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KOLMOGOROV’S LAW OF THE ITERATED LOGARITHM
FOR BANACH SPACE VALUED RANDOM VARIABLES

BY

J. KUELBS

1. Introduction

Let B denote a real separable Banach space with norm II" ]l, and throughout
X, X2,. are independent B-valued random variables such that EXk 0 and
E[[Xki[ 2 < (k >_ 1). As usual S, Xt + + X, for n >_ and we write
Lx to denote log x for x _> e and otherwise. The function L(Lx) is written
LLx, and B* denotes the topological dual of B.

In this paper we establish Kolmogorov’s version of the LIL [6] for B-valued
random variables, and this result will have several corollaries dealing with the
LIL for i.i.d, sequences. In particular, the recent interesting result of G. Pisier
[10, Th6or6me 4.3] will be obtained as an easy corollary (see Corollary 4.1).
To motivate Theorem 3.2 we now turn to the LIL for i.i.d, sequences in the

Banach space setting, but first we need a bit of terminology.
If (M, d) is a metric space and A

_
M, x M, we define the distance from x

to A by d(x, A) infy,t d(x, y). If {xn} is a sequence of points in M, then
C({xn}) denotes the cluster set of {xn}. That is, C({x}) is all possible limit points
of the sequence {x,}. We also will use the notation {x,}--,, A if both lim,
d(x,, A) 0 and C({x}) A.
Now let X1, X2,... be i.i.d. B-valued random variables such that EX1 0

and EIIXII 2 < oo. In view of Strassen’s formulation of the Hartman-Wintner
result [12] and the recent results in [7"1, [9], [10] we say Xsatisfies the LIL in B
if for X1, X2, independent copies of X we have a bounded limit set K in B
such that

(1.1) P {{S/a,: n >_ 1} K}

where an x/2nLLn (n > 1).
However, (1.1) is not always true under the classical moment assumptions in

the infinite dimensional setting, but necessary and sufficient conditions for (1.1)
to hold are known, and another will be established in Theorem 4.1 below.
If/ .’(X) denotes the distribution of X, the limit set K turns out to be

the unit ball of a Hilbert space H which is uniquely determined by the co-
variance function

ff(x)g(x) dla(X) E(f(Xl)7(X,)) (f, g B*).(1.2) T(f, )
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The Hilbert space H is carefully defined in Lemma 2.1 of [7], and it is shown
that K is necessarily a compact subset of B whenever E IIXa 2 < oo. Hence if
g Xx 2 < c and (1.1) holds we must have

P({S./a,: n > 1 } conditionally compact in B) 1.

In fact, (1.3) is necessary and sufficient for (1.1) with K the unit ball of H.x,),
and this is demonstrated in Corollary 3.1 of [7].
The main result of Section 3 is Theorem 3.2 which generalizes (1.1) to the

setting of Kolmogorov’s LIL [6]. In Theorem 4.1 we consider the LIL for
i.i.d sequences of B-valued random variables, and show by applying Theorem
3.2 that (1.1) holds iff S./a 0 in probability iff EIISII o(an).

Several corollaries of Theorem 4.1 are given, and we also obtain a more
elementary version of Kolmogorov’s theorem in Theorem 3.1. Theorem 4.2
produces some conditions equivalent to P(sup IIS.ll/a. < oo) 1.

2. Some exponential inequalities for B-valued random variables

The inequalities of this section are well known for real-valued random vari-
ables, but have .proved far more difficult in the vector-valued case. However,
recently V. V. Yurinskii obtained some interesting results for Banach valued
random variables in [13-1, and it is his method which we use here. Further
references for the vector valued case can also be found in [13].

LEMMA 2.1. Let Xa, X2,..., X be independent B-valued random variables
such that

(2.1) IIXjII < cb. (j < n).

