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CHARACTER CORRESPONDENCES IN SOLVABLE GROUPS

BY

THOMAS R. WOLF

1. Introduction

All groups considered here are finite, unless otherwise specified. By Ch (G),
we denote all complex characters of G; and by IRR (G), we denote the set of
those $ e Ch (G) that are irreducible. (On occasion, where it involves no loss of
generality to t.he specific argument, we may say A s Ch (G) allowing the pos-
sibility A 0). If a group A acts on G by automorphisms and if a
defined by Za(ha) z(h) is an irreducible character of G whenever ;t is. If A is
cyclic, the actions of A on IRR (G) and on the conjugacy classes of G are
permutation isomorphic. Counterexamples exist for noncyclic A. We write
IRRA (G) to denote the A-fixed irreducible characters of G.
Now assume A acts on G by automorphisms and (I G I, IAI)= 1. Should A

be solvable, G. Glauberman has defined a "natural" one-to-one correspon-
dence between IRRa (G)and IRR (C)[5], if C C(A). When GI is odd, I.
M. Isaacs has described a "natural" correspondence between IRRa (G)and
IRR (C) [6]. By "natural" we mean a map uniquely determined by the action of
A on G and thus independent of choices made in an algorithm. The Odd-Order
Theorem implies one of these correspondences occurs. One corollary of these
correspondences is that A acts isomorphically on IRR (G) and the conjugacy
classes of G (see comments preceding Theorem 5.5). Both correspondences
exist precisely when GI is odd and A is solvable; and we show in this paper
that the two are then identical.

Let N<aG, zIRR(G), 0IRR(N), and T=It(0) (i.e., T=
{9 e G 0 0}). We say Z s IRR (G[O) if [ZN, 0] :: 0. If
has a unique irreducible constituent # s IRR (T 0). Also,
Assume T G and Z s IRR (GIO). So XN =fO for somef Z. Iff= 1; the

constituents of 06 are precisely the characters fl;t for fl s IRR (G/N) and are
distinct for distinct ft. This will occur whenever GIN is cyclic. If, on the other
hand,f2 G: N[ we say z or 0 is fully ramified with respect to GIN. This will
occur if I6(0) G and either Z vanishes on G N or ;t is the unique constituent
of 0.

If K/L is an abelian chief factor of G and b IRR (K) is invariant in G; then
b. IRR (L), b is fully ramified with respect to K/L, or tp. is the sum of
]K:L distinct irreducible characters of L. The results of these last few para-
graphs are well known (see Chapter 6 of [7]) and will be used without reference.

Section 2 basically deals with preliminaries. Sections 3 and 4 define and
investigate the correspondences of Glauberman and Isaacs, respectively. Via
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his theory of Clifford systems, E. C. Dade (see [1], [21, and [3])has done work
inclusive of that of Isaacs’. In Chapter 13 of his book [7], Isaacs presents and
develops some properties of the Glauberman correspondence. Section 5 proves
the equivalence of the two correspondences.

If N G and 0 IRR (N) is invariant in G, we say (G, N, 0) is a character
triple. We will use some facts about character triple isomorphisms. (See Section
8 of [6] or Chapter 11 of [7].) Otherwise, everything should be self-explanatory.

2. Preliminaries

In this section, we prove some properties of coprime actions and of charac-
ters. The first lemma is quite useful and is easily proved by Frobenius recipro-
city and counting character degrees.

2.1 LEMMA. Let N
_

G, NH G, and let 0 IRR (N) be invariant in G. Let
M N H and assume Ot IRR (M). Then 7. )n defines a one-to-one cor-
respondence between IRR (G[0) and IRR (H 0t).

Proof See Lemma 10.5 of [6].
2.2 LEMMA. Let (G, N, O) be a character triple with G/N abelian. Then:

(a) There is a unique U <_ G maximal with respect to 0 havin9 a G-invariant
extension to U.

(b) Every extension of 0 to U is fully ramified with respect to G/U.
(c) Iffurthermore G <_ F with G, N, and 0 invariant in F, then U <z F.

Proof Let and fl be G-invariant extensions of 0 to V and W. Then
(6e)v w Bv w for some linear 6 e IRR (V/N). By Lemma 2.1, fl OW for
a unique IRR (VW[62). Since IG(6) G and is unique, is G-invariant,
proving (a).

Let G < F and assume G, N, and 0 are F-invariant. Let e be a G-invariant
extension of 0 to U. For y e F, eY extends 0 to U and z is G-invariant. Part (c)
follows by the uniqueness of U.

