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1. Introduction

Let

+ bi(x)
= Oxi

bc an elliptic operator in a bounded domain , degenerating on Of in such a
way that

where r (r, r.) is the hward normal on . In general, the Dirichlct
problem for this orator has no solution since the corresponding solution of
the stochastic differential system

+

where = ### a# ds not exit from in finite time (scc, for example,
[4] for more details).
For any s > 0, consider the elliptic orator sA + L and denote by the

principal cigcnvaluc; i.e., is the smallest real number such that there exists a
solution u for the problem

(1.4) sAu, + , -u in , u 0 on .
As is well known such an cigcnvaluc always exists. Wc arc conrncd in this
par with the asymptotic behavior of as s 0.

Several earlier pars consider the problem of estimating when is the
principal cigcnvaluc for thc orator

(1.5) a + b,
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and (aij) is nondegenerate in . For example, in [3] and [6] it is shown that
under suitable conditions on the bi the principal eigenvalue for (1.5) decays as
exp (-c/e) as e 0, where c is a positive constant. Other estimates were ob-
tained in [2] for other varying conditions on the functions bi. In [ 1] asymptotic
estimates for 2, were obtained for n 1 and when the principal coefficient
degenerates on the boundary of the domain. This is a problem of some impor-
tance in the study of population genetics. The papers [3], [6], [7], and [8]
employ probabilistic tools; i.e., the Ventcel-Freidlin estimates [9], whereas in
[1] and [2] the methods are entirely analytic.

In Section 2 of this paper we derive, under suitable conditions on the ao and
the b, estimates for the principal eigenvalue of (1.4) of the form

(1.6) 2,<e-a*" (c > O, 0.</ < 1),
(1.7) 2,<e (v>O),
and in Section 3 we derive estimates of the form

(1.8) 2, > exp (-c’/e’’) (c’ > 0, 0 < ’ < 1),
(1.9) 2, > d’ (v’> 0).
The numbers /, /’ can be made as close to each other as we wish (under
appropriate assumptions), as is also the case for the numbers v, v’. Thus our
estimates from above and below are not too crude.
We note that in the estimates (1.6) and (1.8) the numbers/ and/’ do not

attain the value one as we mentioned is the case in [3] and [6]. However, as (1.5)
shows, the perturbed operators in the latter papers converge to first order
differential operators, as e 0, whereas (1.1) and (1.4) show the important
difference that the perturbed operators of this paper converge to second order
differential operators.
The results of Sections 2 and 3 extend in an obvious way to the case where 2,

is the principal eigenvalue for the operator

(1.10) e co-1-L,
.= tx tx

where (Cij) is nondegenerate in ; in fact all of the estimates remain the same.
This is no longer true when the matrix (co) is degenerate on df. In Section 4 we
consider this case for n 1, assuming that the degeneracy on the boundary is
rather "mild" so that (1.10) does in fact have a principal eigenvalue in the sense
of[1].
A probabilistic interpretation of the results of this paper is given at the end of

Section 3. We should like to point out that the pro.babilistic methods of [3], [6],
[8], and [9] cannot apply to the present problem since the Ventcel-Freidlin
estimates are lacking here; the reason being that, as varies, the diffusion
processes * corresponding to A + L are not absolutely continuous with re-
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spect to each other (the processes corresponding to (1.5) are absolutely contin-
uous with respect to each other).

2. Upper bounds

In this section we shall obtain upper bounds for the principal eigenvalue ;t of
the problem (1.4)as e--+ O, where L is given by (1.1). We shall suppose here and
in the next section that t3 is a bounded domain in R with a Ca boundary. We
shall make the following assumptions for the estimates of this section"

(A1) aij Cl(f) and bi is Hilder continuous in .
(A2) a0 is positive definite in f and positive semidefinite in .
(As) Let p(x) denote the distancefrom x f to fl. Then there is a Pl > 0

such that if 0 <_ p <_ p 1,

p(x) p(x)(2.1) ao(x <_ apk, a>O,k>O,
i,j-- X Xj

j= Xj / X

If p > O, then as p O,

(2.3)

Note that the condition (2.1) of (Aa) implies

E aij(x)ap(x) ap(x) O,
,j= Oxi Oxj

x e tf.