Then, for ec < we have

(2.2) P \---. > e < exp + (e2/2)
j--a

E IIXgII2b2 eEIIS,ll2b,
Proof Since

(2.3) P (llS, )\- > =P

it suces to show that

(2.4) E (exp \(llS’ll]i’b/)

2b"’" 2b" ]]

j= b2n 2b,,

To prove (2.4) we set Yk S. Xk, Ed/ E(r/IXt,..., X_ a), E.+ ar/
r/, Ear/ Er/. Then

(2.5)
E (exp (hllS, II)) E(E, (cAp

g (exp (hE,llSll)’g, exp

where r/k Ek+a IISll gllS, (k 1,..., n).
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Using the triangle inequality and the independence of X,..., X we have

(2.6) g+all&ll gkll&ll < Ek+xllYll / gk+xllXkll EIIYII / gllXll
IIXll / gllXll (k 1,..., n)

and similarly

(2.7) Ek+xllS, gll&ll -> -IIXII EIIXII (k 1,..., n)

since Ek+ Y EII Y (because Y is independent of X). Hence

(2.8) glrtl

__
2EIIXII (j >_ 2)

and with probability one, Ekr/ 0 (k 1,..., n). Thus for h e/2b,, and
by (2.1) and (2.8) we obtain, for c < 1,

ha haEkrlakEk (exp (hqk)) 1 Ekrl2k + +
2! 3!

22h2E llXkl12 [ 2hcbn 22h2(cbn)2]1++ +...1 +,
2! 3 4.3

(2.9) 1 +e2EllXkl[2[2b2.1 + -ec +(c)2+...4.3 ]
< 1 + (e2/2) EllXkll2 (1 + ec/2)

< exp
e’2E IIXl12

2b2
(1 + ec/2)

since + x < e’ for all x.
Combining (2.5) and (2.9) we obtain

2b. ! \ 2b2.
Iterating the previous estimates n times yields (2.4), and combining (2.3) and
(2.4) we have (2.2) so the lemma is proved.

2 " EIIII2, then for ec < weRemark. If b. tr. in (2.1) where tr. =have from (2.2) that

(2.11) P(llS.ll/2cr. >_ e) <_ exp (-(e2/2)(1 ec/2) + eEIIS.II/2cr.}.

Remark. The validity of Lemma 2.1 does not depend on the fact that the
range space B is a separable Banach space. In fact, both (2.2) and (2.11) hold
if X,..., X, are measurable from a probability space (f, ’, P) to the measur-
able space (B, ) provided is a sigma-algebra of subsets of B compatible with
the linear structure of B, and B is a normed vector space with norm I1" such
that {x e B: I1-11 < } for all >_ 0. For example, if B D[0, T],
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Ilxll supotr Ix(t)l, and denotes the minimal sigma-algebra making all
the maps x -, x(t) (0 < < T) measurable, then Lemma 2.1 can be applied
in this setting. See, for example, the second remark following Theorem 3.1.

3. Kolmogorov’s LIL for Banach space valued random variables

We will obtain several versions of Kolmogorov’s LIL for the Banach space
setting and then apply them to obtain results for i.i.d, sequences as in the real-
valued case.

THEOREM 3.1. Let X1, X2, be independent B-valued random variables such
that EXj 0 (j >_ 1), and

2(3.1i) IIX,,II < Fntr,/x/LLtr2 a.s. (n >_ 1) where Fn-, O, and tr n

7= EIIXII 2 --. c, and
(3.1i0 there exists an L such that supn P(IIS, > Lan) 1/24 where an

’2’’ 2x/2tr nLLtr n.

