ON FORMAL INTEGRATION OF DOUBLE TRIGONOMETRIC SERIES

BY

M. J. Kohn

1. We will be working in two dimensional Euclidean space. We denote points of E_{2} by $x=\left(x_{1}, x_{2}\right)=t e^{i \theta}$ and integral lattice points by $n=\left(n_{1}, n_{2}\right)$. We set $|x|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ and $n \cdot x=n_{1} x_{1}+n_{2} x_{2}$. By a sum \sum^{\prime} we mean $\sum_{|n| \neq 0}$. Let

$$
\begin{equation*}
T=\sum_{n \in \mathbf{Z}_{2}} c_{n} e^{i n \cdot x} \tag{1.1}
\end{equation*}
$$

be a double trigonometric series which is circularly summable at x_{0} to finite sum s. Let T^{*} be the series obtained by formally integrating T once with respect to x_{1} and once with respect to x_{2} :

$$
\begin{equation*}
T^{*}=c_{0} x_{1} x_{2}-\sum_{n_{1} n_{2} \neq 0} \frac{c_{n}}{n_{1} n_{2}} e^{i n \cdot x}+x_{1} \sum_{n_{1}=0}^{\prime} \frac{c_{n}}{i n_{2}} e^{i n \cdot x}+x_{2} \sum_{n_{2}=0}^{\prime} \frac{c_{n}}{i n_{1}} e^{i n \cdot x} \tag{1.2}
\end{equation*}
$$

We are interested in proving a theorem of "Riemann type" for T^{*}. That is, we want to give conditions on the coefficients of T and on the order of summability of T which will insure that T^{*} converges at x_{0} to a function $F(x)$ which has, in some sense, at x_{0} a "second symmetric derivative" with value s.

We define, to this end, the idea of a symmetric derivative of a function $F(x)$ defined in a neighborhood of $x_{0} \in E_{2}$ by expanding a weighted circular mean of $F(x)$, taken about the circle $\left|x-x_{0}\right|=t$, in a Taylor's series of even powers of t. This definition may be thought of as a two dimensional analogue of the formula (1.2) from [8, vol. 2, p. 59]. When the proper weighted circular mean is chosen, we are able to apply it to T^{*} to prove a two dimensional analogue of results from [8, vol. 1, p. 320].
2. We make the following definition. Let $\Omega(\theta)$ be defined for $\theta \in[0,2 \pi]$ such that $\Omega(\theta+\pi)=\Omega(\theta)$. Let $F(x)$ be defined in a neighborhood of $x_{0} \in E_{2}$ and integrable over each circle $\left|x-x_{0}\right|=t$, for t small. Let $2 r$ be an even, positive integer.

Definition. F has, at x_{0}, a $2 r$ th Ω-derivative with value $a_{2 r}$ if

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(x_{0}+t e^{i \theta}\right) \Omega(\theta) d \theta \tag{2.1}\\
&=a_{0}+\frac{a_{2}}{2^{2} 2!} t^{2}+\cdots+\frac{a_{2 r}}{2^{2 r}(r+1)!(r-1)!} t^{2 r}+o\left(t^{2 r}\right)
\end{align*}
$$

as $t \rightarrow 0$.

If $\Omega(\theta) \equiv 1$, the expansion of the left side of (2.1) into a series with different coefficients is called the generalized Laplacian and is studied in [7]. If $\Omega(\theta)=$ $\cos \theta+\sin \theta$ (which satisfies $\Omega(\theta+\pi)=-\Omega(\theta)$) the expansion of

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(x_{0}+t e^{i \theta}\right) \Omega(\theta) d \theta
$$

in a Taylor's series of odd powers of t is considered in [5].
For this paper, we will study (2.1) with $\Omega(\theta)=\cos \theta \sin \theta$. It turns out that the resulting Ω-derivative is well suited for application to the series (1.2).
3. The value of our Ω-derivative is given by the following theorem.

