ON THE WEIERSTRASS POINTS OF $X_{0}(N)$

BY
A. $\mathrm{P} . \mathrm{OGG}^{1}$

Let N be a positive integer and let $\Gamma_{0}(N)$ be the subgroup of the modular group $\Gamma=S L(2, \mathbf{Z}) /(\pm 1)$ defined by the matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with c divisible by N. It acts on the upper half-plane \mathfrak{g}, and we let $X_{0}(N)$ be the compactification of $Y_{0}(N)=\Gamma_{0}(N) \backslash \mathfrak{W}$ obtained by adding cusps. We give $X_{0}(N)$ its standard structure of an algebraic curve over \mathbf{Q}, let $g(N)$ denote its genus, and suppose throughout that $g(N) \geq 2$.

In his article [1], which extended previous work of Lehner and Newman [6], Atkin showed that the cusp at ∞ is a Weierstrass point on $X_{0}(N)$, abbreviated by $N \in W$, for various sufficiently composite values of N. Atkin concluded his paper with: "It would be of great interest to find an instance (if one exists) of $n \in W$ when n is quadratfrei. On the other hand, it has not yet been proved that $n \notin W$ for an infinity of n." In 1973, Atkin proved that $p \notin W$ for any prime p (I learned of this more recently [2], [3]), thus disposing of the second sentence just quoted, but the first still stands, so far as I know. An examination of (what I surmise to be an algebro-geometrization of) Atkin's proof led to the following generalization.

Theorem. Let $N=p \cdot M$ have $g(N) \geq 2$, where p is a prime, and $p \nmid M$. Let P be any \mathbf{Q}-rational point on $X_{0}(N)$ whose reduction \tilde{P} modulo p is not supersingular (e.g., any rational cusp). Let c be a nongap at P, i.e., there is a function f on $X_{0}(N)$ with a pole of order c at P and regular elsewhere. Then

$$
c \geq 1+g(N)-2 \cdot g(M)
$$

In particular, P is not a Weierstrass point (i.e., the gaps at P are $1,2, \ldots, g(N)$) if $g(M)=0$, i.e., if $M=1-10,12,13,16,18,25$, and so $p M \notin W$ in those cases.

This theorem conflicts with Theorem 1 of [5], which states that $16 \cdot p \in W$.
Most of the results of this paper are discussed (without proof) in [8]. Correspondence and conversations with Atkin were very helpful.

Before giving the proof of the theorem, let us discuss briefly the modular interpretation of $X_{0}(N)$ and its reduction modulo primes. If l is a good prime (not dividing N), then by a theorem of Igusa, $X_{0}(N)$ has a good reduction

Received June 25, 1976.
Partially supported by a National Science Foundation grant.
modulo l, still denoted by $X_{0}(N)$, over the field F_{l}. In characteristic 0 or l, the points of $Y_{0}(N)$ parameterize the isomorphism classes of pairs (E, C), where E is an elliptic curve and C is a cyclic subgroup of order N, or if you prefer the isomorphism classes of cyclic isogenies $E \rightarrow E^{\prime}$, of degree N, of elliptic curves. A point of $Y_{0}(N)$ is rational over a field K (of characteristic 0 or l) if and only if it is represented by a K-rational pair (E, C).

Assuming now that $N=p \cdot M$ as in the theorem, we will need the Igusa-Deligne-Rapoport determination of the reduction modulo p of $X_{0}(N)$. The undesingularized reduction modulo p, which is all that we need, consists of two copies Z and Z^{\prime} of $X_{0}(M)$ in characteristic p, meeting transversaily in the supersingular points:

$$
Z=X_{0}(M) \quad Z^{\prime}=X_{0}(M)
$$

(Cf. [4, p. 144]; a point of $X_{0}(M)$ is supersingular if the underlying elliptic curve is.) The points of $Y_{0}(p \cdot M)$ still represent cyclic isogenies of degree $p \cdot M$, of elliptic curves, which we separate into subisogenies of degree M and p. There are just as many M-isogenies in characteristic p as in characteristic 0 , on an elliptic curve, but there are (in general. and up to isomorphism) only two p-isogenies: the Frobenius $\phi: E \rightarrow E^{(p)}$, which is inseparable, and its transpose $\hat{\phi}: E^{(p)} \rightarrow E$ (or rather a conjugate, to have E instead of $E^{(p)}$ as domain), which is separable if E is not supersingular, i.e., if $p=\hat{\phi} \quad \phi: E \rightarrow E$ is not totally inseparable. Then Z, minus cusps, consists of points of $Y_{0}(M)$ together with the