Then there exists a constant A, 0 < A < oo, such that

Proof. Using Kolmogorov’s zero-one law we have (3.2) if we can show

(3.3) P (1,1 IlS,..!.l. < )=1.an
Now (3.3) holds if we can choose M sufficiently large so that Y’.k P(Bk) <

where

(3.4) Bk= { sup IIS,ll/a,> M}.
and nk is the smallest integer n such that tr > 2k (k >_ 1). First of all observe
that from (3.1i) we have

__2 E IIX.+ 2 F.+ n+21 a"+t 1 + 1 +2 2 + ’’. n LL
2and since lira. F. 0 and lira. . this implies that On+

2, and a,/a,k+ 1/2.
Next we use (3.1) to prove that sup EIIS,II/a,< . To do this we first

assume that X, X2,... are symmetric. Then we know by [3] or [5, Lemma
5.4] that

(1/3) ff P(IIS.II > t) dt f; P(N,> t) dr + 4 ff [P(IIS, > t)]2 dt
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where Nn supl<j<n IIjll, By (3.1ii) we choose L > so that

sup e(llS, > La.)< 1/24.
Then we have

(1/3) P(IIS.II > t)dt < 5Lan

+ P(Nn > t)dt + (1/6) P(IIS, > t)dt
an an

and hence

(1/6) P(IIS, > t)dt < 5La. + P(N. > t)dt.

Since for n large, suplsa IIXll supx<an r/r/x/LLo < o, we have
P(Nn > t) 0 for t > a,. Thus o. P(IISII > t)dt <_ 30Lan and hence for
all n sufficiently large EIISII o P(IISII > t)dt <_ 31La,. This gives
sup EIIS, ll/a, < as was asserted.

If {X) is not symmetric we introduce an independent identically distributed
copy, call it {X: n > 1). Now the sequence {X, X) satisfies the conditions
in (3.1) and since it is symmetric we have by the previous argument

E IIS Sllsup < oo
bn

n --2 2 2 EIIX-- Sill 2 Sincewhere Sn ; X, b, /2r.LL., and , ;, _< 4E IIX 2 4o’.
./=1

we have sup. EIIS- S;,ll/a. < o and since EIIS.II -< EIIS. Sll we thus
have supn E S,II/a < oo.
Now by the same proof as for real random variables we have for all 2 > 0,

(3.5) P( max IlS.II>_2x)
\nknnk+

P(IIS.,,+,II > ,)
1 maxn,,.,,,,+, P(IIS.,,+, S.II > A)

Further, for all sufficiently large k,

(3.6) max P(IIS..+, S.II > Ma../2) _< 2 max
nk’<n<nk+ n<n<nk+

so by (3.1ii) the left-hand member of (3.6) is dominated by 1/2 provided

M >_ 16 sup
E S,!l

n an
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Applying (3.5) to (3.4) we thus have for M >_ 16 sup, EIIS, llla, that

(3.7) e(Bk) < 2e(llS,,+,ll >_ Ma,k/2).
Applying (2.11) and (3.1ii) to (3.7) we have

P(B,) <_ 2P\ 2,, >_ x/2L2,,, ’
(3.8)

< exp --( c/) +

where e= (M/4)2LL.g/+, and c= F,+/LL+,. Since
,/,+ 1/2 and 2 we have ec 0. Now fix > 0 and choose
Mo() such that M Mo() implies

Me
-(M/g)sup

E llSll > 2.
64(1 + an

Since sup ElISll/a < , (3.8) and M Mo() implies

fr all suciently large k. Hence fr max ((),
(3.9) implies P(B) < m, and hence

(3.o) e( i.o.) o.
Thus (3.3) holds and the theorem is proved.

Remark. The proof actually shows that A < max (Mo(6), 16 sup, EIIS,lllaJ
since for any M which dominates the right-hand side we have proved that
P(B i.o.) 0.

Remark. If E SII o(a,) or S,la, --, 0 in probability in Theorem 3.1, then
the method of proof used implies that (3.2) holds with A < 8. In fact, if we
define nk as the smallest integer n such that tr, > [3k (fl > 1) then we have
A _< 4fl, and since > is arbitrary we have A < 4.

Remark. Assume X1, X2,... are independent (D[0, T], ) valued random
variables (see the remarks following Lemma 2.1) such that each is a martingale
in (0 < t < T) and satisfying supea suPoa,ar [Xj(t, co)] M (j > 1).