Theorem 1. Let $\Omega(\theta)=\cos \theta \sin \theta$. Let $r \geq 1$. Suppose $F(x)$ and all partial derivatives of F of order $\leq 2 r+1$ exist and are continuous in a neighborhood of $x_{0} \in E_{2}$. Then F has at x_{0} a $2 r$-th Ω-derivative with value

$$
a_{2 r}=\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)^{r-1} F\left(x_{0}\right) .
$$

Proof. We may assume $x_{0}=0$. We abbreviate

$$
\left.\frac{\partial^{m+n} F}{\partial x_{1}^{m} \partial x_{2}^{n}}\right|_{x=0}
$$

by $F(m, n)$. By Taylor's formula,

$$
\begin{aligned}
F\left(t e^{i \theta}\right)= & \sum_{j=0}^{2 r} \frac{1}{j!}\left(t \cos \theta \frac{\partial}{\partial x_{1}}+t \sin \theta \frac{\partial}{\partial x_{2}}\right)^{j} F(0) \\
& +\frac{1}{(2 r+1)!}\left(t \cos \theta \frac{\partial}{\partial x_{1}}+t \sin \theta \frac{\partial}{\partial x_{2}}\right)^{2 r+1} F\left(\mu e^{i \theta}\right)
\end{aligned}
$$

for some $\mu \in(0, t)$. Thus,

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(t e^{i \theta}\right) \cos \theta \sin \theta d \theta \tag{3.1}\\
= & \sum_{j=0}^{2 r} \frac{t^{j}}{j!} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}\right)^{j} F(0) \cos \theta \sin \theta d \theta \\
& +\frac{t^{2 r+1}}{(2 r+1)!} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}\right)^{2 r+1} F\left(\mu e^{i \theta}\right) \cdot \cos \theta \sin \theta d \theta \\
= & \sum_{j=0}^{2 r} a_{j} t^{j}+R_{2 r+1} .
\end{align*}
$$

Here,

$$
\begin{align*}
a_{j} & =\frac{1}{j!} \frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{j}\binom{j}{k} \cos ^{k} \theta \sin ^{j-k} \theta F(k, j-k) \cdot \cos \theta \sin \theta d \theta \tag{3.2}\\
& =\sum_{k=0}^{j} \frac{1}{k!(j-k)!} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{k+1} \theta \sin ^{j-k+1} \theta d \theta \cdot F(k, j-1) \\
& =\sum_{k=0}^{j} \frac{1}{k!(j-k)!} c_{k j} F(k, j-k)
\end{align*}
$$

where

$$
c_{k j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{k+1} \theta \sin ^{j-k+1} \theta d \theta
$$

Clearly, $c_{k j}=0$ if j is odd. When j is even, we find using reduction formulae,

$$
c_{k j}= \begin{cases}0 & \text { if } k \text { is even } \\ \frac{k!(j-k)!}{2^{j}\left(\frac{j+2}{2}\right)!\left(\frac{k-1}{2}\right)!\left(\frac{j-k-1}{2}\right)!} & \text { if } k \text { is odd }\end{cases}
$$

We set $m=\frac{1}{2} j, s=\frac{1}{2}(k-1)$. Returning to (3.2), if j is odd then $a_{j}=0$, and if j is even then

$$
\begin{align*}
a_{j} & =\sum_{k=0}^{j} \frac{1}{k!(j-k)!} c_{k j} F(k, j-k) \tag{3.3}\\
& =\sum_{\substack{k=0 \\
k \text { odd }}}^{j} \frac{1}{k!(j-k)!} \frac{k!(j-k)!}{2^{j}\left(\frac{j+2}{2}\right)!\left(\frac{k-1}{2}\right)!\left(\frac{j-k-1}{2}\right)!} F(k, j-k) \\
& =\sum_{s=0}^{m-1} \frac{1}{2^{2 m}(m+1)!s!(m-1-s)!} F(2 s+1,2 m-2 s-1) \\
& =\frac{1}{2^{2 m}(m+1)!(m-1)!} \sum_{s=0}^{m-1}\binom{m-1}{s} F(2 s+1,2 m-2 s-1) \\
& =\frac{1}{2^{2 m}(m+1)!(m-1)!} \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)^{m-1} F(0) .
\end{align*}
$$

For the estimate of $R_{2 r+1}$ we obtain,

$$
\begin{equation*}
R_{2 r+1}=t^{2 r+1} \int_{0}^{2 \pi} 0(1) \cos \theta \sin \theta d \theta=o\left(t^{2 r}\right) \tag{3.4}
\end{equation*}
$$