As all extensions of 0 to U are G-invariant, part (b)will be proved if we
assume U N and show 0 is fully ramified with respect to G/N. Let
Z IRR (G[0) so that it suffices to show ; vanishes off N. Let N < T < G with
TIN cyclic, and let bl e IRR (T) extend 0 such that [Zr, q51] 4: 0. Now
Zr xs 241 for some subset S of IRR (T/N), Z. For 2, fle S, we have
(1])1) ,t} and (bl)v
and S is a subgroup of the cyclic group IRR (T/N). Since U N, a generator of
S is faithful. Hence, S IRR (T/N) and Z vanishes on T N. Thus Z vanishes
on G- N. The proof is complete.

The following lemma, which can be proved via the Schur-Zassenhaus
Theorem, is quite useful when looking at coprime actions. It is due to G.
Glauberman [4]. Also, a proof can be found in 13.8 and 13.9 of [7].
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2.3 LEMMA. Assume A acts on G by automorphisms and (I i, I 1) 1.
Suppose A and G act on a set of T such that G is transitive on T and (t 9) a
(t a) 9" for T, 9 G, and a A. Then (a) A has fixed points in T, and (b)
Ca(A) acts transitively on the fixed points of A.

2.4 COROLLARY. Assume A acts on G, N <__ G is A-invariant, and (I G: HI,
I11)- 1. Let X IRRA (G). Then:

(a) [ZN, 0] 4:0 for some 0 IRRa (G).
(b) If CaIN(A)= 1, 0 is unique.
(c) If Ca/(A)= G/N, every constituent ofZ is A-invariant.

Proof. Now GIN acts transitively on the set S of irreducible constituents of
X, and A acts on S as 7. is A-invariant. Application of Lemma 2.3 yields the
result.

If (I A [, G[) 1 in Corollary 2.4, then Ca/u(A) NCa(A)/N. So the condi-
tions in (b) and (c) may be stated as Ca(A) _< N and Ned(A) G, respectively.

2.5 LEMMA. Assume A acts on G by automorphisms, N <a G is A-invariant,
([G:N I, IA])= 1, and G NCa(A). Let 7. e IRR (G) and 0 IRR (N)such
that [XN, O] --/: O. Then X IRRA (G) if and only if 0 IRRA (N).

Proof. One direction is Corollary 2.4(c). So assume 0 e IRRA (N)and
induct on GI. If N _< U _< G, the hypotheses imply U is A-invariant. We need
just show Z"(9)= Z(9) for a e A, 9 G. Hence, we assume by induction that
GIN is cyclic. Choose N _< W

___
G with ]G:W prime. By induction, choose

e IRRA (WI0) such that [)w, ] 4: 0. Now is A-invariant and A acts on the
irreducible constituents of a. If 7. a, we’re done. So, we may assume X
extends . Now IRR (G/W) and A act on the irreducible constituents of G. The
result follows from Lemma 2.3.

3. Glauberman correspondence

The intent of this section is to expose the character correspondence for
coprime action developed by G. Glauberman. The first theorem states and
characterizes the correspondence.

THEOREM 3.1. For each pair of groups G and A where (I G I, AI)- 1, A is
solvable, and A acts on G via automorphisms, there is a uniquely defined map

r x(G, A): IRRA (G)- IRR (C) with C Ca(A)
satisfying:

(a) r, (G, A)is one-to-one and onto.
(b) If A is a p-group and 7. IRRA (G), then 7.rc,(G,A) is the unique

a IRR (C) such that p X [xc, ].
(c) if r < A and B Ca(T), then rc,(G, A)= rc,(G, T)n,(B, A/T).
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Proof. See [5] or Chapter 13 of [7].

By "uniquely defined", we imply that the map is independent of choices made
in any algorithm, i.e., the map is completely determined by the action of A on
G. Note that conditions (b) and (c) imply that )n(G, A) is a constituent of )c.

3.2 HYPOTHESES. Let A act on G such that (I A I, GI) 1. Let C CG(A)
and let F be the semi-direct product GA.

3.3 COROLLARY. Assume Hypotheses 3.2 and assume that A is a p-group. Let
< V < G with V being A-invariant. If 7. IRRA (G), there is a unique
IRRA (V) such that p X [7.v, ]. Furthermore 7.rl(G, A) r(V, A).

