht: X -- B such that ho f and h f. By the covering hom-
otopy property, there is a homotopy/it: X X such that/io idx andf h

f. Since Image (i of)
_
A it follows that Image (ht) - Xa. Henceja o/t -/io idx. Let ra /i []

DEFINITION 1.3. Let G be an abelian group and p a prime. An element
9 e G has p-depth >_ k if for some nonnegative integer s,

g =pk#t + V whereffv 0andp+kg :/: O.

If 9 has p-depth >_ k but not p-depth >_ k + 1, then g has p-depth k and this
will be denoted by p[-9-] k.

LEMMA 1.4. Let h" Gt G2 be a homomorphism of abelian 9roups and
suppose h(9) G2 has infinite order for some g Gt. Then P[9] k implies

>_

Proof. Let 9 pk91 + V where ffv 0 and p+kgt 4:0 for some integer s.
Then h(g) pkh(gt) + h(v) so that ph(v) 0 and since h(g) has infinite

order, p+kh(gt) v O. Hence p[h(9)] is at least k. []

THEOREM 1.5. Let

be a fibration and let ja’XA X be the inclusion induced by the inclusion
j" A B. Suppose there exists x H*(X) such that x has infinite order, p[x]
k butp[j](x)] > k. Thenfcannot be compressed into A.

Proof. In the light of Proposition 1.2, it suffices to showja does not admit a
coretraction ra.

Suppose such a coretraction existed. Then ja ra -idx so that id
* "* ida(x) rrAJA. Then x ](j](x)). By Lemma 1.4, since x has infinite order,

k p[x] p[r]y](x)] > p[j](x)].

p[j,](x)] > k contradicts this, so no coretraction exists. []

In order to make use of Theorem 1.5, it is necessary to know something
about H*(Xa). Under certain conditions, this information can be obtained by
examining i*" H*(X) H*(F), so we proceed in this direction.
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DEFINITION 1.6. Let h" G1 - G2 be a homomorphism of abelian groups and
let (Xk} be a sequence of distinct elements of G1. h is said to p-twist (Xk} if the
following hold.

(a) For all k, P[Xk] <_ M for some nonnegative integer M.
(b) p[h(Xk)] trk where limk sup O"k "" (X3.

If Xk is of infinite order for all k, then h freely p-twists (Xk} if in addition h(Xk) is
of infinite order for all k.

Before stating the main theorem of this section, note that if

F X-f-B
is a fibration and X[N] f-I(BN) then

F -----F

X[N] x

Br B

is a map of fibrations.

THEOREM 1.7. Let

F __J__X __B

be afibration with the following properties"

(a) H,(B) is afinite p-group in each degree greater than O.
(b) There exists a sequence {Xk} such that xk e Htk(X) and each xk is of

infinite order.
(c) There are an infinite number of integers N such that

Ker (Ht(X[N]) Htk(F))

is a finite group for all k.
(d) i* freely p-twists {Xk}.

Thenf is not compressible into any finite skeleton.

Before proving this theorem, it is necessary to recall some facts about the
Serre cohomology spectral sequence of a fibration F E B [4].

(1) H"(E) is filtered by

H"(E) Do," Dl’n-1 _... _
D"’ D,+1,-1 0

where D’ Ker (H"(E) H"(E[j 1])).
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(2) E’- H(B; H-(F)).
(3) E- D’"--/D+x’-+t.
(4) 0 - D1’- H(X) --, E’ 0 is exact
(5) E Im (n(E) - n(F)).

Let w, j(x,)e Htk(X[N]) so that i(w,)= p*ky, + v, where y, is of
infinite order and for each k, there exists s, such that pSv, 0. (This just spec-
ifies i* "* "*NJN as a free p-twisting.)

LEMMA 1.8 Under the conditions of Theorem 1.7, there exists an integer
v(N) andfor each k, an element z, Ht(X[N]) such that i(z,) pV(C)y, for
all k.