Applying (3.3) and (3.4) to (3.1), the proof of Theorem 1 is complete.
4. We now apply Definition (2.1) to study formally integrated double trigonometric series. Let β be a nonnegative number. We will say the series (1.1) is Bochner-Riesz- β summable at x_{0} to s if

$$
\lim _{R \rightarrow \infty} \sum_{|n|<R}\left(1-\left(\frac{|n|}{R}\right)^{2}\right)^{\beta} c_{n} e^{i n \cdot x_{0}}=s
$$

Theorem 2. Suppose series (1.1) is Bochner-Riesz- β summable at x_{0} to finite sum s, for some number β with $0 \leq \beta<3 / 2$. Suppose the coefficients c_{n} of (1.1) satisfy

$$
\begin{align*}
& \sum_{n_{1} n_{2} \neq 0}\left|n_{1} n_{2}\right|^{-2}|n|^{1+\varepsilon}\left|c_{n}\right|^{2}+\sum_{n_{1}=0}^{\prime}\left|n_{2}\right|^{-2}|n|^{1+\varepsilon}\left|c_{n}\right|^{2} \tag{4.1}\\
&+\sum_{n_{2}=0}^{\prime}\left|n_{1}\right|^{-2}|n|^{1+\varepsilon}\left|c_{n}\right|^{2}<\infty
\end{align*}
$$

for some $\varepsilon>0$.
Let

$$
\begin{aligned}
F_{R}(x)= & c_{0} x_{1} x_{2}-\sum_{\substack{n_{1} 1_{2} \neq 0 \\
|n|<R}} \frac{c_{n}}{n_{1} n_{2}} e^{i n \cdot x} \\
& +x_{1} \sum_{\substack{n_{1}=0,0 \\
|n|<R}}^{\prime} \frac{c_{n}}{i n_{2}} e^{i n \cdot x}+x_{2} \sum_{\substack{n_{2}=0,0, i n_{1} \\
|n|<R}}^{\prime} \frac{c_{n}}{i n_{1}} e^{i n \cdot x} .
\end{aligned}
$$

Then, as $R \rightarrow \infty, F_{R}(x)$ converges a.e. on T_{2} to a function $F(x)$ which is integrable on each circle $\left|x-x_{0}\right|=t$. Moreover, F has at x_{0} a second Ω-derivative, with $\Omega(\theta)=\cos \theta \sin \theta$, equal to s.

We can think of Bochner-Riesz- β summability as a two dimensional version of Cesaro- β summability. Thus Theorem 2 may be considered as an analogue, of sorts, of part of the result on p. 66, vol. 2, of [8]. Note that the order of summability required in the two dimensional version is somewhat weaker than in the one dimensional case.
5. Before we give the proof of Theorem 2 we need to establish a lemma. In what follows, $J_{v}(z)$ indicates the Bessel's function of order v.

Lemma. Let $n=\left(n_{1}, n_{2}\right),|n| \neq 0$. Define, for $x \in E_{2}$,

$$
g_{n}(x)= \begin{cases}\frac{-\exp (i n \cdot x)}{n_{1} n_{2}} & \text { if } n_{1} n_{2} \neq 0 \tag{5.1}\\ x_{1}\left(i n_{2}\right)^{-1} \exp (\text { in } \cdot x) & \text { if } n_{1}=0 \\ x_{2}\left(i n_{1}\right)^{-1} \exp (\text { in } \cdot x) & \text { if } n_{2}=0\end{cases}
$$

Then,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \cos \theta \sin \theta d \theta=\frac{J_{2}(|n| t)}{|n|^{2}} \tag{5.2}
\end{equation*}
$$

Proof. We first assume $n_{1} n_{2} \neq 0$. Let $n_{1} /|n|=\cos \phi$ and $n_{2} /|n|=\sin \phi$. Then,
(5.3) $\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \cos \theta \sin \theta d \theta$

$$
\begin{aligned}
& =\frac{-1}{n_{1} n_{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(i n \cdot t e^{i \theta}\right) \cos \theta \sin \theta d \theta \\
& =\frac{-1}{n_{1} n_{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \{i|n| t(\cos \phi \cos \theta+\sin \phi \sin \theta)\} \cdot \cos \theta \sin \theta d \theta \\
& =\frac{-1}{n_{1} n_{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \{i|n| t \cos (\theta-\phi)\} \cos \theta \sin \theta d \theta
\end{aligned}
$$