Thus [4,208] it follows that

ao(x
(2p(x) aaij(x

i,j-- X Xj i,j-- Xj i
x e tQ.

Consequently, as p O,

a2P(X) (3aij(x) aD(x) - o(1).(2.4) i,j= aO(x) OXi tXj i,j---- OXj OX

Thus (2.3) of (A3) holds for .B 0 also. Furthermore, if 0 < fl < 1 and the
tgao/tgx are H61der continuous (exponent fl’ > fl) then (2.3) is clearly satisfied.

In order to state our first theorem, we shall, for the sake of notational
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simplicity, introduce certain constants involving a, b, k, and . Let us set

(2.5)I#,k I + yk dy F(1/k)
r" 1 + + sin [t(1 + fl)/k]’

k > 1 + fl,

(2.6) c bl#,/a#+ )/k, k >_ 1 + fl,

(2.7)

(2.8) v=(-1)/k, k>_ l +fl.

We then have the following:

THEOREM 2.1.
stant A so that

Under the hypotheses (A )-(A3) there exists a positive con-

(2.9) 2. <_ Ae-/’’ for 1 + fl < k,

(2.10) Z _<

and

Ae if b/a > 1
for l + fl=k,A if b/a < 1

(2.11) 2<_A for l+fl>k.
In the sequel we use the notation L --eA + L
In order to obtain these bounds for 2 it will be necessary for us to use the

following lemma from [2].

L.MMA 2.2. Let (A) and (A2) hold and let p C([)) c C2(fl). IfL.O(x) +
AP(x) >_ 0 for x fl and some A > O,,and (x) > 0 for x
then 2 <_ A.

Proof of Theorem 2.1. In order to apply Lemma 2.2 we shall choose
exp 4 and shall work, at first, only in a neighborhood of Ofl. We shall take

4(x) =f(p(x)), wherefis a twice differentiable function in some interval (0, Po).
Notice that in order that vanish on [1 it is necessary that f(p)-,- as
p --, 0. Computing the various derivatives of we find that

(2.12) Z [eJij + a,j]
,jffi

Op Op
[f. + (f,)2] OX, OX)

+
i=

bi oxi
Our object is to try to make this quantity nonnegative in a neighborhood of
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The first thing we notice is that in a neighborhood of c3gl we have

(2.13) 0
cp(x) c3p(x)

60
c3zp(x)

sAp(x).
,j= x

From the hypothesis (2.3) of (A3), (2.12) and (2.13) we have for sufficiently
small p, say 0 p g Po,

(2.14) L pp]+ If"+
.i= dx

+ ,= (b,-1)+Ap + o(P)lf’.

Let us set

(2.15) h(p) [-bp/( + ape)I, hv(p) h(p) + r,

where is a nonnegative constant which will be chosen subsequently. tfv a
solution to the Bernoulli equation

(2.16) f + (f’v)z hr fir.
Since h < 0, from (2.14) (withfv replacingf), (2.15), (2.16), and (2.1) of (A3) we
have,

(2.17) -bp’ + b,- + e(r + Ap) + o(p’)
i=1 j=l

Choose so that + Ap k 0; then iff’v k 0 we have arrived at the fact that

(:.18) 0, Oppo.

In order to solve (2.16) we make the standard transformationf’r 1/. This
leads to the first order linear equation #’ + h # 1 which has the solution

Choose .g(0)= 0 so that f’r(0)= . Thus. we have

(2.19)
exp I hv

Ig (exp I h)d’
Notice thatf’(p) > 0 andf’(p)--, + oo as p 0, Integrating (2.19) and norma-
lizingf(p) in any way (i.e., choosing the constant of integration in any way) we
always get fr(p) ---} as p 0.
We have shown that for p sufficiently small, 0 < p < P0, we have for every

constant A > 0, L, (I)+ At} > 0. We must now investigate the range where
P > P0. Toward this end let (p) be a C function such that (p)= 1 for
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0 < p < Po/2, and ;(p) 0 for p > Po. Let us now redefine and set e,.
This new function coincides with the old in the range 0 < p < po/2, and is
identically 1 for p > Po. Thus in the range p > Po we have L, dp/cb 0, and in
the range Po/2 < p < Po we have (2.14) withf replacingf