Proof Let {Er, dr} be the spectral sequence of F X B and
the spectral sequence of F X[N] B. Then the map j" Bu B induces
a map Er ’Er which commutes with the differential.

Since H*(B) is a finite p group in each degree, for each k there exists an integer

2(k) such that p;t(k)E2’ o 0. Then p;(k)Ek’ 0 for all j > 2 and > 0 wherej

(k) max (2(k), 2(k + 1)).

(This is just a consequence of the Universal Coefficient Theorem.) Consider the
differential ’d2 o. t 2. t-E2 E2 By naturality, p?(2),d2(Yk) 0 for all k.

Hence p;(Z)yk is a 2-cycle for all k. Similarly pTt(z)+i(3)yk is a 3-cycle under ’da
for all k and in general if v(N) (2) +... + (N), pV(N)yk is a permanent
cycle in {’Er, ’dr} (’dj 0 for j > N). Since P(u)Yk E ’ for all k and

E"oo Im (i" H’(X[N]) Ht(F))
there exists z, e Ht(X[N]) such that i(z,) p(C)y,.

Proof of Theorem 1.7. It suffices to show that f does not compress into B
for any N satisfying (c).

Let M be such that p[x,] < M for all k. By Theorem 1.5, it suffices to show
that for every N satisfying (c), there exists k such that p[j(Xk)] >_ M + 1.

Let i*(Xk) PkYk + Vk and Wk jv(Xk) as in Lemma 1.8. Since i(Zk)
pOV)yk,

i(w, p-(U)z,) vk.
But

O----D1’t-1 ([N]) ’"H X E ’ 0

is exact, so that

pNw p’-v(C)z) () for some e Dx’ t-x.
Condition (c) says that D’ t- is a finite p group for all k so thatp, 0 for
some j, > 0. Hence p+Nw, p’"-(N)z,) 0 which implies that

w, p’-"(U)z, + u, 0 where p+u O.
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Since lim sup ak + oO and v(N) is fixed, we may choose k so that ak
v(N) > M + 1. Thenp[j(xk)] P[Wk] > M + 1.

2. Incompressibility conditions for maps "Sn+l -’ K (Z,r, nm)
In [5,1, Weingram proved that any nontrivial map

f: I)S2"+1 K(Zpr, 2n)

is incompressible. The proof utilizes the fact that any such map is homotopic
to an H map and so induces a homomorphism of rings in homology. In this
section a more general theorem is proved using cohomological techniques so
that incompressibility conditions can be established for maps

f: fS"+1 K(Zpr, nm)

which are not in general homotopic to H maps. In view of the following
proposition, attention will be focused on the situation when nm is even.

PROPOSITION 2.1. Ifm is odd andp is an oddprime, any map

f: fS,+ K(Zpr, nm)

compresses into the (nm + 1)-skeleton.

Proof If n is even, all maps YS"+ K(Zpr, rim) are trivial, so assume n is
odd. For odd primes, S (S localized at p) is an H-space of dimension
nm + 1. The natural map Z Z() induces an epimorphism

Hom (Z(), Z,.) Hom (Z, Z,.)
and hence an epimorphism Llnm{enm" Zp,.) -- Hnm(snm" Z,.) Let (S")m denote\,(p),

the James mth reduced product space of S" and let y" (S)m S be the map
pinching the (nm- 1)-skeleton to a point. Then g induces an epimorphism

Hnm(snm Zpr) Hnm((Sn)m Zpr).