Proof. For , fl IRR (V) with a= fl for some a A, we have [Xv, cz]
[7.v, fl] and gc tic. Write 7.v ai$, + bjAj where , 6 IRRA (V) and
each Aj is the sum of a nontrivial A orbit in IRR (V). Let ei /i(V, A). Now
[gc, v] , a,[(/,)c, v] (mod p)for each v IRR (C). So [Xc, v] 0 (mod p)if
v is not one of the e,, and [7.c, eli =- a,[($,)c, e,] for each i. By Theorem 3.1, it
follows that a 0 (mod p) for exactly one i. This gives our result.
The above result will be used to show the equivalence of the two correspon-

dences. It can also be used with Lemma 2.5 for a straightforward proof of
Lemma 3.4. A similar proof appears in Chapter 13 of [7], where Lemma 3.5
appears as an exercise.

3.4 LEMMA. Assume Hypotheses 3.2 with A solvable. Suppose N F with
N _< G. Let 7. 6 IRR (G), 0 6 IRR (N), e 7.g(G, A), and 6 Or(N, A).
Then [7., O] 4:0 if and only if [eN c, 6] 4: O.

Proof See Theorem 13.29 of [7].

3.5 LEMMA. Assume Hypotheses 3.2, A is solvable, N < F, NC G,
0 e IRRA (N), and 0(N, A). If T I(0), then

(a)
(b)

T C Ic(6), and
whenever p e IRR (TI 0), A)= A))c.

Proof As NC G; we may use Lemma 2.5 to see that T, , and G are
A-invariant. So (b) is meaningful. If B < A, NC(B)= G. By induction and
Theorem 3.1, we assume AI p, a prime.

Write 0Nc=s6+pA with ACh(NC) and p,s. For xC,
0 IRRA (N) and (0x)N c s6 + PAx. So x T if and only if x Ic(6),
proving (a). Write qrc=t+pE with ECh(TcC) and p’t. As
JaN c, 6] 4:0 by Lemma 3.4, it follows from (a)that zc IRR (C). Now
(q)c ($r c)c tc + PEc. Now, application of Theorem 3.1 completes the
proof.
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4. Isaacs correspondence

Here we describe the character correspondence developed by I. M. Isaacs [5],
and then proceed to develop some properties of it. For convenience, we first
establish some notation. Suppose A acts on G, H _< G is A invariant, and
Z 6 IRR (G). If there is a unique q/e IRR (H) such that [)n, q/] is odd, we
write 0 7.a(G, H, A).
We will need the following two results of Isaacs’ paper. Theorem 4.1 com-

bines Theorems 9.1 and 6.3 and Corollary 6.4 of [7]. This, in turn, is used to
prove Theorem 4.2 (Corollary 10.7 of [7]).

4.1 THEOREM. Assume K, L G, K’ <_ L <_ K; K: L or G: K is odd;
0 6 IRR (K) and el)6 IRR (L) are invariant in G; [0L, 4)] =fi 0; and 4) is fully
ramified with respect to K/L. Then there is a 0 e Ch (G/K) and a conjuoacy class
F of suboroups U <_ G such that:

(a) q/2(x)= + lC,c/.(x)l for x G.
(b) UK=GandUK=L
(c) U" F for every a Aut (G) which stabilizes K, L, O, and el).
(d) For X IRR (G[0), Zv kvfor a unique IRR (U).
(e) 7.v Ovct defines a one-to-one correspondence between 7. IRR (G[0)

and IRR (U [q).
(f) If[G: L is odd, Z IRR (G O), and IRR (U)then Xv qtv if and

only if [Zu, ] is odd.

Note if A acts on G in the above situation and A stabilizes 7. and some U e F;
then e 7.a(G, U, A) in (f) above.

4.2 THEOREM. Assume A acts on G, K and L are A-invariant normal sub-
9roups of G, K’ <_ L <_ K, and (1 G: L[, 2IAI) 1. ce HIE C/,.(A ), and
assume HK G and H K L. Then 7.a(G, H, A)existsfor all 7. IRRA (G).
Furthermore, 7.-.7.a(G, H, A)defines a one-to-one correspondence between
IRRA (G)and IRRA (H).

4.3 COROLLARY. Assume Hypotheses 3.2 with GI odd. Let
[G, A]’C < H <_ G such that H is A-invariant. Then 7.or(G, H, A)exists for all
6 IRRa (G), and a(G, H, A)is a one-to-one map from IRRA (G)onto

IRRa (H).

Proof Let K= [G, A] and L= K H. NotethatK’<L___G. AsC<H,
HK G. Also, [H, A] < K H L. By properties of coprime action, H/L <
CoIL(A)= LC/L < H/L. Apply Theorem 4.2 to finish the proof.

