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SOLUBLE GROUPS WITH EVERY PROPER
QUOTIENT POLYCYCLIC

BY

J. R. J. GROVES

1. In this note, we investigate soluble groups which are not polycyclic but
in which every proper quotient is polycyclic (hereafter referred to as JNP
groups). We observe that such a group has the maximal condition on normal
subgroups and so, by a result of Hall 1], is finitely generated. The main result is
the following description of metanilpotent JNP groups.

THEOREM. Let G be a metanilpotent JNP group. Then G is a subgroup of a
split extension G* A* G where"

(i) G is a finitely generated, nilpotent, centre by finite group.
(ii) A* is afaithful, irreducible,finite dimensional KG-module and K is either

the field of rationals or the field ofrationalfunctions in one indeterminate over a

finite prime field.
(iii) G is a supplement of A* in G*.
(iv) In the matrix representation ofG defined by A*, at least one eigenvalue is

not an algebraic integer over K.

Conversely, ifH is afinitely generated supplement ofA* in G*, then H is either
a JNP group or is. isomorphic to G.

(For the present purposes, an algebraic integer over a field of rational func-
tions is defined to be an clement integral over the corresponding ring of
polynomials.)

In particular, every metanilpotent JNP group is a finite extension of a metab-
elian group; the proof of the theorem, in fact, shows more.

COROLLARY 1. A metanilpotent JNP group is a finite extension of a metab-
elian group and every proper quotient is centre by finite.

Thus we have determined some groups which are not nilpotent by finite but
in which every proper quotient is nilpotent by finite. Using arguments (which
we omit) very similar to the proof of the theorem, we can in fact show the
following.

COROLLARY 2. Let G be a metanilpotent group which is not nilpotent byfinite
but in which every proper quotient is nilpotent by finite. Then G satisfies the
conclusion of the theorem if (iv) is replaced by"
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(iv)’ In the matrix representation of, defined by A*, at least one eigenvalue
is not a root of unity.

An analogous extension of this corollary also describes all infinite soluble
groups with every proper quotient finite--the restriction to metanilpotent
being unnecessary in this ease----el. McCarthy [3] and [4]. We observe that
soluble groups which are just not supersoluble have been classified by R.
Bentley in an unpublished dissertation at the University of Illinois.
The theorem clearly implies that every metanilpotent JNP group has a nat-

ural matrix representation. Metabelian JNP ,groups, in fact, have a particularly
simple description.

COROLLARY 3. A metabelian JNP group has a representation as a group of
matrices of the form

1

over some finite extension of K.

(The detailed description of the theorem and the analogous result of Corol-
lary 2 can also be applied here.)
The theorem will be proved in Section 2. The proofs of Corollaries 1 and 3

and some remarks occur in Section 3. We remark that, because we have to
consider abelian normal subgroups both as subgroups and modules, we shall,
according to the context, use both multiplieative and additive notation for their
group operation.

I wish to acknowledge indebtedness to Dr. J. S. Wilson for some useful
conversations prior to the commencement of this work.

2. Throughout this section, G will denote a metanilpotent JNP group. We
begin with some straightforward observations about G. Let A denote the Fit-
ting subgroup of G.

LEMMA 1.
exponent p.

The group A is abelian and is either (i) torsion-free or (ii) ofprime

Proof Since G is metanilpotent, A is nilpotent. If A is not abelian, then the
derived group A’ of A is a nontrivial normal subgroup of G and so G/A’ is
polycyclic. Hence A/A’ is finitely generated and so A is finitely generated
(Theorem 2.26 of Robinson [5]). Hence, as G/A is polycyelie, so is G--a contra-
diction. Thus A is abelian.
As we observed above, G has the maximal condition on normal subgroups.

Hence the torsion subgroup T ofA has finite exponent, k say, and so, ifAk is the
subgroup of all kth powers in A, T Ak { 1}. But T and Ak are normal in G
and G clearly cannot be a finite nontrivial subdirect product. Thus T {1},



92 J. R. J. GROVES

giving case (i), or Ak {1. In the latter case it is easily seen that k must be
prime, giving case (ii).
We now amalgamate the two cases of Lemma 1. Let R denote

(i) the ring of integers Z, if A is torsion-free,
(ii) the polynomial ring GF(p)[t] over the field with p elements, if ,4 has

exponent p;

and let K be the ring of quotients of R. Let t denote G/,4. In case (i), ,4 is clearly
an Rt-module. In case (ii), we use a technique of Hall [2] and turn ,4 into an
RG-module by choosing an element z in the center of G and defining the action
of on ,4 to be that given by conjugation by z. Since G is clearly infinite, we can
choose z to be of infinite order (Theorem 2.24 of Robinson [5]).