Let $\mu=\theta-\phi$. Then

$$
\begin{aligned}
\cos \theta \sin \theta & =\frac{1}{2} \sin 2 \theta \\
& =\frac{1}{2} \sin (2 \mu+2 \phi) \\
& =\frac{1}{2} \sin 2 \mu \cos 2 \phi+\frac{1}{2} \cos 2 \mu \sin 2 \phi
\end{aligned}
$$

So returning to (5.3),
$\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \cos \theta \sin \theta d \theta$

$$
\begin{aligned}
= & \frac{-1}{n_{1} n_{2}} \frac{\cos 2 \phi}{2} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i|n| t \cos \mu) \sin 2 \mu d \mu \\
& +\frac{-1}{n_{1} n_{2}} \frac{\sin 2 \phi}{2} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i|n| t \cos \mu) \cos 2 \mu d \mu \\
= & 0+\frac{-1}{n_{1} n_{2}} \cdot \frac{n_{1} n_{2}}{|n|^{2}} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i|n| t \cos \mu) \cos 2 \mu d \mu \\
= & \frac{J_{2}(|n| t)}{|n|^{2}},
\end{aligned}
$$

by formula 2 from [1, p. 81].
We next consider the case when $n_{1}=0$. Then,

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \cos \theta \sin & \theta d \theta \tag{5.4}\\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{t \cos \theta}{i n_{2}} \exp \left(i n_{2} t \sin \theta\right) \cos \theta \sin \theta d \theta \\
& =\frac{t}{i n_{2}} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \theta \exp \left(i n_{2} t \sin \theta\right) \frac{1}{2} \sin 2 \theta d \theta
\end{align*}
$$

We integrate the last integral by parts. Then (5.4) becomes

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \cos \theta \sin \theta d \theta & =\frac{-t}{i n_{2}} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\exp \left(i n_{2} t \sin \theta\right)}{i n_{2} t} \cos 2 \theta d \theta \\
& =\frac{1}{n_{2}^{2}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left(i n_{2} t \sin \theta\right) \cos 2 \theta d \theta \\
& =\frac{J_{2}\left(n_{2} t\right)}{n_{2}^{2}} \\
& =\frac{J_{2}(|n| t)}{|n|^{2}}
\end{aligned}
$$

since $|n|= \pm n_{2}$ and $J_{2}(-z)=J_{2}(z)$.
A similar argument applies for the case when $n_{2}=0$. Thus the proof of the lemma is complete.
6. Having established the lemma, the proof of Theorem 2 is now very similar to the proof of the theorem in [4]. We will give the proof in detail for the case $\beta=1$. If $1<\beta<3 / 2$ the proof becomes much more complicated, so we just sketch the idea and refer the reader to [4] for some details.

Without loss of generality we may assume $c_{0}=0, x_{0}=0$, and $s=0$. Write $S_{R}=S_{R}(0)=\sum_{|n|<R} c_{n}$, and for $\eta>0$ set

$$
S_{R}^{\eta}=\frac{1}{\Gamma(\eta)} \int_{0}^{R}(R-u)^{\eta-1} S_{u} d u
$$

We are assuming that series (1.1) is Bochner-Riesz-1 summable to 0 at $x_{0}=0$. Therefore (see [2]) $\sum_{|n|<R} c_{n}(R-|n|)=o(R)$ as $R \rightarrow \infty$. Hence,

$$
\begin{equation*}
S_{R}^{1}=o(R) \quad \text { as } R \rightarrow \infty \tag{6.1}
\end{equation*}
$$

The condition (4.1) insures that $F(x)=\lim _{R \rightarrow \infty} F_{R}(x)$ exists a.e. on each circle $|x|=t$ and that $\sup _{R>0} \int_{0}^{2 \pi}\left|F_{R}\left(t e^{i \theta}\right)\right| d \theta<M$, (see [3]). Thus,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(t e^{i \theta}\right) \Omega(\theta) d \theta=\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} F_{R}\left(t e^{i \theta}\right) \Omega(\theta) d \theta
$$

We apply the lemma to the integral on the right.