Assume Hypotheses 3.2 with GI odd. Now G is solvable by the Odd-Order
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Theorem. If C < G, [G, A]’< [G, A] and [G, A]’C < G. We define a map
Zz(G, A): IRRA (G) IRR (C inductively as follows. If IRRA (G), let

Zu2(G, A)= za(G, G1, A)72(G1, A)
if Gx [G, A]’C is proper in G. Otherwise, let Zn2(G, A)= Z. Induction and
Corollary 4.3 show that u2(G, A) is one-to-one and onto, and they also imply
that u2(G, A) is completely determined by the action of A on G. Now nz(G, A)
is the character correspondence described by Isaacs [7]. We need some of its
properties.

4.4 LEMMA. Assume Hypotheses 3.2 with [G odd. Suppose NC G with
NF. Assume that [G, A]’C H G and that H is A-invariant. t
L= n H, 0 IRRA (n), T= I(0), IRR (TI0), Oa(N, L, A), and
fl a(T, T H, A). Then

(a) H T= In(),
(b) C W Ic(Ou2(N, A)),
(c) flu aa(G, H, A), and
(d) a2(G, A)= (2(W, A))c.
Proof As NC G, T is A-invariant, and, by Lemma 2.5, IRRA (T). As

IT, A]’(T C) [G, A]’ (T C) U T

and as similarly IN, A]’ (N C) L, a(W, W H, A)and Oa(N, L, A)are
defined. If C < G, [G, A]’C < G. So parts (a)and (c)with H [G, A]’C imply
parts (b)and (d) by induction.

So we prove (a) and (c). Write 0L + 22 + E and r n fl + 2 + A for
(possibly zero) characters 2, E of L and , A of T H such that E and A have
no A-invariant irreducible constituents. For a F-invariant subgroup W of G, C
permutes IRRA (W)by conjugation. As (O)L + 22 + E for c C, part (a)
follows.
As LC H, JAr, ] 0 by Lemma 2.5. So [fir, ] @ 0. Note that

IRRA (G) and flu IRRA (H).
It suffices to show that [(O)n, flu] [(T n)n, flu] is odd. Now

(OT H)H()= flH + 2H + A.
We are done if [AH, fill] [(flH)w H, A] is zero. As LC H, Lemma 2.5 im-
plies every constituent of (flH)w H is A-invariant. So [(flH)r H, A] 0, com-
pleting the proof.

4.5 LEMMA. t KG and K’ t Z(K) Z(G) with [K:L[ odd.
Assume each coset ofL in K contains an element k such that L (k) 1. Then
there is a conjugacy class of subgroups U G and there exist involutions
p 6 Aut (G) such that UK G, U K L, U C(p), and p inverts K/L



CHARACTER CORRESPONDENCES IN SOLVABLE GROUPS 333

Proof See Lemma 4.4 of [7].

The above is used to prove the next theorem. One would expect the next
theorem to be true, but it does take some work. Also, see the comments follow-
ing Corollary 4.7. This theorem allows us to prove statements analogous to 3.4
and 3.1(c)for gz(G, A)(Lemmas 4.8 and 4.9), allows more flexibility for the
algorithm for zz(G A) (Corollary 4.7), and helps prove the equivalence of the
correspondences.

4.6 THEOREM. Assume Hypotheses 3.2 with ]G[ odd. Let K--[G, A],
L K’, and S LC. Assume that S < H < G is A-invariant. Let X IRRA (G)
and /= 7a(G, H, A). Then

(a) xa(G, S, A)= Oa(H, S, A), and
(b) Xrz(G, A)= rz(H, A).

Proof Of course, both parts are true when H G. Note that [H, A]’C < S.
So, inductive arguments show parts (a)and (b)are equivalent.
Among all possible counterexamples with GI minimal, choose one with

]G:H minimal. We may assume that H < G and hence that C < G. Let
fl xa(G, S, A). It suffices to show that [qs, fl] is odd, by induction.
By Lemma 2.4, we can choose 0 IRRA (K) such that [Xr, 0] :/: 0. As

[I6(0), A]’(I6(O) C)<_ 16(0)c S,

induction and Lemma 4.4 permit us to assume I(0)-- G.
Let N H c K. As L < N, N-(H, K, A ) F. As K [G, A] and