LEMMA 2. /iS an R-module, A is torsion-free offinite rank.

Proof. We first show that ,4 is a torsion-free R-module. This is clear in case
(i). In case (ii), an argument similar to that of Lemma shows that, if ,4 is not
torsion-free, then ,4 has a nonzero annihilator in R. But then ,4 can be anni-
hilated by some element of the form t"- (n 4: 0) and so the element z"
centralizes ,4. But ,4 is the Fitting subgroup and so self centralizing in G. Since
z" is nontrivial in ( (z was chosen to be an element of infinite order), we have a
contradiction. Hence ,4 is a torsion-free R-module.
By Lemma 5.2 and Lemma 6 of Hall [2], ,4 has a free R-submodule B such

that ,4/B is g-torsion, where g is some finite set of primes in R. Choose q to be a
prime in R which is not in ;z. Then ,4 q is nontrivial and is a normal subgroup
of G. Thus ,4/,4 q is finitely generated as abelian group. Also, since q t and
A/B is r-torsion, A q c B B q. Hence A/A q - B/B q and so BIB q is
finitely generated as abelian group. But B is a free R-module and so must be
itself finitely generated. Hence as A/B is a torsion R-module, A has finite rank
as R-module.
We now embed G in a larger group which is somewhat easier to handle. Let

A* denote A (R)s, K. Then A* is naturally a K-vector space (of finite dimension
by the previous lemma) and so a KG-module; also A embeds in A* by
rl. a---- a (R) l.
We now define an extension of A* by G, by taking the pushout of the

diagram

0 A G G

0 * G* G 1.

Equivalently, r/induces a map q," H2((, ,4)--* H2((, ,4*) of second cohomo-
logy groups and, identifying elements of these groups with equivalence classes
of extensions, we define G* to be the image of G under r/,.
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LEMMA 3. The group G* defined above contains a subgroup isomorphic to G
(which we identify with G) and GA* G*, G A* A. Also A* is the Fitting
subgroup of G*.

We now proceed to show that A* is an irreducible K(-module, acquiring
some extra information in the course of the proof.

LEMMA 4. The group G is center by finite.
Proof. Let {0} Ao < A <"" < A, A* be a Kt composition series of

A*. By a theorem of Suprunenko (Theorem 3.13 of Wehrfritz [8]), a nilpotent
group with a faithful irreducible representation of finite degree has center of
finite index depending only on its class and the degree of the representation.
Hence we can find a subgroup of finite index in t such that [H, (] stabilizes
the composition series.
Thus we can find a normal subgroup H of finite index in G such that [H, G*]

stabilizes the composition series of A*. But then [H, G*] is nilpotent and so lies
in the Fitting subgroup A* of G*. Hence HA*/A* lies in the center of G*/A*
and has finite index in G*/A*.

This shows that [, G--] 1} and so G is center by finite.,

LEMMA 5. Suppose I is the annihilator ofA* in K, and W is the center of,.
If o, fl KW, then ofl I implies I or fl I.

Proof There exist r, s 6 R such that rg, sfl R. Suppose g q I. Then rg q I
and so A rc 4: {0}. Since g is central in K(, A r is a G-normal subgroup ofA
and so, as G is a JNP group, A/A rg is finitely Z-generated, by a x, a, say.
Hence A sfl is finitely Z-generated by a sfl, a.sfl. But A sfl is a G-normal
subgroup of A and G can clearly have no nontrivial polycyclic normal sub-
groups. Thus A sfl {0} and so fl 6 I.

LEMMA 7. As KG-module, A* is irreducible.

Proof. By Lemma 6, KW/KW c I has no divisors of zero; it is also a finite
dimensional commutative K-algebra and so must be a field. Hence A* is a
completely reducible KW-module.