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} F_{R}\left(t e^{i \theta}\right) \Omega(\theta) d \theta & =\sum_{|n|<R} c_{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} g_{n}\left(t e^{i \theta}\right) \Omega(\theta) d \theta \\
& =\sum_{|n|<R} c_{n}|n|^{-2} J_{2}(|n| t) \\
& =t^{2} \sum_{|n|<R} c_{n} \gamma(|n| t)
\end{aligned}
$$

where $\gamma(z)=z^{-2} J_{2}(z)$. We change the last sum into an integral and integrate twice by parts.

$$
\begin{align*}
\sum_{|n|<R} c_{n} \gamma(|n| t) & =S_{R} \gamma(R t)-\int_{0}^{R} S_{u} \frac{d}{d u} \gamma(u t) d u \tag{6.2}\\
& =S_{R} \gamma(R t)-S_{R}^{1} \frac{d}{d R} \gamma(R t)+\int_{0}^{R} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u
\end{align*}
$$

Note that the hypothesis (4.1) implies $\sum_{n \in Z_{2}}|n|^{\varepsilon-1}\left|c_{n}\right|^{2}<\infty$ for some $\varepsilon>0$. Thus, using Holder's inequality,

$$
\begin{align*}
S_{R} & =\sum_{|n|<R} c_{n} \tag{6.3}\\
& =\sum_{|n|<R}\left(|n|^{(\varepsilon-1) / 2}\left|c_{n}\right|\right)\left(|n|^{(1-\varepsilon) / 2}\right) \\
& \leq\left(\sum_{n \in \mathbf{Z}_{2}}|n|^{\varepsilon-1}\left|c_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{|n|<R}|n|^{1-\varepsilon}\right)^{1 / 2} \\
& =C \cdot R^{(3-\varepsilon) / 2} \\
& =o\left(R^{3 / 2}\right)
\end{align*}
$$

Using formula (51) from [1, p. 11] and the fact that $J_{v}(z)=O\left(z^{-1 / 2}\right)$ as $z \rightarrow \infty$, it is clear that

$$
\begin{equation*}
\gamma^{(n)}(z)=O\left(z^{-5 / 2}\right) \quad \text { as } z \rightarrow \infty \text { for } n=0,1,2, \ldots \tag{6.4}
\end{equation*}
$$

Combining (6.1), (6.3), and (6.4), the integrated terms on the right of (6.2) drop out as $R \rightarrow \infty$. Thus,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(t e^{i \theta}\right) \Omega(\theta) d \theta & =t^{2} \lim _{R \rightarrow \infty} \sum_{|n|<R} c_{n} \gamma(|n| t) \\
& =t^{2} \int_{0}^{\infty} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u \\
& =0+0 \cdot t^{2}+t^{2} B(t)
\end{aligned}
$$

We will complete the proof by showing $B(t) \rightarrow 0$ as $t \rightarrow 0$.

$$
\begin{aligned}
B(t) & =\int_{0}^{1 / t} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u+\int_{1 / t}^{\infty} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u \\
& =B_{1}(t)+B_{2}(t)
\end{aligned}
$$

To estimate $B_{1}(t)$ we note that $\gamma(z)$ is an entire function, so for $|z|<1$,

$$
\left|\frac{d^{2}}{d z^{2}} \gamma(z)\right|<C
$$

Thus, when $0<u<1 / t$,

$$
\left|\frac{d^{2}}{d u^{2}} \gamma(u t)\right| \leq C t^{2},
$$

and

$$
B_{1}(t)=\int_{0}^{1 / t} o(u) \cdot C t^{2} d u=O\left(t^{2}\right) \int_{0}^{1 / t} o(u) d u=o(1)
$$

To estimate $B_{2}(t)$ we use (6.4).

$$
\begin{aligned}
B_{2}(t) & =\int_{1 / t}^{\infty} S_{u}^{1} \frac{d^{2}}{d u^{2}} \gamma(u t) d u \\
& =\int_{1 / t}^{\infty} o(u) \cdot t^{2} O(u t)^{-5 / 2} d u \\
& =O\left(t^{-1 / 2}\right) \int_{1 / t}^{\infty} o\left(u^{-3 / 2}\right) d u \\
& =o(1)
\end{aligned}
$$

This completes the proof of Theorem 1 in the case when $0 \leq \beta \leq 1$.
If $1<\beta<3 / 2$ write $\beta=1+\alpha$. We begin as in the proof above, but at equation (6.2) we integrate by parts once again. We obtain, after showing the integrated terms tend to 0 ,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(t e^{i \theta}\right) \Omega(\theta) d \theta=-t^{2} \int_{0}^{\infty} S_{u}^{2} \frac{d^{3}}{d u^{3}} \gamma(u t) d u \tag{6.5}
\end{equation*}
$$