Since S("" is an H-space, and the attaching maps for constructing fS"+ from
(S")m are higher order Whitehead products, any map h" (Sn)m S("p" extends to. s"+’ -,

Hence fi*" Hnm(s; Zp) -- Hnm(sn+l; Zp.) is an epimorphism so that any
map f: t)S"+1 K(Zp., rim) factors through S" which is (rim + 1)-dimen-
sional. By the cellular approximation theorem,fcompresses into the (nm + 1)-
skeleton.
Assuming, then, that nm is even, the procedure will be to show when the

conditions of Theorem 1.7 are satisfied for X YS"+ and B K(Zr, nm).
We begin by recalling some facts about H*(fS"+ 1) and H,(K(Z., rim)).
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(1) If n is even, H*()S"+ 1) is a divided power ring with generators x(k) in
dimension nk satisfying the relation

x(k)x(S) () X(k/s).

(2) If n is odd, H*(flS+ 1) contains a divided power ring with generators
x(k) in dimension 2nk satisfying the relation in (1).

(3) In either (1) or (2), x(k) is not divisible by p so that for all k, p[x(k)] O.
(4) If p" H*(S"+1)

_
H,(g)S,+I;Zp,) is the coefficient reduction map,

then H*(S"+I Zp,) is (contains) a divided power ring with generators xk)

i(x(k)) for n even (n odd).
(5) H,(K(Zp,, nm)) is a finite p group in each degree.

The key to applying Theorem 1.7 is to verify that i* is a free p-twisting of
{Xk}. This would be straightforward if for example i*(xl) PYl and Xk xk.
Then i*(Xk) pky SO that rk > k and hence is unbounded. The problem arises
when x] akXk. Then ifi*(xl) pyl, i*(Xk) pk-ptakayk + Vk where akVk O.
It is possible that lim sup (k P[ak]) # o.

Let Sp(m) denote the number of factors of a prime p in m! Note that S,(m)
f=l [m/P] where [ ] denotes the greatest integer.

Let Nk(m, s, p) sk + kSp(m) Sp(km) so that Nk(m, s, p) is the number
of factors ofp in pks(m !)k/(km) !. Let

d4’ ((m, s, p) lim sup Nk(m, s, p) + ).
k

Weingram [5] showed that (1, s, p) //for all s and primes p. The proof that
there are other triples (m, s, p) in /is number theoretic and is contained in the
appendix.

Let mn be even and let f: fS"/1 K(Z,, mn) be a nontrivial map. If is
the fundamental class in H"m(K(Zp., nm); Z,), and is m if n is even and m/2
if n is odd, then f*(t) upJxm) where u is a unit in Zp, and 0 < j < r.

THEOREM 2.2.
compressible.

If (m, r j, p) /l, then f S"+1
_

K(Z., nm) is in-

The proof will follow two lemmas. Unless it is necessary to specify more
precisely, f will denote flS"+ and K will denote K(Z., nm).

LEMMA 2.3. Let G be an extension ofZ by Zp.. That is,

is exact. Then"

(a) G - Z G’ where pG’ O for some k <_ r.
(b) If G is a nontrivial extension (i.e., G Z @ Z.) then (1) pSy + v

where 0 < s <_ r andp-v O.
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Proof. (a) is obvious. Let y be a free generator in G and let (1) my + v.
fl(pry) 0 implies there is a k such that (k) pry. Hence pry kmy + kv
so that km pr. This implies m p and k pr- where 0 < s < r. (s 0
implies the sequence splits so that G would be a trivial extension.) Also pr-v
0 since fl is a monomorphism on the torsion subgroup of G. []

LEMMA 2.4. A nontrivial map f: f K satisfies conditions (a), (b), and (c)
of Theorem 1.7.