Suppose K has finite characteristic p. If G-/W contains an element of order p,
then so does W (Theorem 2.25 of Robinson [5]). But this gives rise to a nilpo-
tent normal subgroup of G* properly containing the Fitting subgroup A*.
Hence the order of G/W is not divisible by the characteristic of K and so the
analogue of Maschke’s theorem for infinite groups (Theorem 1.5 of Wehrfritz
[8]) applies to show that A* is completely reducible as Kt-module.

it follows, from the fact that A is finitely subdirectly irreducible as RG-
module, that A* is finitely subdirectly irreducible as Kt-module. Hence, since
A* is completely reducible, it is irreducible.
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Proofofthe theorem. To prove the first part of the theorem, it only remains
to show that the extension of G* by A* splits. But this is a direct consequence of
results of Robinson (see, for example, Corollary AB(ii) of [7]).
We now turn to the converse; we retain the notation used previously. Firstly,

let C be any nontrivial RtT-submodule of A*. Then, as A* is an irreducible
Kd-module, C (R)s K A* and so A*/C is a torsion R-module.
Now let H be any finitely generated supplement of A* in G*. IfH c A*

{ 1}, then H iT. So suppose H A* B > { 1}. Let C be any H-normal sub-
group of B; by the previous comment, B/C is a torsion R-module. But, because
H is a finitely generated abelian by nilpotent group, B/C is finitely generated as
RH-module, and so as RtT-module. Thus B/C has a nonzero annihilator in R.
Finally, B/C has finite rank as R-module. It is now straightforward to show
that B/C is finite.
We have shown that, if C is any nontrivial normal subgroup ofH lying in A*,

then H/C is polycyclic. We now show that if D is a normal subgroup ofH with
D c n {1}, then D {1}. But D c n {1} implies O centralizes B and so D
centralizes A* (since B (R) s K A*). Hence, as A* is the Fitting subgroup ofG*
and so self-centralizing, D < A*. But then D < H c A* B and so D { 1}.
Thus any proper quotient of H is polycyclic.

It remains to show that B is not polycyclic. If B is polycyclic and so finitely
generated, then, for each t7 and b B, {b. 0" i= 0, 1, 2,...} is finitely
generated and so there exists a monic polynomial f(#) over R such that
b.f() 0. Again since B is finitely generated, we can choose f(/) indepen-
dent of b. But this implies that the matrix representing 0 over K has a monic
minimum polynomial over R. Thus all the eigenvalues are algebraic integers,
contrary to the assumption of the theorem.
Thus B, and so also H, is not polycyclic and the proof of the theorem is

complete.

3. Proof of Corollary 1. Let H be a metanilpotent JNP group and A its
Fitting subgroup. It follows from the description given in the theorem that, ifN
is a nontrivial normal subgroup ofH, then A/A c N is finite. Thus H/A c N is
finite by center by finite and so has finite derived group. Hence it is a group
with finite conjugacy classes and so, being finitely generated, is center by finite.

Proofof Corollary 3. Since G is metabelian, t7 is abelian and so, because A*
is a faithful irreducible Kd/I module, the latter is a field, F say. Clearly F is a
finite extension of K. Also the representation of t7 on A* is just that of a
subgroup of the multiplicative group of F on the additive group of F, by
multiplication. But it is well known, and easily proved, that the corresponding
split extension has a representation by matrices of the type described.

Remark 1. Every split extension A*. (7 of the type we describe can be
"induced" in a natural way from a split extension corresponding to a metab-
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elian JNP group. More precisely, let W be the center of t7 and let A be an
irreducible KW-submodule of A* (all such submodules are isomorphic). Then
the split extension A W is one corresponding to a metabelian JNP group. If
we now form the induced moduleA (R)x KG, then A* occurs as a component
of this module and so A*. (7 occurs as a quotient of the "induced" group

Remark 2. Although a JNP group is not, in general, a split extension of the
Fitting subgroup, it lies "sandwiched" between two split extensions. More
precisely, it follows from Theorem D of Robinson [7], that the cohomology
group H2(tT, A) is bounded as an R-module (a straightforward extension of
Theorem D is required when R is GF(p)[t]). But now, if H2((7, A). r {0} for
some 0 :p r R, then the map -: A A* defined by a ar extends to a mono-
morphism p" G---, A. (7 (where A (7 denotes the split extension of A by
Also (Gp) n (Ar. ,)= (Gp c G)" Ar has finite index in Gp and, as A is R-
torsion free, Ar - A. Hence G contains a subgroup of finite index which is a
split extension of A by a subgroup of t7 (cf. Lemma 10 of Robinson [6]).
Thus a JNP group both embeds in a most "natural" split extension and

contains a subgroup of finite index which is a split extension.
(I am grateful to the referee for drawing my attention to these facts.)
Remark 3. We comment briefly on the question of soluble JNP groups in

general; clearly all such groups are abelian by polycyclic. If the Fitting sub-
group is also torsion-free, then the proof given here can be adjusted to yield
results similar to those given here (the main change being that .t7 will be abelian
by finite but not necessarily center by finite). If, however, the Fitting subgroup
has finite exponent, then the technique of using GF(p)[t] is no longer available
and the problem appears to enter a new area of complexity.
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