If $f(u)$ is a function defined for $u>0$ and η is a positive number we denote by

$$
I^{\eta}(f)(u)=\frac{1}{\Gamma(\eta)} \int_{0}^{u}(u-z)^{\eta-1} f(z) d z
$$

the fractional integral of order η of f (see [6]). Now if we let $f(u)=S_{u}$, then

$$
S_{u}^{2}=I^{2}(f)(u)=I^{1-\alpha} I^{1+\alpha}(f)(u)=I^{1-\alpha} S_{u}^{1+\alpha}=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{u}(u-z)^{-\alpha} S_{z}^{1+\alpha} d z
$$

Returning to (6.5),

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(t e^{i \theta}\right) \Omega(\theta) d \theta & =-t^{2} \lim _{R \rightarrow \infty} \int_{0}^{R} S_{u}^{2} \frac{d^{3}}{d u^{3}} \gamma(u t) d u \\
& =-t^{2} \lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{u}(u-z)^{-\alpha} S_{z}^{1+\alpha} d z \frac{d^{3}}{d u^{3}} \gamma(u t) d u \\
& =-t^{2} \lim _{R \rightarrow \infty} \int_{0}^{R} S_{z}^{1+\alpha} \frac{1}{\Gamma(1-\alpha)} \int_{z}^{R}(u-z)^{-\alpha} \frac{d^{3}}{d u^{3}} \gamma(u t) d u d z
\end{aligned}
$$

$$
\begin{aligned}
& =t^{2} \lim _{R \rightarrow \infty} \int_{0}^{R} S_{z}^{1+\alpha} H(z, t, R) d z \\
& =t^{2} \lim _{R \rightarrow \infty}\left\{\int_{0}^{1 / t}+\int_{1 / t}^{R}\right\} \\
& =t^{2}\{P+Q\}
\end{aligned}
$$

Using estimates similar to those in [4], we find

$$
|H(z, t, R)| \leq \begin{cases}C t^{2}\left(\frac{1}{t}-z\right)^{-\alpha} & \text { for } 0<z<1 / t \\ C t^{-5 / 2}(R-z)^{-\alpha} R^{-5 / 2} & \text { for } z>1 / t\end{cases}
$$

Hence

$$
P=\int_{0}^{1 / t} o\left(z^{1+\alpha}\right) O\left(t^{2}\right)\left(\frac{1}{t}-z\right)^{-\alpha} d z=o(1)
$$

and

$$
Q=\lim _{R \rightarrow \infty} \int_{1 / t}^{R} o\left(z^{1+\alpha}\right) O\left(t^{-5 / 2}\right)(R-z)^{-\alpha} R^{-5 / 2} d z=o(1)
$$

This completes the proof of Theorem 2.
7. It seems probable that many other weights $\Omega(\theta)$ (for example, surface harmonics of even order) may be used with Definition (2.1) to derive theorems of Riemann type for multiple trigonometric series. The key step in establishing such a result is the verification of the lemma of Section 5. For general surface harmonics and for application to T_{k} for $k>2$ the proof of the lemma may be aided by the Funk-Hecke Theorem [1, p. 247], which facilitates the computation of some surface integrals involving surface harmonics. Details will be given elsewhere.

Bibliography

1. A. Erdelyi et. al., Higher Transcendental Functions, vol. II, McGraw-Hill, New York, 1953.
2. G. H. Hardy, The second theorem of consistency for summable series, Proc. London Math. Soc. (2), vol. 15 (1916), pp. 72-88.
3. M. Конn, Spherical convergence and intergrability of multiple trigonometric series on hypersurfaces, Studia Math., vol. 44 (1972), pp. 345-354.
4. ——, Riemann summability of multiple trigonometric series, Indiana Univ. Math. J., vol. 24 (1975), pp. 813-823.
5. ———, Lebesgue summability of double trigonometric series, Trans. Amer. Math. Soc., vol. 225 (1977), pp. 199-209.
6. M. Riesz, L'intergrale de Riemann-Liouville et le problem de Cauchy, Acta Math., vol. 81 (1949), pp. 1-233.
7. V. Shapiro, Circular summability C of double trigonometric series, Trans. Amer. Math. Soc., vol. 76 (1954), pp. 223-233.
8. A. Zygmund, Trigonometric series, vols. I and II, Cambridge University Press, Cambridge, 1968.