In order to estimate the right hand side of (2.14), withfreplaced byf(, it is
necessary to get estimates onf and its first two derivatives in the range po/2 _<
/7 _< Po. In order not to carry along the annoying factor ), in the computations
we note that iffis a solution to (2.16) with h replacing h. then there is a positive
constant C so that (1/C)f’ <_ f’ <_ Cf’. Thus it is enough to estimate f’ in the
range Po/2 _< p _< Po. We use (2.19), with h replaced by h. We first consider the
case 1 -t- fl < k. We have

(2.20) h -b --------dz
e + azk

Note that

b 1 IaO I(*’la)tlk

a(D + )/k e, ( + )/k

b 1
a(a+ )/k ex-(a+ 1)/k Ia,(e, p).

l + y
kdy

yp
l/,k(e, p) "-* I/,k 1 + yk

dy as s --, 0,

uniformly for Po/2 _< p _< Po. In the latter range we also have

(2.21) exp h da exp h dtr

bap
exp h da

>b-O 1-exp h

>_ C,

where C is a positive constant. Now I,{, O) may be made as close to I, as we
wish by taking sufficiently small. Also, b in (2.20) may be replaced by any
constant b’, b < b’ < ’. Putting these observations together we conclude from
(2.20), (2.21)that
(2.22) f’(p) <_ Ce-’’,
where C is another positive constant. Note that in (2.22) the notation (2.6), (2.7)
has been used.
By properly normalizing fv say by takinf(po/2) 0, we find that by inte-

grating (2.22) (with replacing f) between po and p, we get the inequality
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(2.22) for f(p) in the range go/2 <_ p <. go. Since

(2.23) If(p)l -< Ihl f’ + (f,)2
we get the same inequality for f’(P) in the same range. Consequently, from
the right hand side of (2.14), withf replacingf, we see that for po/2 _< p < Po,

L,
= O(e_/,,

Thus there is a positive constant A so that in all of f we have

Lqp + Ae-"/ > O.

An application of Lemma 2.2 gives the inequality (2.9) of Theorem 2.1.
It remains to obtain the inequalities (2.10) and (2.11). If 1 +/ k, then we

have

(2.24) h -[bp’- 1/(e + ap’)], k > 1.

In order to obtain estimates onf’(p) it is slightly more convenient to look at it
in the form

f’,P, [fo (exp (-S h)) do’T-’
Using (2.24) we now have

fP b f ka’-i d’
(2.25) h dz -a e + azk

so that

(2.26)
p p P daSo (exp (-j’<, h))da=(e,+ap’)’i"So (e,+aa,),n,,

An easy estimation of the integral on the right shows that for po/2 < p < Po,

da C/e(/-l/’, b/a>l,
(2.27) (, + aa)/

>
C, b/a < 1,

where we have taken C as a positive generic constant. Correspondingly, for
Po/2 < p _< Po,

ce(blo- )n,, b/a > 1,
(2.28) f’(P) < C, b/a < 1.

We have not considered the case b/a 1 since if this is the case we can increase
b slightly without violating (A3). By suitably normalizingf, sayf(po/2)= O,
an integration of (2.28) shows that these inequalities persist for f. Also (2.23)
shows that they hold for fl as well. Thus proceeding as before we have the
estimates (2.10).
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Finally if fl + 1 > k, it is easily established that for Po/2 _< p _< Po,

fo exp h d>C>O,

where C is independent of . Since exp g h _< C, independent of, we conclude
(using (2.19)) that f’(O) < C, and then also that If’;I < C and f,(o)< C,
provided f is properly normalized. Proceeding as previously, the inequality
(2.11) is established. The proof of Theorem 2.1 is complete.