Proof. (a) is just statement (5) at the beginning of this section. For the
sequence in (b) take the generators xCk).
Note that tk is even. Condition (c) is equivalent to saying there are infinitely

many N such that D1’ tk-1 in the filtration of Htk (f[N]) is a finite p group
for all k. But D1’ -1 is a finite p group if Et-j is a finite p group for j
1,..., N. But E’t-1 is a finite p group if E’ k-1 is a finite p group for j
1,..., N. Since E{’-j HJ(KN; Hk-(F)) where F is the fiber of the map
f: f K, and H(K) is a finite p group for j 1,..., N by (a) and
the Universal Coefficient Theorem, it is only necessary to check if H(K,
Hk-I(F)) is a finite p group. But (a) implies H*(E; Q) H*(Y; Q) so H*(F)
is a finite p group in all degrees which are not multiples of n. There are infi-
nitely many N such that tk N is not a multiple of n for all k and (c)
follows. []

Proof of Theorem 2.2. In view of Lemma 2.4, it suffices to prove that if
i" F f is the inclusion of the fiber then i* is a free p-twisting of xk).
The fibration

F f Y--K
induces a fibration

Since f is (n 1)-connected and fK is (nm- 2)-connected, by Serres exact
sequence

0 nrim-1( Zpr) i*__. nnm_l(F; Zpr) J*-- nrim-1(fK; Zpr)

is exact. But (t) upJx’) so that

where Zo is understood to mean the zero group.
Similarly the sequence

0 H"m-l(ilK) H""(fl) ’" H""(F) H"’(fK) H""+l(f) 0
i*

is exact, and reduces to 0----, Z H"’(F) Z, O.
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By the Universal Coefficient Theorem,

Zpj Hrim- l(F; Zg) nrim- X(F) ( Zg ( Tor (Hnm(F)

so that the torsion subgroup of H"m(F) has order pJ, 0 < j < r. By Lemma 2.3,
i,(x(m)) pr-jym + vm where pvm 0 and ym is of infinite order. But

(x()) (ink)! x(
(m!)

pk(,.-( !)k ki*(x(mk)) ym +Tmk
(k)!

so that

Let 2k be the number of factors ofp in

(k)!

where pi(k)! Tk O.

Then 2k >-- Nk(, r j, p) which by hypothesis has lim sup . Hence i*
is a free p-twisting. []

3. Moore spaces

Let M(Zpj, 2n 1) be a Moore space. In this section it is shown that under
certain conditions, given N there is an integer j such that no nontrivial map
SM(Zz+, 2n- 1) K(Z,,, 2n) compresses into the N skeleton for all
k > 0. Although it is not proved that such a map cannot compress into a higher
dimensional skeleton, this result does imply that every nontrivial map

fSM(Zpoo, 2n 1) K(Zp, 2n)

is incompressible. We begin by establishing some conditions to detect whether
the composition of incompressible maps is incompressible.

Recall the proof of Theorem 1.7.

(a) i*(Xk) p*kyk + Vk where pSkv= 0 for some integer Sk O.
(b) j(Xk) P*k-VtmZk + Uk where Ps+JUk 0 for some Jk < mk with

pmkDx, t,- O.

THEOREM 3.1. Let

be afibration satisfying the conditions of Theorem 1.7 and let r(N) be the smallest
integer such that ffN)Hi(B) 0 for 0 < < N. Let g: Y - X. Iffor all k,
pk+N’(mg*(x) :/: 0 andp[g*(x)] < Kfor somefixed integer K, then f g does
not compress into B.
Proof In the filtration of H*(X[N]), D’- is obtained by finding N

extensions by groups G with p"tU)G 0. Hence pUtN)D’- 0 so that
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Jk <-- Nr(N) for all k. Now

Y X

is a commutative diagram. Supposef g compresses into BN. Then there exists
h" Y Y IN] such that ]h ida. Hence

g*(x) h*j(g*(x)) h*g(j(x))= p*-O(mh*g(z) + h*g(u).

Let 2 s + Nr(N) and z 2 + a v(N). Then

pah*g(u) h*g(pXu) 0

so that p*h*(z)= pX*(x)# O. Choose k so large that a-v(N)
K + 1. Then p[g*(x)] > K.