2Then if tr, --, oo and EXj(t) 0 (j > 1, 0 < < T) we have

In view of the previous remark, to prove P(l’i-, IIS, ll/a, 4) it suffices
to show that Sn/a, -* 0 in probability where a, m x/2a2LL,2. By the martingale
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property we have

p(.,S.,,> 2)< fa ]S.(T)[ dP/;t
On On

’( (j__ F_., ,Xj(T)[2) I/2/,tTn
< Z ll.X. il 2 /2o, 1/2.

Hettce {&/o,: n >_ } is bounded in probability in (D[0, T], ), and therefore
we have S/an - 0 in probability so the proof is complete.

Remark. The previous remark can easily be applied to the empirical dis-
tribution function, and we refer the reader to Corollary 4.3 of [7] for details as
well as further references.

In order to formulate a Kolmogorov type LIL for B-valued random variable
involving clustering and convergence to the unit ball of some Hilbert space
inside B (as in [7] for i.i.d, sequences) we require some additional terminology.
We say the sequence of B-valued random variables {Xn} is uniformly approx-

imable in second moment through finite-dimensional random variables if for each
6 > 0 there exists a Borel function %" B B such that % has finite-dimensional
range and for some constant c, 0 < c < m, we have

(i) II(x)ll < c(llxll + 1) (x e B),

(3.11) (ii) E(%(X)) 0 (j >_ 1),

(iii) EIIX- (S)ll < di (j >_ 1).

Of course, if X, X,... are identically distributed with EX 0, EIIXxll <
m, and common distribution/, then {X} is uniformly approximable in second
moment through finite-dimensional random variables. To see this let " denote
a finite sigma-algebra of Borel subsets of B such that

(3.12) 2klak(X) X dp(x) <_ 6
Akel

where k y d/()/#(A) if/(A) 0 and zero otherwise, and I is the
disjoint partition of B determined by ’. Let %(x)= k lk(x) for
z B. Then %(X) E(X r) where ’ X" (’) and (3.11i, ii, iii) are
easily seen to be satisfied.

It might also be worthwhile to point out that if the X/s are symmetric then
(3.1 lii) is always true if the function % is symmetric.

THEOREM 3.2. Let Xx, X2,... be independent B-valued random variables
satisfyintt (3.1i) and such that EXI 0 (j 1). If {X,} is uniformly approx-
imable in second moment throutTh finite.dimensional random variables, Sn/an 0



KOLMOGOROV’S LAW OF THE ITERATED LOGARITHM 791

in probability, and lim, EIIX.II 1, then

(3.13) P((Sn/a,: n > } conditionally compact in B) 1

2 2 " E Yj Furthermore, if Xwhere, of course, an x/2anLLt and tr n ,jffi
is a B-valued random variable such that EX = O, ElIXll < oo, and

(3.14) lim E(f(X)g(X)) E(f(X)g(X)) ( g B*),

then

(3.15) P({S,/a,: n 1} K)

where K is the unit bah of the Hilbert space

Remark. If lim E lIY, 2 A (0 < A < ) in the above theorem, then
(3.13) still holds and (3.15) holds with K replaced by A-/K.

Remark. If X, X,... are independent B-valued random variables such
that EX 0 (j 1), lim, ElIY.ll 1, and satisfying (3.1i), then the proof
of Theorem 3.2 will show that (3.13) and (3.14) imply (3.15). The point to be
emphasized is that we use the condition "{X} is uniformly approximable
through finite-dimensional random variables" only to establish (3.13). Hence if
(3.13) can be established in some other manner, then (3.14) will imply (3.15).
For example, if (3.13) holds and X 0, i.e., E(f(X)) 0 for allf B, then
we have K {0} and P, IIS.ll/a, = O) 1.

Remark. If B is a type-2 space then Xx, X,... independent, EX 0
(j 1), and E IIYll z < U 1) imply

EIIS. (EIISnlI2)/2 a EIIXxll 2 (a)’/2 O(,).

Hence E lISll o(a,) whenever a, 2 , and thus we always have S,/a, 0
in probability in this setting.