(IGI, ]A I)= 1, Fitting’s Lemma implies Cr/dA)= 1 and Cr/u(A)= 1. By
Corollary 2.4(b), we can let q5 be the unique A-invariant irreducible constituent
of 0. As )r is a multiple of 0, is the unique A-invariant constituent of Zu and
of qN. Let T I6(), so that T is A-invariant and H < T by Lemma 4.4.
Choose the unique 6 IRR (T) such that [J(T, t] ::/:: 0 and [fiN, @] 4: 0. The
uniqueness implies b 6 IRRA (T). Now 66= X and XT= 6 + E where
[E, 4] 0. So [En, ] 0 and [Xn, ] [6 n, P] is odd. If H < T < G, we have
by induction on IGI and on IG:HI that)rz(G, A)= 62(T, A)= rz(H, A).
If T G, XN is a multiple of , and, since NC H, Lemma 2.5 implies every
irreducible constituent of )n is A-invariant. Then Z/ @ + 22 for some
2 Ch (H), and hence 1 -= [:s, fl] [s, fl] (mod 2). So we assume I(4)= H
and ,6 Z.

If H < F < G with F A-invariant, we have, by induction,

Z2(G, A)= /v=2(F, A)= qtu2(H, A).
So we assume H is a maximal A-invariant subgroup of G. Note KIN is an
elementary abelian chief factor of F and 4r 0.

Via Corollary 2.4(b), we can let a be the unique A-invariant constituent of0
(and, hence of tilL and of ZL). Let D In(e)and J I6(e). By Lemma 4.4,
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S<D<J_<G. Note that fl. is a multiple of e. Choose the unique
z e IRR (Die) such that [o, z] q: 0. Note that r.n= and zG= ;. Now
zs IRR (J e) is unique such that [Zs, zs] O. Hence [Zs, fl] [(zS)s, fl] is
odd. Of course, D, J, z, and zs are fixed by A. If J < G, we have, by induction,

Sx2(H, A)= zx2(D, A)= zsx2(J, A)= fln2(S, A)= Zx2(G, A).
We assume IG(e)= G.
By Lemma 2.2, we can choose L _< U _< K with U < F such that e extends to

U and every extension is fully ramified with respect to K/U. Now both A and
the group B of linear characters of U/L act on the extensions of e to U. Note B
acts transitively and Ca(A)= 1. By Lemma 2.3, e has a unique extension
t/ IRRA (U). Note that r/is fully ramified with respect to K/U, is the unique
irreducible constituent of Ov and of Zv, and is invariant in F. Note that
r/v IRR (U c N). If UN K, 0 by Lemma 2.1. This contradiction
implies U _< N. Let M UC US <_ H.
As Zv is a multiple of r/ and as UC M, Lemma 2.5 implies that every

irreducible constituent of ZM is A-invariant. So ZM C0 + 2A for some
o IRRa (M) and A Ch (M). Now

1 --[;ts, fl]-- [Ogs, fl] (mod 2),
and, by induction, om2(M, A)= finE(S, A)= ;tn2(G, A).
By induction, it suffices to show [$M, 09] is odd. To do this, we choose a

character triple (F*, U*, r/*) isomorphic to (F, U, r/) such that r/* is faithful and
linear and such that each coset of U* contains an element x such that
(x) U* 1 (see Theorem 8.2 of[7]). (Note that we allow (IA I, u*l) 1.)
we use * to denote appropriate images. Note that F*/U* is isomorphic to FlU,
and note that A-fixed characters lying over r/are mapped by * to (UA)*-fixed
characters lying over r/* since inertia groups are preserved by the character
triple isomorphism.

Since U*< Z(G*) and 0* is fully ramified with respect to K*/U*,
U* Z(K*).
By the Schur-Zassenhaus Theorem, all complements for G*/U* in F*/U* are

conjugate in F*. Now Lemma 4.5 implies that there exist W so that
(UA)* <_ W <_ F* and involution p e Aut (F*) such that Wis the centralizer in
r’* of p, WK*=r’*, WcK*= U*, and p inverts K*/U*. Let
V= WG* W. Now

IV, (UA)*] < [G*, (UA)*] V U*.

So V centralizes (UA)*/U*. So V M* and (MA)* W is the centralizer in
F* of p.
Of course, * and o* are p-invariant. As 0* vanishes off U*, 0* is fixed by p.

As K’M* G*, Lemma 2.5 implies that * is p-invariant. As p inverts K*/U*,
p fixes N* and N’M*= H*. As (UA)* centralizes p, (q*)o is fixed by (UA)*.
The uniqueness of (and of *) implies (q*)o *. Theorem 4.2 implies
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k* Z*a(G*, H*, (p)). Hence, Z* restricted to H* is k* + 2 + i (v, + vf)
where y Ch (H*), v IRR (n*), and v 4: v’. As 09* is p-invariant and as
[ZM, 09] is odd, the character triple isomorphism yields [M, O)] [I//M, (_D] 1
(mod 2). The result follows from above comments.