This contradicts Theorem 1.5 so thatf cannot compress into B. m

Let
9j: SM(Zpj, 2n 1)

be induced by 0j: SM(Zpj, 2n- 1) S2"+1 representing the generator in
l-I2.(Zp; S2"+) Z. Let wk, Oj*’(x(k)). By comparing the spectral se-
quences of the path fibrations over S2"+ and SM(Z, 2n 1) it is easily seen
that wk, generates a copy of Zs in H2"k(SM(Zj, 2n 1); Z).

LEMMA 3.2. For every map: SM(Zp, 2n 1) K(Z:, 2n) there exists
a map f: S2n+ K(Z:, 2n) such thatf gs

Proof. f*(O= upSwa,s where u is a unit in Zvs and 0_< s <j. Let
f: S2n+t K(Zvr, 2n) represent

upSxa) H2n(ns2n+ Zt,.). []

Since the map f in Lemma 3.2 satisfies the conditions of Theorem 1.7, we
would like to apply Theorem 3.1 to the map g. However, without further
information on sk, we cannot determine if pS+N(n)wk, # 0 for any j. The
following lemmas show that there is a subsequence {ks} such that sk, < j for
all

LEMMA 3.3. Let p be prime.

(a) \ pS ]

(bl \

(c) (tktk )

OmodpforO < k <_ p 1.

pu where (u,p) 1.

0 mod p iftk pk + + p + 1.
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Proof. An easy exercise in binomial coefficients. []

LEMMA 3.4. Let h" R --r R2 be a ring homomorphism. Suppose the torsion
parts ofR1 and R2 considered as groups under + are p groups and

h(xl) ply + ua, h(x2) PY2 + u2

where for some integers s and s2, pSlua O, pS’u2 0, (s2 + ga) > sl,
(s + ) > s.

(a) If xlx2 rex3 where (m, p) 1, then
h(x3) p’ +’y + u3 where p’u3 0, s3 rain (st, s2).

(b) Ifxlx2 pmx where (m, p) 1, then
h(x) p+- xy3 + u where pS3u 0, s3 + rain (sl, s2).

Proof Only (a) is proved as the proof of (b) is similar.

mh(x) h(xl)h(x2)
(pty + u)(py2 + u2)
p+yy + u2Py + upy + uuz.

Let my3 ylyz and mu3 uzpy + upy + uu. If s3 min (s, sz),
then pmu3 O. Since (m, p) 1, it follows thatpu O. []

LEMMA 3.5. Let
F nS2"+1 K(Zp,, 2n)

be afibration wheref*(O up*x) with u a unit in Zp, and 0 < s < r.

(a) i*(xp’)) p’y, + vt with p+tv, O.
(b) i*(xk’)) P"Yt + ut where kt p +’.. + p + 1, pu 0 and

lim zt +c.

Proof. (a) From the proof of Theorem 2.2 we have i*(x)) P’-’Yo + Vo
where p’vo 0. Hence by repeated applications of 3.3 and 3.4,

i.(xt,)) pt,,-s)- yl + vl where p*+ av 0.

Suppose inductively that i*(xt-)) p"- lyt_ + Vt- where

,_ pt-a(r s) (p’-i 1)/p 1, and p+t-tvt-t 0.

By repeated applications of 3.3 and 3.4, i*(x’)) P’Yt + vt where

zt =pt-- 1 =pt(r-s)-(p’- 1)/(p- 1) and p’+vt=O.
(b) xk) x) so that i*(x)) p’yo + Uo where puo 0. Suppose

inductively that i*(x’-)) P"-’Yt- + ut-x where zt-x t-1 + zt-2,

Zo o, and pSut_ 0. By 3.3, since

x(’-)’x(’)=(k’)x(’)’k,_
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we have i*(x(kt)) p’+t-ly "4- Ut where pSu 0 provided z,-1 > t. But
z =o so this is easily verified as well as the fact that lim zt + . []

THEOREM 3.6. Let f: QSM(Zpj, 2n 1) K(Zp,, 2n) be a nontrivial map
so that f(O uffwa. where u is a unit and s < rain (j, r). Let r(N) be the
smallest inte#er such that p’(N)H(K(Z,,, 2n)) 0 for 0 < < N. Then for all
j >_ Nr(N) + s + 1, f is not compressible into the N skeleton.