Proofl Let Bo denote a countable dense subset of B. To establish (3.13) it
suffices to show that for every e > 0,

(3.16) e({S/a: n 1}
is covered by finitely many e-balls centered at points in Bo) 1.

For any 6 > 0 let % be a Borel function from B into B with finite dimensional
range such that (3.11) holds and define S =x %(Xj) (n 1). Then the
range of {S} is a fixed finite-dimensional subspac of B and since bounded sub-
sets of a finite-dimensional Banach space are conditionally compact we have
(3.16) if there exists a 6 > 0 such that

(3.17) p ( IIS:II <
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and

(3.18) P (11 .,S- S,,, > ) =0.
an

2First of all observe that since lim EIIXII = 1 we have tr n as n --} m,
and that by the argument employed in Theorem 3.1, S/an -+ 0 in probability
implies E II&ll o(a) in this setting.
To verify (3.17) for 0 < 6 < 1 we apply Theorem 3.1 to the random variables

{%(Xy): j > 1). Since these random variables are independent it suffices to
show

(3.19i) II(X,)ll F,,tr,,/x/LL(tr) where F -+ 0 and (tr,) Zj=I EIl(Xy)ll z

(3.19ii) EllS]] o(a)where a x/2[tr)’LL(tr),
(3.19iii) hhhI, a/a, < m

2To verify (3.19) note that (3.11i) and tr, n imply
2 2(3.20) (a,])2 _< 2C(a. + n)= O(a.).

Then we immediately have (3.19iii), and (3.19i) follows since

{ )

2whr F --, 0. Th last inquality in (3.21) holds sin , n and 0 < <
and (3.11iii) imply I, n/() < m.
Thus for (3.17) to hold it rmains to vrify (3.19ii) and this follows immcli-

atdy sin ES 0, S: n >_ 1) takes values in a fixed finite-dimensional sub-
spa of B,

2nLLn
42(r0.;)2 < oO and lim EIIS;II 0,

Hence (3.17) holds for 0 < 6 < and (3.16) (and hence (3.13)) will be
established provided we can choose 6 > 0 sufficiently small so that (3.18) holds
To verify (3.18) let Y X %(X) (j _> 1), and T, 2=,Yj (n >_ 1).

The Yfs are independent and by (3.19) and (3.20) we have

rcr, where F’ O,
(3.22)

(ii) E T.I] _< E I]&ll / E IISLll o(an).
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Let r/k 2k (k >_ 1) and note that

(3.23) max P(IIT.k/, T.II > a.ke/2) < (2/e) max +1

nk<n<_nk+ nk<n<nk+ ank
Now the right-hand side of (3.23) tends to zero as k m by using (3.22ii) and
the fact that a. /2nLLn, and hence by (3.5) for all k sufficiently large we
have

(3.24) P ( max IIT.II > a,,,e,)<2P(llT,,,,/lll>e,a,,,./2).
nk <n<nk

Now a.k/a,/, 1/2 so (3.18) holds if

(3.25) ] e(ll T.k/, >-- ea,,,,/,/4) < c.
k

Now for 0 < 6 < and using (3.22i) we have from Lemma 2.1 that

P(IITII >_ ea,,/4)= P \2 >- 8/’!
(3.26)

<exp -"+= n6

provided .e. < and . ea./8/n6, b. /-, and e. F,.a.//n6 /LLc..
Now fix 6 > 0, 0 < 6 < 1, such that ]646 > 4. Now
since . n and hence (3.26) holds for all n sufficiently large. Further, by
(3.11iii) we have Y.= Ell YII z < na so

(3.27) P(IITIi > a./2) < exp -. + -(1 + .e.) + 2/-
2for all n sufficiently large. Since . n and (3.22ii) holds we have

2V/-’ a.
and hence for all n sufficiently large,

(3.28) e(ll T.II _> ea,,/4) < exp {-
2Since a...- n and e2/646 > 4. We have from (3.28) that for all n sufficiently

large,
-e2(2nLLn)(3.29) P{IIT,,II > ea./4} < exp _< exp {-2LLn} 1/(Ln)2.