Remark. The proof ofTheorem 2.1 remains valid if the two conditions (2.2),
(2.3) are replaced by the single condition

020
i.j= X OXj i=

Furthermore, we do not need to assume, in this case, that a is continuously
differentiable but just H61der continuous. Since the condition (1.3) is a stan-
dard condition for the nonsolvability of the Dirichlet problem, we have
preferred to state (A3) in such a way so as to expose the condition (2.2) which is
a quantitative version of (1.3).

3. Lower bounds

In this section we shall obtain lower bounds for the principal eigenvalue of
the boundary value problem considered in the last section. In addition to the
conditions imposed on t) in that section we shall make the following
assumption"

(Bo) The distance function p can be extendedfrom a neiohborhood ofc3f to a

function p C2(D) which has only one critical point Xo f at which the Hessian
(c32p/c3xi c3x) is negative definite.
A word is in order concerning this assumption. If f is a ball, then it is clear

that a function satisfying (Bo) may be constructed. This is also true if f is
C2-diffeomorphic to a ball, say {lyl < 1}. Indeed, let r(x) be the distance from
x f to coD, a function which satisfies (Bo) for the ball {lyl < 1} (with
grad (0) 0), and b a diffeomorphism onto this ball. Let ro > 0 be sufficiently
small so that r(x) is a C2 function for 0 < r < ro, and the latter region does not
contain -(0). Let , be a COO function on the real line so that ,(t)= 1 for
< ro/2, (t)= 0 for > ro and ’(t) < 0. Set

p(x) r(x) r(x) + [o b(x)+ ,](1 o r(x)),
where , is a constant to be chosen in a moment. Clearly p coincides with r for
0 < r < to and coincides with fi b + , for r > to. Function p has a critical
point at Xo b-(0), and no other critical points in the region 0 < r < to
and r > to. To see that there are no critical points in ro/2 < r < ro we differen-
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tiate in the inward normal direction to tgf; i.e., we differentiate with respect to
r. We get

dr
-+(1-) d’ [o q: r- r]/.

Choose y large enough so that the term in brackets on the right is nonnegative.
Since the first sum on the right is positive and k’ < 0 in ro/2 < r < ro, we see
that p does not have a critical point in the given region.
To see that the Hessian of p is negative definite at Xo, let Df designate the

differential off. Noting that has a critical point at b(Xo), we have

Dp(xo)--- Dr((O))[Dch(Xo)].
Since the Hessian Dr2/3 is nonsingular at 0 and Dxb is nonsingular at Xo, it
follows that the Hessian D2xp(xo) is nonsingular. Finally since p has a local
maximum at Xo it follows that D2p(Xo) is negative definite.

In addition to the assumption (Bo) and the assumptions (A ) and (A2) of
Section 2 we shall now make the following assumption"

(B3) For all 0 < p < p 1, P sufficiently small,

Op p
(3.1) ai >_ apk, a > O, k >_ O,

i,= cxi

((3.2) ,--, b,- --, -x; x<_ p’, 0<<b,p>_0,

(3.3) a,
d2p tgaicP

,= dx tgx ,= dx x + (P)’ > O, p 0

and, if O,

(3.4)
,= t3xi t3x

=0 on tgf.

Using the notation (2.5)-(2.8) we have the following

THEOREM 3.1. Under the hypotheses (A1), (A2), (Bo), and (n3) there exists a
positive constant A so that

(3.5) >_ Ae-c/*" for 1 + fl < k,

Ae if b/a > 1
(3.6) 2 >_

A if b/a < 1 for 1 + fl k,

and

(3.7) 2 >_ A for l + fl > k.

In order to obtain these bounds for 2 it will now be necessary for us to use
the following lemma from [2].
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LEMMA 3.2. Let (A) and (A2) hold and let C(t’i) C2(f). IfLO(x) +
A(x) <_ 0for x f and some A > 0 and (x) >_ 1 in D., then 2 >_ A.