4.7 COROLLARY. Assume Hypotheses 3.2 with GI odd. Assume

C G, < G,_ < Go G

for A-invariant G, and [G,, A]’C <_ G+ . Let 7,o IRRA (G) and define
Zi IRRa (Gi) inductively by

Zi Zi- tT(Gi- 1, Gi, A ).
Then Zn Zo 2(G, A).

Proof. Induct on [G Without loss, C < G and G1 < G. By induction and
Theorem 4.6, ZOnE(G, A) Z1/I:2(G1, A) Zn, completing the proof.
Note that the condition [Gi, A]’C < G+ is equivalent to saying there exist

K, L < G such that KGi / Gi, K ca Gi + L, and Gi / /L is the centralizer
of A in Gi + /L.
We stress that the step by step algorithm in Corollary 4.7 is necessary. We

mention an example and leave the details to the reader. We construct G by
taking the semi-direct product EB where IEI-235 and BI 115. We let
A < A5 be transitive (e.g., A could be cyclic of order 5 or simple of order 60),
and then define an appropriate action of A of G. We may choose a Z e IRRA (G)
such that there is a unique IRR (C) with [Zc, ] odd. However,
Zn2(G, A) even though C G2 in the notation of Corollary 4.7.

4.8 LEMMA. Assume Hypotheses 3.2, GI odd, N F, and N < G. Let
( IRRa (G), 0 IRRa (N), e j(/i:2(G A), and di 0/r2(N A). Then
[ZN, 0] :/: 0/f and only if [e1 c, ] :/: O.

Proof. Induct on GI. With no loss, C < G and N < G. Let K [G, A],
L= K’, and H LC < G. Choose N < M <G maximal such that M <F.
Now L < G’ < M and M ca H CM/L(A). Now [M, A] _< M ca K and hence
M (M ca K)(M ca H). As MK is either M or G, then either K < M or
H<M.

Consider the case H < M. Choose the unique IRRa (M) such that
[ZM, ] :/: 0, by application of Corollary 2.4(b). By induction and Lemma 4.6,
[ffs, 0] :/: 0 if and only if [es c, ] :/: 0. Then [es c, t$] :/: 0 implies [Jts, 0] :/: 0.
Assume [;iN, 0] :/: 0. Now fin has an irreducible Aoinvariant constituent,
namely 0 for some # s G. Lemma 2.3 implies 0g 0 for some c s C. Now
[ffs, 0] [s, 0] :/: 0 as c e C < M. Hence [es c, iS] :/: 0. We are done if
H<M.

So, assume K < M. Now G" M[.= p, a prime. Now Z E=I bi where
is 1 or p and where each bi IRRa (M), by Corollary 2.4(c). Let
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o dpi rt2(M A). It suffices, via induction, to show that the irreducible consti-
tuents of et c are precisely the i, 1 < < t. If p, this follows from Lemma
4.4. So assume Zea b . Let fl ;a(G, H, A) and 7 ba a(M, M c H, A). As
[Zn t, 7] is odd and as (H c M)C H, Lemma 2.5 and Theorem 4.2 imply
[fin t, 7] =/= 0. Now Lemma 4.4 implies fin M 7. Theorem 4.6 and induc-
tion yield et c x. This completes the proof.

The following, analogous to Theorem 3.1(c), is useful for inductive
arguments.

4.9 LEMMA. Assume Hypotheses 3.2 with [G odd. Let T<zA and
B--- C(T). Then

(a) Znz(G, T) IRRA (B) whenever 7. IRRA (G), and
(b) n2(G, A)= n2(G, T)n2(B, A/T).

Proof As T < A, it is routine to check that [G, T] and B are A-invariant. In
particular, M [G, T]’B is A-invariant.
To prove (a), we let Z Za(G, M, T). Note that A permutes the T-invariant

irreducible constituents of ZM. Also [Z, Z]] is odd for a A. As either B G or
M < G, part (a) follows by induction.
To prove (b), we induct on G ]. Without loss of generality, M < G. Let

K=[G,A], L=K’, and H=LC<G. As C_<B, LM=HM. Let
Z IRRA (G). We show Zn2(G, A)= Zn2(G, r)rc2(B, A/T).
f HM < G, za(G, HM, A)= ;a(G, HM, T). Then, induction and Theorem

4.6 imply
Z2(G, A)= 7.a(G, HM, A)2(HM, A)

7.a(G, HM, T)2(HM, T)n(B, A/T)
Z2(G, T)2(B, A/T).