Using (3.29) we see (3.25) converges and hence (3.13) holds.
Now we turn to (3.15). To establish (3.15) we first show

(3.30) P(C({S./a.: n >_ 1})
_

K)
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and since (3.13) holds (3.30) implies

(3.31) P (li.rn.d(S./a., K)= O) 1.

Now (3.30) follows immediately from Theorem 3,1(1) of [7] (note that
dim H.tx) < oo is not required to apply part (I)). To see this assertion notice
that for g e B* we have g(S.)= ,= g(X), and applying Kolmogorov’s

2LIL [6] to the random variables {9(X)’j > } we have from (3.14) and a. n
that

(3.32) P ( m g(S./a,,) [E(g2(X))]*/2) I.

Now by Lemma 2.1 of [7] we have

[E(g2(X))]/2 g2(x) d#(x) sup g(x),
xK

and hence Theorem 3.1(I) applies (with Y. S.) to give (3.30) (and hence (3.31)
since (3.13) holds).
Thus to show (3.15) holds it suffices to prove that

(3.33) P(C({Hu(S./a.): n 1}) nK) (N 1)

where Hu denotes the mapping defined in [7], equation (2.4). Note that if
dim H(x) < m, then only finitely many Hu are defined. Now (3.33) holds by
using the argument in Lemma 2 of [2] or by adapting the proof of Proposition
2.7 in [11] to N dimensions.
Thus (3.15) holds and the proof is complete.

4. The LIL for i.i.d, sequences and some corollaries

Using Theorem 3.2 we can establish a LIL for i.i.d, sequences using a general-
ization of the approach due to Hartman and Wintner [4].

THEOgEM 4.1. Let X, Xx, X2,... be i.i.d. B-valued random variables such
that EX 0, EllXll 2 < , and assume a, x/2nLLn (n >_ 1). If K denotes
the unit ball of H.(x) then the following are equivalent:

(i) P({S,,/a,,: n > 1} -- K) 1,

(4.1) (ii) E S.II o(a.), and

(iii) S./a. 0 in probability.

Before proving Theorem 4.1 we will state and prove some immediate corol-
laries. Corollary 4.1 includes G. Pisier’s recent result [10] that ifX is a B-valued
random variable such that EX 0, EIIXII 2 < oo, and X satisfies the central
limit theorem in B, then X satisfies the LIL in B. Here, of course, by saying X
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satisfies the CLT on B we mean that if X1, X2,. are independent copies of X
then S,/x/n converges in distribution to a mean-zero Gaussian measure on B.
Corollary 4.2 is Pisier’s LIL for type-2 Banach spaces [9], and Corollary 4.3 is
a special case of Corollary 4.1 of [7].

COROLLARY 4.1 (Pisier). Let X, XI, X2,... be i.i.d. B-valued random vari-

ables such that EX 0 and ElIXll 2 < . /f an x/2nLLn (n >_ 1) and
{S//n’n >_ 1} is stochastically bounded, then P({S,/a’n >_ 1} -- K)
where K denotes the unit ball of H.<x).

Proofi {S,/x/n’n > } stochastically bounded means that for each e > 0
there exists an M such that sup, P(llS,/x/nl[ >_ M) < e. Hence this condition
implies S,/a, 0 in probability and the result now follows immediately from
Theorem 4.1.

COROLLARY 4.2 (Pisier). If B is a type-2 Banach space and X, X, X2,...
are i.i.d. B-valued random variables such that EX O, E X 2 < , then

P({S./a.’n >_ 1)- K)

where K denotes the unit ball of H.(x).

eroof.
that

If B is a type-2 space, there exists a uniform constant A < go such

EIIS.II (EIIS.II2) x/2 A EIIXII 2

j=l
(AnE IIX 112) a/2,

Hence E IISII o(a,) and Theorem 4.1 gives us the result.