Proof of Theorem 3.1. In order to apply Lemma 3.2 we shall, as in the last
section, choose e*, where O(x)=f(p(x)) and f is twice differentiable in
[0, ). Let us first work in a neighborhood of 0. For p sufficiently small, say
0 < p _< Po, we have the equation (2.14) which we repeat for the reader’s
convenience"

(3.8) +
,,j__ ’J Uxj +

+ ,= b,-=E-!-x+sAp+o(p)
We note that this formula is true for fl > O.

Let us now set
b# +(3.9) h,-- h- "-- . + aO,

where , is a nonnegative constant which is to be determined. We shall
soNe Bernoulli’s equation

(3.10) f; + (f;) h,
is time we shall take fr(O) e so that we get a solution

exp g h 1
(3.11) f;(p) , + (xp h,) d, exp t-l h,)+ I (xp (-: h,)d"
We see thatf is a C2 function in [0, ). Iff is a solution tof" + (f’) hf’,
withf’(O) e, it is clear from (3.11) that there is a positive constant C so that
(1/C)f’ f’ Cf’. us estimates on f’ will give estimates on f’r Clearly f’
may be written in the form (3.11)withf’ replaeingf’ and h replacing h.

Let us first take the case fl + 1 < k. Using C as a positive generic constant, it
is clear that

(3.12) + exp h d N C.

Further, I,(, O) N I,, so that followg the computations of Section 2 we get

(3.13) exp h Ce-"".

Recall that the constants c and are given by (2.6) and (2.7).
From (3.8) and (3.1) of (B) we get

,=, j=, Oxj
+ (a r) + o(p
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Choose T sufficiently large so that Ap 0, From (3.12) and (3.13) it follows
that f’ > Ce-/. From this estimate, (B3) and (3.14) we see that for
0 < p < Po, there exists a positive constant A so that

(3.15) L@ + Ae-/ <_ O.

Now let r be a small positive number so that for p(x)- p(Xo)l < r,

(3.16) (e60+ ao)
d2p

< -C <0, b,
cp

i.j- IX Xj i= - - C/2.

Sincef + (f,,)2 _< 0, it follows from (2.12)and (3.16) that

Ko c,

This shows that (3.15) is satisfied in p(x) p(Xo) < r.
Finally we must consider the region {p > 19o, ]p- p(Xo)] > r}. By (Bo), p

has only one critical point so that in the region under consideration
grad P > C > 0. Thus

p Op
p i/., (e6o + ao)-

’’
> C grad > C > 0,

i,j---

where C is a generic constant. We have

Now choose 7 so large that the term in brackets is _< -C < 0. Using the fact
that f’ >_ Ce-‘/’, we see that once again we have (3.15). An application of
Lemma 3.2 gives the inequality (3.5)of Theorem 3.1.
To obtain the Lnequalities (3.6) we take fl + 1 k and h as in (3.9). As above

it is enough to obtain an estimate for f’ which is a solution to (3.10)with h
replacing hv. This time we have

so that

h---In +aoj

exp h (e + ap)b/
(e + atb/’’

These are exactly the formulas (2.25) and (2.26) which we have repeated for the
eonvenienoe of the reader. To get lower bounds, we want the inequality in
(2.27) reversed. It is easily seen that

dgr C/,{b/a-l)/k, b/a>l,
(e / ao)/ <

C, b/a < 1.
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Further, we have

Thus,

exp h (e + ap)//(/).

(3.20)
where w(t) is
o" (o’qj= t. Let

1 Ce/- )/k, b/a > 1,
f’(P)

e exp (--j’ h) + j’ (exp (- h)) da C, b/a < 1.

Arguing as before we have the inequalities (3.6)of Theorem 3.1.
Finally, if + 1 > k, it is clear that f’(p) C > 0, where C is a constant

independent ofp and e. This gives the inequality (3.7) and the proof ofTheorem
3.1 is complete.

Remark 1. Suppose n 1, (0, 1) and

a(x)/xk -, > 0 as x --, O, a(x)/(1 x)k --, ot > 0 as X --, 1.