So, we assume HM LM G.
Now G/L ML/L - M/M L. As G, L, and M are fixed by A, the natural

isomorphism between G/L and M/M c L is an A-isomorphism. In particular,
H c M/L M Ct/L (A). Now M [G, T]’B, ME G, and [G, T]’ < L.
So LB G and [G, T] < L. Also [H, T] [G, T] and [H, T]’(BcH) <
MH.

Let fl=I.a(G,H,A), e=I.a(G,M, T), and =fla(H, HcM,T). The
argument in (a) shows that e and 6 are fixed by A. By induction and Theorem
4.6,

;Utz(G, A)= flrtz(H, A)
fln2(H, T)n2(B H, A/T)
6n2(H c M, T)2(B c H, A/T)
a2(H M, A)
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and
Zn2(G, T)n2(B, A/T)= n2(M, T)n2(B, A/T)= n2(M, A).

So it suffices to show n2(M, A)= bn2(M c H, A). As [M, A]’C <_

(K M)’C <_ (t c M)C H M, we need just show that [n M, ] is odd.
As LB G, Lemma 2.5 implies that every constituent of ;n is T-invariant. As

fl IRRT (U)is unique such that [fl, "] is odd. Ix.. [z. , 6] is odd.
Write ZM + 2b + co for b, co Ch (M) where no irreducible constituent of
co is fixed by T. As (LcM)B=M, [conM,b]=0 by Corollary 2.5. So
1 =- [Zn , b]-- [n M, ] (mod 2) and the result follows from above
comments.

5. Equivalence

Here we prove the equivalence of the character correspondences when both
are defined. So, in effect, there is one correspondence, and it is defined whenever
A acts on G with (I A I, ]G I) 1. We give an algorithm for this map, and state
some properties thereof.

5.1 THEOREM. Assume Hypotheses 3.2, A solvable, and [G[ odd. Then
nl(G,A)=n2(G,A).

Proof We induct on FI. By Theorem 3.1, by Lemma 4.9, and by the
solvability of A, we may assume AI= p, a prime. We may also assume
[G, A]’C < G, as otherwise both maps are the identity on IRR (G). Choose
[G, A]’C < H < G maximal so that H is A-invariant. Let K [G, A] and
L= K c H. Note [G, A]’_< L, so that L < KHA F. Also H/L= CG/.(A).
Furthermore, K/L is an elementary abelian chief factor of F.

Let Z IRRA (G). We show ZnI(G, A)= Znz(G, A). Let 0 IRRA (K)with
[Z/, 0] :/: 0. By Lemmas 3.5 and 4.4 we may assume via induction on G] that
1(0) G. By Lemma 2.4(b), we may let th be the unique A-invariant irredu-
cible constituent of OL. Now Lemma 4.4 and the maximality ofH imply IG(q) is
HorG.
Choose the unique r/ IRRA (H) such that p[zn, q], and let

fl za(G, H, A). By Corollary 3.3 and Theorem 4.6, it suffices to show r/= ft.
As th is the unique A-invariant constituent of ZL, [r/L, b] :/: 0 and [flL, th] :/: 0. In
particular, if I(th)= H, r/= ft. So we assume I(b)= G.
As K/L is an abelian chief factor of F and as I r(0) F Iv(qb), then either

OL b or b is fully ramified with respect to K/L. If OL b, Lemma 2.1 implies
r/= Zn ft. So, we assume b is fully ramified with respect to K/L.

If K--G then C < H < G, Zn has a unique A invariant constituent, and
we’re done. Choose K < N < G with [G:N prime. By Lemmas 3.5 and 4.4;
we may assume that ZN=#IRR(N). Let M=NcH and note that
H: M[ G: N Let 7 laa(N, M, A). By induction, by Corollary 3.3, and

by Lemmas 3.4 and 4.8, both q and fl extend 7. In particular, r/= 2fl for some
2 IRR (H/M).
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Let F be a conjugacy class of subgroups as in Theorem 4.1 and note A acts
on F. By Lemma 2.3, we can choose an A-invariant V e F. Now [V, A] <
[G, A] V L So V < C/.(A) and hence V n. Let Ch (G/K) as in
Theorem 4.1. Note that ;t, ft, fl and 2 is rational valued.
Now Z. is a multiple of b, and so, by Lemma 2.5, every constituent of Zn is

A-invariant. Observe that fl+2F.= Jr,=at/+pA with p.a and
E, A e Ch (H). Now

Hence 2r/= 22//is the unique e e IRR (H) such that p " [(0K)n, e]. Observe
that if fix is the complex conjugate of then

As fl extends 7, 22 2-2 and 2’* 1,. As Glis odd, 2 1, and /= ft. This
proves the theorem.