COROLLARY 4.3. If X, Xl, X2,... are i.i.d. C]-0, 1]-valued random variables
such that EX 0, EIIXII 2 < , and {X(t)" 0 < < } is a martingale on

[0, 1], then P({S,/a," n > } --}} K) where K denotes the unit ball of H.(x).

Proof By the martingale property we have

p ([[S.[[x/n > 2) E[$.(1)[
,x/n2 (E(X(1)))//2"

Hence {S,/x/n" n > } is stochastically bounded and the result follows immedi-
ately from Corollary 4.1.

Proof of Theorem 4.1. First assume (4.1i) holds and fix e > 0. Using [10,
Th6or6me 3.1] we choose a B-valued random variable Y with finite range,
EY 0, and such that

(4.2) N(X- Y) < .
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Here, for any B-valued random variable U,

(4.3) N(U) =E (sup IIUI_+ + u, II)an
where U1, U2,... are independent copies of U.

Let Y1, Y2,... be independent copies of Y on the same probability space as
Xx, X,... and define T, = Y (n > 1). Then, by (4.2) and (4.3),

(4.4) gllS, < EIIS- YII + EII TII < can + EII TII.
Since Yx, Y,... are i.i.d., EY 0, and each has finite range we have

(4.5) EIlT, OQ/n).
Combining (4.4) and (4.5) we thus have li-, gllsll/a, < . Now e > 0
arbitrary implies (4. lii).
By Chebyshev’s inequality (4.1ii) immediately gives (4.1 iii), and hence it

remains only to show (4.1iii) implies (4.1i).
Our proof that X satisfies the LIL applies Theorem 3.2 in a manner which is

due to Hartman and Wintner [4].
Let F(t) e(llXII -< t) (--o < < 0). Then, EIIXII 2 < implies
t dF(t) < o and ’ t 2 dF(t) < , and hence we can choose a distribution

function z(x) such that z increases only on [0, 00), z(0) 0, limx_. z(x) 1,
and such that as r ,

f/dF(t) o dz(t) 2 dF(t) o 2 dz(t)

(4.6)
dz(t) < x

Hence there exists a strictly positive decreasing function (r), 0 < r <
such that lim,_. (r) 0 and

f tdF(t) S C(r) f dz(t) (j 1, r >_ O).(4.7)
r dtr

We now can choose a strictly positive decreasing function (r), 0 < r <
such that

(4.8)

(i) e(r) > (r
(ii) e(r) > (LLr)I/2/r 1/6,
(iii) lim,..oo e(r) O,
(iv) 2(r) (r/LLr)/2e(r) is monotone increasing on 0 < r < o.

Then (4.8ii, iv) imply 2(r) > r
By !’1] it suffices to prove the theorem under the assumption that X is sym-
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metric, so we do this. Next we truncate as follows"

(4.9) X 0
if IlXjll ;t(j) (j/LLj)I/2e(j)(j 1)
otherwise.

The remainder of the proofnow consists of two major steps. The first involves
showing that

(4.10) P(I]-II (Xg,,-.X, 0)- 1,
j= an

and the second is the application of Theorem 3.2 to the truncated random
variables {X)" j >_ 1).

In view of the truncation made and (4.6), (4.7), and (4.8) the proof of (4.10)
follows exactly as in [4, pp. 174-176] and hence it only remains to show that
Theorem 3.2 applies to the truncated variables {X)’j >_ 1}.

First observe that X;, X,... are independent symmetric, B-valued random
variables and by (4.9) we have (3.1i) holding for the sequence {X.: j >_ }.
Furthermore, symmetry implies EX) 0 (j >_ 1) and since lim, 2(n) + oo
we have lim,, E X, [12 E X 2 and

lim E(f(X)g(X)) E(f(X)g(X)) (f, g B*).