Suppose also that b(x)/a’(x) = fl/k in a neighborhood ofx 0 and x = 1. Then

(3.17) m ,e/e- 1)/k : M if > I,

(3.18) m < 2,/ln (l/e) < M if .8 1,

(3.19) m<A<M if//<l,

where m and M arc positive constants. The proof of these facts is easily ob-
tained by being a bit careful in the proofs of Theorem 2.1 and Theorem 3.1.

Remark 2. Wc would like to give a probabilistic interpretation for the re-
sults obtained so far. Suppose aq ,= tr,trt# and consider the system of
stochastic differential equations

d (t) aw(t) + at,

n-dimensional Brownian motion, b (bl,..., b,,) and

,(x) be
Op Op

,=,
and suppose

(3.21) (x) 0 on ark (x) > 0 on Of/.

Then (t) remains in f/for all t > 0, provided (0) x e t (see [4]).
Let @ (j/j= t, where

1
ao+e6o >0,
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and consider the stochastic system

(3.22) d(t) r((t)) dw(t) + b((t)) dt.

Denote by z the first time (t) hits Of and denote by o the first time (t) hits
0t. Since a.s. (t)--, (t) uniformly in finite time intervals (see [4]) we should
have, at least heuristically,

(3.23) % --* o as -, 0, provided o is finite.

Now by [3] (see also [5], [6]) the principal eigenvalue A is characterized by

inf {: E[e] < oo for all x
Hence, as -, 0

(3.24) A --, 0 if % --, oo and >_ C > 0 if remains bounded.

As mentioned before, the conditions (3.21) imply that o--oo and hence
(3.23) cannot be directly applied to conclude something about the behavior of
%. In order to say something specific about the behavior of, or Aas --, 0, we
introduce the function

If Q < 0 then 0t) is stable with respect to the paths (t) (see [4]) and if Q > 0
then is unstable. Thus, if Q > 0, then, roughly speaking, (t) does not come
near to the boundary as t --, oo and, consequently, we should have z--, oo as
e 0, i.e., heuristically speaking,

(3.26) Q > 0 implies A --, 0;

further, the larger the Q the faster 2 goes to zero. Similarly we should have

(3.27) Q < 0 implies 2. > C > 0.

Suppose (1/Co)p < z$’ < Co p, (Co > 0). If Q > c/p, c > 0, then the first
inequality in Theorem 2.1 holds, whereas if Q > C, C > 0, then the second
inequalities in Theorem 2.1 hold. If in Theorem 3.1, b/a < 1, then 2 > C > 0;
this corresponds to the case where Q is negative. The other results of Sections 2
and 3 can also be viewed _in this context.

Notice that in Remark 1, if a’(0)=0, a"(0)>0 then k=2 and
sgn Q(x) 1 near cgf so that Q > 0 implies (3.17), Q 0 implies (3.18) and
Q < 0 implies (3.19).

4. Further results

In this section we shall obtain asymptotic estimates for the principal
eigenvalue for the problem

(4.1) u(x)-- (eao(x) + a(x))u"(x)+ b(x)u’(x)--- -).,u(x), x e (0, I)
u{O) =.(1) o.
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Throughout this section we shall make the following assumptions on the
coefficients"

ao(x), a,(x), b(x) C’(O, 1) C[O, 1],
(4.2) ao(X), a(x)> 0 in (0, 1),

ao(x)/f -.a > o, b(x)d /xx p-’bo>O asp--,O,

where p is the distance from x (0, 1) to the boundary of (0, 1),
(x-’(eao + a))’, (x-(eao + a))", (x-b)

are bounded in some neighborhood of 0 and 0 < a < 1 + fl, 0t < 2, fl > 0.
We shall first obtain upper bounds on g. Toward this end we make the

following additional assumption"

(4.3) al(x) < apk as p-,O, a > O, k > .
In order to state the first theorem of this section we shall for notational

convenience, introduce certain constants. Let us svt

(4.4) I’’k 1 + y-" dy

r,1/k_,r 1 +- +

x
sin [r(1 + - )/(k- )]’ k > 1 + .
a(-(+ 1))/(k-.) k ( + 1)(4.5) d
(a)(k_ t+ 1))/(_,)la,p, (

k 0t

0 (/) 1 /; < bo, k > 1 + ft.