Frobenius ϕ, and Z^{\prime}, minus cusps, consists of points of $Y_{0}(M)$ together with $\hat{\phi}$, and $Z \cap Z^{\prime}$ consists of the supersingular points, where the p-isogeny can be thought of as either a ϕ or a $\hat{\phi}$. The cusps cause no difficulty; $X_{0}(M)$ has as many cusps in characteristic p as in characteristic 0 , and $X_{0}(p \cdot M)$ has twice as many cusps as $X_{0}(M)$, in characteristic p or in characteristic 0 .
By the specialization principle, the arithmetic genus p_{a} of $Z+Z^{\prime}$ is the same as the genus $g(p \cdot M)$ in characteristic 0 , so we get

$$
\begin{aligned}
1+g(p \cdot M) & =1+p_{a}\left(Z+Z^{\prime}\right) \\
& =p_{a}(Z)+p_{a}\left(Z^{\prime}\right)+Z \cdot Z^{\prime} \\
& =2 \cdot g(M)+Z \cdot Z^{\prime}
\end{aligned}
$$

Since Z meets Z^{\prime} transversally, $Z \cdot Z^{\prime}$ is the number $n_{p}(M)$ of supersingular points on $X_{0}(M)$ in characteristic p, so we have

$$
\begin{equation*}
n_{p}(M)=1+g(p \cdot M)-2 \cdot g(M) \tag{2}
\end{equation*}
$$

We can now prove the theorem. Let P be a rational point on $X_{0}(p \cdot M)$, whose reduction \widetilde{P} modulo p is not supersingular; let c be a nongap at P, and let f be a function with a pole of order c at P and no other poles. Since P is rational, we can assume that f is defined over \mathbf{Q}.
Let $w=w_{N}$ be the canonical involution on $X_{0}(N)$, corresponding to the transpose on isogenies, and defined in characteristic 0 by the matrix

$$
\left(\begin{array}{rr}
0 & -1 \\
N & 0
\end{array}\right) .
$$

Since w is defined over $\mathbf{Q}, P^{\prime}=w(P)$ is also rational, and we assume that $f\left(P^{\prime}\right)=0$. On the reduced curve $Z+Z^{\prime}$ modulo p, the involution w interchanges the two components Z and Z^{\prime}, so \tilde{P} and \widetilde{P}^{\prime} are on different components, say $\tilde{P} \in Z$ and $\tilde{P}^{\prime} \in Z^{\prime}$. Multiplying f by a suitable rational constant if necessary, we will have a nonconstant reduced function \tilde{f} modulo p. Since we have two components, \tilde{f} is really two separate functions on Z and Z^{\prime}, agreeing on the intersection $Z \cap Z^{\prime}$. Now on $Z^{\prime}, \tilde{f}^{\prime}$ has a zero at \tilde{P}^{\prime} and no poles, so is identically 0 , and in particular vanishes at the $n_{p}(M)$ supersingular points in $Z \cap Z^{\prime}$. On Z, then, f has at least $n_{p}(M)$ zeroes, and at most one pole of order c, so $c \geq n_{p}(M)$, which, by (2), is the inequality of the theorem.

Since the proof involves only the reduction modulo p of $X_{0}(N)$, we have the same result, assuming only that P is rational over \mathbf{Q}_{p}.

For the rest of the paper we shall take for P the cusp ∞. As mentioned earlier, Atkin showed that with certain possible exceptions (see below), if N is not square-free, then $N \in W$ (i.e., the cusp ∞ is a Weierstrass point on $X_{0}(N)$). We can add one case to Atkin's list, namely $2 \cdot p^{2} \in W$, if p is a prime ≥ 7, since

$$
f=\eta_{p^{2}} \eta_{2}^{2} / \eta \eta_{2 p^{2}}^{2}
$$

is a function on $X_{0}\left(2 \cdot p^{2}\right)$ with divisor $\left(\left(p^{2}-1\right) / 8\right)((1 / 2)-(\infty))$, so $c=\left(p^{2}-1\right) / 8$ is a nongap at ∞, and it is less than $g\left(2 \cdot p^{2}\right)$ for $p \geq 7$. (As usual, $\eta=\Delta^{1 / 24}$ is Dedekind's function, and $\eta_{m}(\tau)=\eta(m \tau)$.) For example, for $N=2 \cdot 7^{2}=98$, we have $c=6$ and $g=7$ (actually the gaps are $1-5,7,8$), and since $g(49)=1, c=6$ is also the bound of the theorem. In view of the above, we can restate Theorem 1* of Atkin [1] as follows:

Suppose N is not square-free, $g(N) \geq 2$, and N is not of the form $p \cdot M$ with $p \nmid M$ and $g(M)=0$. Then $N \in W$, except in case (1) below and possibly cases (2) and (3):
(1) $N=81$.
(2) $N=p^{2} q$, where p, q are distinct odd primes, not both congruent to 1 modulo 12 .
(3) $N=p^{2} q r$, where p, q, r are distinct primes, and neither $x^{2}+1 \equiv 0$ nor $x^{2}-x+1 \equiv 0$ are solvable modulo $p q r$.

The first square-free N not covered by the theorem is $N=3 \cdot 5 \cdot 7=105$. We have $g(105)=13$ and $g(15)=g(21)=1$, so the theorem only gives that a nongap is ≥ 12, while a computer calculation of W. Parry shows that $105 \notin W$. The first case for (2) above is $N=3 \cdot 7^{2}=147$, where $g=11$, and the theorem shows only that a nongap is ≥ 10. Actually the gaps are $1-10,17$, by another computation of Parry, so $147 \in W$.

Finally, the bound of the theorem can be sharpened in some cases. Suppose for example that $N=p \cdot q$, where p, q are distinct primes, with (say) $0<g(q) \leq g(p)$. Suppose that $n_{p}(q)=1+g(p q)-2 \cdot g(q)$, the bound of the theorem, is a nongap at ∞. By the proof of the theorem, we have a linear equivalence $n_{p}(q)(\infty) \sim \mathfrak{Y l}$ on $X_{0}(q)$ in characteristic p, where $\mathfrak{N l}$ is the sum of the $n_{p}(q)$ supersingular points. The canonical involution $w=w_{q}$ fixes the set of supersingular points and hence fixes \mathscr{M}, and interchanges the cusps 0 and ∞. Hence $n_{p}(q)((0)-(\infty)) \sim 0$. But the divisor class of $(0)-(\infty)$ has order equal to the numerator of $(q-1) / 12$ (cf. [7]) so we get:

Proposition. If $n_{p}(q)$, the least possible value, is a nongap at ∞ on $X_{0}(p \cdot q)$, then $n_{p}(q)$ is divisible by the numerator of $(q-1) / 12$.

Example. Let $N=11 \cdot p$, where $p \geq 17$. Then $g(N)=p$, and $n_{p}(11)=p-1$ is the least possible nongap at ∞, and a gap if $p \not \equiv 1(\bmod 5)$. Also, p is a gap, since if $f(\tau)$ is the cusp form of weight 2 for $\Gamma_{0}(11)$, then the old-form $f(p \tau)$ for $\Gamma_{0}(N)$ has a zero of order p at ∞. Thus $11 \cdot p \notin W$ if $p \not \equiv 1(\bmod 5)$.

References

1. A. O. L. Atkin, Weierstrass points at cusps of $\Gamma_{0}(n)$, Ann. of Math., vol. 85 (1967), pp. 42-45.
2.

——, Letter to A. Ogg (dated 9 Sept., 1974, received 17 April, 1975).
3. -——, Modular forms of weight one, and supersingular equations, U.S.-Japan seminar on modular functions, Ann Arbor, June 1975.
4. P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Springer Lecture Notes, no. 349, 1973, pp. 143-316.
5. H. Larcher, Weierstrass points at the cusps of $\Gamma_{0}(16 \cdot p)$, and hyperellipticity of $\Gamma_{0}(n)$, Canad. J. Math., vol. 23 (1971), pp. 960-968.
6. J. Lehner and M. Newman, Weierstrass points of $\Gamma_{0}(n)$, Ann. of Math., vol. 79 (1964), pp. 360-368.
7. A. OGG, "Rational points on certain elliptic modular curves" in Analytic number theory, Proc. Symposia Pure Math., no. 24, American Mathematical Society, Providence, 1973, pp. 221-231.
8. - On the reduction modulo p of $X_{0}(p \cdot M)$, U.S.-Japan seminar on modular functions, Ann Arbor, June 1975.

University of California
Berkeley, California