Next we establish {X: n _> 1) is uniformly approximable through finite-
dimensional random variables. To see this fix 6 > 0 and take " to be a finite
sigma-algebra of Borel subsets ofB such that {0) ’, (3.12) holds with # equal
to the common distribution of the X. and I the disjoint partition ofB determined
by ’, and o" is symmetric in the sense that A " -A -. As in Section 3
we define ’ Xf() for j > 1, and setting %(x) a 2kl,(X) as in
(3.12) we have %(Xj) E(X r). Further, since r and # (X) are both
symmetric, we have %(-x) %(x). Thus X) symmetric implies

(4.11) E(%(X})) 0 (j > 1).

Next we note that since {0} e , we have

(4.12)

<_6 (j>l)

where Aj = {llXll A(j)}. Hence {X’:j > 1} is uniformly approximable
through finite-dimensional random variables as asserted.

2 . EIIX}II 2Now let S Xx +’" + Xg for n > 1. Hence



798 . KUELBS

nEllXll 2, and since S,/a. 0 in probability (4.10) immediately implies S/a. --, 0
in probability.
We now can apply Theorem 3.2. That is, (3.14) and the first remark following

Theorem 3.2 imply that

(4.13) P
[x/(2nLLn)E IlXll 2

n>_ 1}--- K/(EIIX 112)’/2)=1
where K denotes the unit ball of H.ztx)" Thus

(4.14) P({S;,/a.: n > 1} -- K)

and combining (4.9) and (4.14) we obtain (4.1i). Thus the proof is complete.

In [10], G. Pisier produced an example of a bounded symmetric random
variable X such that if X1, X2, are independent copies of X, then

(4.15) P (sup. [IS./a.l[ < oo) 1,

and yet

(4.16) P({S./a.} conditionally compact) 0.

This then raises the question of characterizing those random variables X
where (4.15) holds. In some sense we can do this, and our result is the next
theorem.

THEOREM. 4.2 Let X, Xt, X2,... be i.i.d. B-valued random variables such
that EX 0 and E[IX[[ 2 < . Then thefollowing are equivalent"

(1) P (sup. ]]S,]i/a, < oz) P (hhhI. [IS.[[ A) for some A, 0 <_ A <
00.

(2) sup, (EllS.ll2)t/2/a. < c.
(3) For all > 0 there exists an M such that sup. e(lISll/a > M) < , i.e.,

{S./a. } is stochastically bounded.

Proof That (1) implies (2) follows easily from an application of Corollary
3.4 of [3] in a way similar to that at the beginning of the proof of Theorem 3.1,
using the fact that

E ,,_<.(sup ]]XiI] z) <
i=l

EIIX’II2--nEllXll’---o(a.).

That (2) implies (3) is obvious so it remains to show that (3) implies (1).
Let (Y1, Y,... ) be an independent copy of (Xx, X,... and assume both

sequences are defined on the same probability space. Let S. =a Xj,
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T. ]= Y (n >_ 1), and define {X.’n >_ 1} and {Y" n >_ 1} as follows"

{ {’. if ,IY.II < 2(n)X. if IlX.ll -< 2(n) and Y(4.17) X 0 otherwise otherwise

where 2(n) is as in (4.9).
Then, (3) implies {(S.- T.)/a.} is stochastically bounded, and if S

]= Xj, T, = Y we can prove as in [4, pp. 174-176] that

(4.18) IIS,, S,ll 0 a.s. and liT,, -T,II 0 a.s.
n an an

Thus {(S. Tn)/a.} stochastically bounded and (4.18) imply that (S T)/a"
n > is stochastically bounded. Now arguing as in Theorem 3.1, we have

(4.19) sup
e IIS T;,II < oz,

and since ES, ET:, (4.19) easily implies

(4.20) sup
E I15,; ES,;ll < oo.

an

Using the argument in [4, pp. 174-176] we have

(4.21) lim ES,/a, O,

and hence by combining (4.20) and (4.21) we get

(4.22) sup E II$Lll/a, < oo.

Now (4.22) implies (3.1ii) and since lira, EIIXLII 2 --EIIXII 2 we also have
(3.1i). Thus (3.2) holds and gives (1), so the proof is complete.
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