The above theorem says we really just have one correspondence, Of course,
the Odd-Order Theorem implies that nl(G, A) or n2(G, A) exists under
Hypotheses 3.2. We will now write n(G, A) for n(G, A)or n2(G A). Whenever
C < G and A is nonabelian simple, [G, A]’C < G. Hence, the following contains
an algorithm for finding n(G. A).

5.2 COROLLARY.
the following hold.

Assume Hypotheses 3.2. Let T <aA and B C(T). Then

(a)
(b)

(c)

n(G, A): IRRA (G)---} IRR (C)is one-to-one and onto.
;in(G, T) IRRA (B) for ;t IRRA (G), and

n(G, A)= n(G, T)n(B, A/T).
Assume A is simple. If AI is prime, set p AI and let C <_ H <_ G be

A-invariant. Otherwise set p 2, and choose [G, A]’C < H < G where H is A-
invariant. If ;( e IRRa (G), there exists a unique fl IRRa (H) such that
P X D,, fl]. Also 7.n(G, A) fin(H, A).

Proofi See Lemma 4.9 and Theorems 3.1, 4.6, and 5.1.

Note that r(G, A) is uniquely determined by the action of A on G. We
mention a few properties of n(G, A).

5.3 LEMMA. Assume Hypotheses 3.2. Let N<aF with N<_G. Let
X IRRA (G), 0 IRRA (N), e xn(N, A), and t5 On(G, A). The following
hold.

(a)
(b)

[Z.N, O] 0 if and only if [e, 3] 4: 0.
If NC G and r I(0), then T C Ic(r), and

(0n(T, A))c= On(G, A) for 0 IRR (r 0).
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Proof. This is immediate from Lemmas 3.4, 3.5, 4.4, and 4.8 and from
Theorem 5.1.

5.4 LEMMA.
Then:

Assume Hypotheses 3.2. Let 2 e IRRA (G)and let fl ;in(G, A).

(a) B(1) IG:CIz(1 ).
(b) If G is solvable, ;t(1)/fl(1)is an inteoer dividint G: C I.
Proof. For solvable A, Glauberman [5] proves (a), and (b)is an exercise in

Chapter 13 of [7] (solvable A). We will just prove (b).
Induct on rl. We may assume by induction and Theorem 5.1(b)that A is

simple. Let G/N be a chief factor of F. Then, as G/N is abelian, either C < N or
NC= G.

If C < N then, by Corollary 2.4(b), XN has a unique A-invariant irreducible
constituent . As [G,A]’C<N, n(N,A)=fl. As X(1)/(1)eZ and
(1)/(1) G: N I, we are done if C N.

So, assume NC G. Note ]G: N] is prime. Let 0 e IRRa (N) be a constitu-
ent of Xs. Lemma 5.3 allows us to assume via induction that Xs 0. Further-
more, Lemma 5.3 implies fls c On(N, A). e result follows by induction.
The next result is due to Isaacs. He proves it for solvable A in his discussion

of Glauberman correspondence in Chapter 13 of [7]. The existence of Isaacs
correspondence is sufficient for the general case, as the same proof works.
Under Hypotheses 3.2, we note that application of Lemma 2.3 shows that
K K C is a one-to-one map from the A-fixed conjugacy classes onto the
conjugacy classes of C (for a proof see Corollary 13.10 of [7]).

5.5 THEOREM. Assume Hypotheses 3.2. Then the actions ofA on Irr (G)and
on the conju#acy classes of G are permutation isomorphic.

Proof See Lemma 13.23, Corollary 13.10, and Theorem 13.24 of [7]; note
that the solvability of A can be removed from the hypothesis of 13.24.

We mention one final property of n(G, A). We omit the proof, which is quite
straightforward. For e IRR (H), let Q() be the (Galois) extension of Q ob-
tained by adjoining the values (h), h H, to Q. Under Hypotheses 3.2, let
Z IRRa (G) and fl 7.n(G, A). Then Q(Z)= Q(fl)and Zn(G, A)= ff for in
the Galois group of Q(;t) over Q.
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