Proof. By Lemma 3.5(b), s,, + Nr(N) s + Nr(N). But ifj > Nr(N) +
s + 1. pJwl, v 0 and so Theorem 3.1 applies. []

COROLLARY 3.7.
incompressible.

Any nontrivial map f: QSM(Z,oo, 2n 1) --. K(Z,, 2n) is

Proof. Such a nontrivial map implies that there exists an integer k such that
if h" QSM(Zj, 2n 1) --. DSM(Z,2n- 1) is the natural inclusion, thenfh
is nontrivial for all j > k. f compressible contradicts Theorem 3.6. []

COROLLARY 3.8. Let G be finitely generated and abelian. Every nontrivial
map fSM(Q/Z, 2n 1) - K(G, 2n) is incompressible.

Proof. Since Q/Z - 9 zoo, such a nontrivial map implies the existence
of a nontrivial map DSM(Z,oo, 2n 1) K(Z,,, 2n) for some prime p. []

4. Incompressibility and H-spaces

In this section some of the previous results are applied to deduce certain
properties of H-spaces. We begin by stating a well-known result of James.

THEOREM (James [2]). X is a retract ofQSX ifand only ifX is an H-space.

Let Imk (Y; X; G) {x 6 Hk(X; G) x f.(y) for some y Hk(Y; G) and
somef: Y X}. Note that Imk (Sk, X; Z) is the image of the Hurewicz map
in dimension k.

THEOREM 4.1.
nm is even.

Let X be a finite H-space and let y Imnm ((Sn)m, X; Z) where

(a) y cannot be of infinite order.
(b) Suppose PI’ ""PY 0 where pi is prime. Then for each 1,..., k

we have < where is m if n is even and is m/2 ifn is odd.

Proof. (a) Suppose y is of infinite order, where y f*(x) for some
f: (Sn)m X. Then, for all primes p, there is an integer j such that the co-
efficient reduction map /z: Hm(X; Z) H,m(X; Z) is such that #(y)# 0.
Hence

f*: Hnm(x; Zt,,) "- Hnm((Sn)m Zp.)
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is nontrivial. Choose p so that m < p I. Then the composition

(S"),, X, KtZp., nm)

is nontrivial. Since X is an H-space and the obstruction to extending f to f:
flS,+ X are higher order spherical Whitehead products, the composition

S,+ X K(Z,j, nm)

is nontrivial. By A.3 in the appendix, (m, 1, p) and hence this composition
is incompressible by Theorem 2.2. This contradicts the finite dimensionality of
X.

(b) Supposep]’ .p,ky 0 and i > for some i. Then there is an integer
j and a map 9" X K(Zpij, nm) such that (9 f)*(t) pJ-’.r" But by A 3
(m, t, p) J/so that g fis incompressible. Again this contradicts the finite
dimensionality of X. []

Remark. If m 1, the above theorem says that the image of the Hurewicz
map in even dimensions is zero for finite simply connected H-spaces. (See
Browder [1] and Weingram [5].)

THEOREM 4.2. Let X be a (2n 2)-connectedfinite H-space of dimension N.
Let r(N) be the smallest inteyer such that pr(C)Hi(K(Zp, 2n)) 0, 0 < < N.
Letj >_ Nr(N) + 1. Then II2,_ (X) has no p torsion oforder yreater thanp- 1.