We then have the following

THEOREM 4.1.
constant A so that

(4.6)

(4.7)

(4.8)

Proof

Under the assumptions (4.2) and (4.3) there exists a positive

A < Ae-/ for l + fl < k,

,4 f/ > 1
A<A /f ’/fi < 1

forl+fl=k,

, ,4 for l+#>k.
From the assumptions (4.2) and (4.3) we see that

(e,ao(x) + a(x))/p" ..-, ea as p --, O.
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Thus it follows from [1] that the principal eigenvalue A exists for all e > 0.
Further, it follows from (4.2) that for every > 1, there is a p so that

(4.9) e.ao(x) < ),ap for 0 <_ p < pv.

We now proceed with the proof in a manner entirely parallel to the proof of
Theorem 2.1. We shall take exp tp and shall work, at first, only in a
neighborhood of 0 and 1. We shall take {p(x)=f(p(x)), where f is a twice
differentiable function on the real axis. Noting that dp/dx +/- 1 in a neighbor-
hood of the boundary of [0, 1] we have

(4.10) [eao + a][f" + (f,)a] + b d--Pr’q dx"

As in Section 2 we shall choosefso thatf’ > O,f" + (f’) < O, andf(p)
as p 0. Thus from (4.3), (4.9), and (4.10) we have

(4.11) > [e.ap, + apk][f, + (f,)2] + b
dx""

Now let us take

(4.12) h(p -1p’/(Tezff + apk)
and solve Bernoulli’s equation

(4.13) f,, + (f,)2 hf’.
It follows from (4.3), (4.11), (4.12), and (4.13) that for p sufficiently small, say
O <_ p < po, l.,tb/t} > O.
As in Section 2, (4.13) leads to a solution

(4.14) f’(P) [fop (exp (- I; h) -art
-’

(exp h)do’"

We first consider the case 1 + fl < k. A simple calculation gives

p

(4.15) fo h=-
"a(-+ 1))/(A:-)

f
ICae’la)l/{-’) y- dy

’(a- (# + 1))/(k- oO

In the range Po/2 _< p _< Po, I,,#,k(e,, P) l,,l,k, uniformly in p, where l,#,k is
given by (4.4). In the same range for p, if e is sufficiently small we have
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Now, for 0 < a < (?/a)/-) we have

h e + az

-> 2

1 " 1
0.fl+ 1-.

2 y fl + 1

Note that the last equality is possible because fl + 1- > 0. Make the
transformation

1 " 1
0.0+1- y.

2 + 1-

Then

(4.18) fo (exp fOo h) dtr

Cf.([$ k)/(k-

Cel/(/+ x-or) fo e-,y(-#)/(#+ l-or) dy,

where C,.c are positive constants. Since fl + I _< k, from (4.18) we get

(4.19) Io exp h d >_ C/-.
Since 7 is as close to 1 as we wish, provided we take O sufficiently small, and

I.e.(, 0) is as close to I.,. as we wish for 0,/2 N 0 N 0, rovided is
suciently small, if we had originally worked with ’ so that < ’ < bo, it
follows from (4.14), (4.15), and (4.19)that
(4.20) f’(p) Ce-a/"‘.

If we now proceed as in the first part of the proof of Section 2 we see that
there is a positive constant A so that

(4.21) L + Ae-a/ 0, x e [0, 1].
Sce the operator Lmay not be elliptic at the end pots of[0, 1] it may not be
possible to use (4.21) in order to apply Lemma 2.2. However, we may priced
in the following way. t > 0 and consider the principal eigenvalue to the
problem

(4.2) u(x) :u(), x (, ), () ( ) o.
From Corollary 3.3 of [1] it follows that

(4.23) 2 2.
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If we now let p be the distance from a point in J, (r/, r/) to tJ,, it
follows from our assumptions that for every y > 1, there is an r/ and 19 so that

eao(x) < et(p + r/), al(x) < a(p + r/), b(x)(dp/dx) > (p + rl)IJ

for x J, 0 < r/_< r/v, 0 < p < p.
We now set

-b~(p + rl)(4.24) h,(p) /ef(p + rl) + a(p + rl)’’
and solve equation (4.13) with h replacing h. Going through the same compu-
tations as before, we find that there is a function , positive in J, vanishing on
the bbundary of J and satisfying