Proof Suppose x 6 I’I2n_ I(X) is such that pmx O, m >_ j, butp m-lx v O.
Let f: S2n-

_
X represent x. Then f lifts to f: M(Z,, 2n 1) - X and

since I-[2n_ I(X) H2n_ I(X) via the Hurewicz map, the induced map

f*: H2"(X; Z,) --, H2"(M(Z,., 2n 1); Z,)

is nonzero. Then

M(Z,.,, 2n 1) X----, K(Zv, 2n)

is nontrivial and since X is an H-space, jr extends to

nSM(Z., 2n 1) X.

Hence SM(Z, 2n 1) X K(Z, 2n) is nontrivial and by Theorem 3.6
does not compress into the N skeleton. This contradicts that X is N dimen-
sional. []

Remark. If it could be proved that fSM(Z,, 2n- 1) K(Zt,, 2n) is
incompressible for all j, a proof similar to the above would imply that H2,_
has no p torsion if X is a (2n 2)-connected finite H-space. For n 2, and
except for elements of order two this has been proved by Lin I-3] by entirely
different methods.
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THEOREM 4.3. Let X be a (2n 2)-connectedfinite dimensional H-space (not
offinite type). Then I-I2._ a(X) cannot contain Zpoo as a summandfor anyprimep.

Proof. Suppose H2._ a(X) Zp= G. Then there is a map

f: m(z,=, 2n 1) X

such thatf*" H2"(X; Z) HZn(N(Ztoo, 2n 1); Z)is nonzero. This implies
there is a nontrivial map

fSM(Z.=, 2n 1) X - K(Z., 2n).

By 3.7 this map is incompressible, contradicting the finite dimensionality of
X. m

Appendix

Let Nk(m, s, p) sk + kSp(m) S(km) where p is a prime and Sp(m)
is the number of factors ofp in rn !. Let

d// {m, s, p)) lim sup Nk(m, s, p) + c }.
k

LEMMA A.1. (a) S(pr) (pr 1)/p
(b) Se(p" 1) (p" 1)/(p 1)- r

(c) Se(p’m) m(p 1)/(p 1) + Sp(m)
(d) Sp(m(p" 1)) < m(p 1)/(p 1) r.

Proof Only (a) is proved as (b), (c), and (d) follow by similar arguments.

S(p’) Z [pr/p,] p’-I + + p + 1 (p" 1)/(p- 1).
i=l

Proof
Hence

PROPOSITION A.2. If m/(p 1) < Sp(m) + s then (m, s, p) //l.

Let kj pJ 1. Then by A. (d), S(km) < m(p 1)/(p 1) j.

Nk,(m, S, p) s(p 1) + (p 1)Se(m) Se(kim)
> p(s + S(m) m/(p 1)) + j + K

where K m/(p- 1)+ S(m)- s. Since m/(p- 1) < S,(m)+ s, lim Nkj
+oo so lim sup Nk(m, s, p) +c. []

COROLLARY A.3. (a) (p", s, p) /l for all r >_ 0, s >_ and all primes p.
(b) (m, s, p) if rn <_ s(p 1).
(c) For all rn and s, there exists a prime q such that (m, s, p) d# for all

primes p > q.

Proof. In each case it is easily verified that m/(p- 1) < S(m) + s so
A.2 applies. []



702 JAY E. GOLDFEATHER

BIBLIOGRAPHY

1. W. BROWDER, Torsion in H spaces, Ann. of Math., vol. 74 (1961), pp. 24-51.
2. I. M. JAMES, Reducedproduct spaces, Ann. of Math., vol. 62 (1955), pp. 170-197.
3. J. P. LIN, H spaces with finitely #enerated cohomolo#y al#ebras, Doctoral Dissertation,

Princeton Univ., 1974.
4. J. P. SERRE, Homolottie sin#uliere des espaces fibres, Ann. of Math., vol. 54 (1951), pp.

425-505.
5. S. WEINGRAM, On the incompressibility of certain maps, Ann of Math., vol. 93 (1971), PlY.

476-485.

THE UNIVERSITY OF WISCONSIN-MILWAUKEE
MILWAUKEE) WISCONSIN