(4.25) L + Ae-’f"/ > 0,

for all (Po + r/)/2 < p < Po + r/, where Po is sufficiently small and for all
sufficiently small r/. Here A > 0 and is independent of

and

a(a- (# + 1))/(k- a)

d(e, r/) inf ?(k- (a + l))/(k- la,#.k(e" P’ rl); P+r/2 _<p<po+r/},_
l’’k(e’ P’ rl)=

",/(,e./.)/,-. 1 + y- dy.

We now proceed exactly as in the proof ofTheorem 2.1 to obtain the inequa-
lity (4.25) for the whole interval J,. We may now use (4:25) to apply Lemma 2.2
to the eigenvalue problem (4.22). Taking into account (4.23) we have

(4.26) 2 < Ae-’(’’/.

Allowing r/--, 0 in (4.26) we get 2 < Ae-’/. Thus we have the inequality (4.6)
of Theorem 4.1.
We now consider the case 1 + k. We again take h, as in (4.24)and again

solve (4.13) with h, replacing h. Going through the computations in this case we
find there is a function (I), positive in J,, vanishing on dJ, so that

(4.27) L,. + al,k(e, rl)- > O,

for all sufficiently small r/, where

{f dtr po+rl
<p<po+rl.I,,.k(e., r/)= inf

[),e.5 + a(tr + r/)k-:-]/(k--) 2

We may now use (4.27) to apply Lemma 2.2 to the eigenvalue problem (4.22).
Taking into account (4.23) we have 2 < Al,k(e., 7)- . Allowing r/--, 0 we get
(4.7). Finally, a similar procedure will give (4.8) for a < k < + fl, so that the
proof of Theorem 4.1 is complete.
We shall now state and prove a theorem on lower estimates for 2,. In addi-
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tion to the hypothesis (4.2) we now make the assumption that there is a p > 0
so that

(4.27) a(x) > apk, O < p < p, a > O, k > ot.

THEOREM 4.2. Under the hypothesis (4.2) and (4.27) there exists a positive
constant A so that

(4.28) 2 > Ae-/ for 1 + fl < k,

Ae if b"/h >(4.29) 2 >_
A if b"/ < 1 for + fl k.

(4.30) 2’> A for < k < + fl.
In this theorem the constant which appears in (4.5) and (4.29) is to be taken so
that b" > bo.

Proof. The proof proceeds entirely parallel to the proof of Theorem 3.1, so
that we shall only discuss in detail those points which are different. The reader
can easily fill in the missing details. For this proof we take

+,b- a />bohe h- z
7e?tp + aPk

where z is taken as a sufficiently large constant. Hence, working as in Section 3,
we find that if 1 + fl < k, there is a function tl) e C2[0, 1] so that

(4.31) L** + Ae-d/** < 0 in [0, 1].
Now, we cannot immediately use (4.31) in the application of Lemma 3.2 since
L, may not be elliptic at the end points of [0, 1]. In order to get around this
difficulty we let r/> 0 and let L,,, L, + .tl(d2/dx2). Since * e C2[0, 1], if r/is
sufficiently small we get (4.31) with L,,, instead of L,. Let 2", be the principal
eigenvalue of the problem (4.1) with L,,, replacing L,. Since L,,, is elliptic in
[0, 1] we may apply Lemma 3.2 to get

(4.32) 2 > Ae-/.

From Corollary 3.2 of 1] we have 2 --, 2 as r/--* 0. Thus we have (4.32) with 2,
replacing 2. This is of course the inequality (4.28).

If fl + 1 k or if < k < 1 + fl we obtain the other inequalities ofTheorem
4.2 by similar reasoning. Thus the proof of Theorem 4.2 is complete.
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