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ON THE REGULARITY PROPERTIES OF
THE VARIATION FUNCTION

BY

D. AHARONOV, A. ATZMON AND A. LEVIN

1. Preliminaries and statement of results

This paper is concerned with the relation between the regularity properties of
a function and those of its variation function and with some applications of
these relations to some problems about harmonic functions. Before we state
our results we recall some definitions and known facts.

Let f be a bounded continuous function on an interval J. We denote by
cox(f h) the modulus of continuity of f and by (_D2(f h)its modulus of
smoothness. That is

cox(f, h)= sup If(x + t)-f(x)l, 0 < h < 1
x,x + d
O<t<h

and
co2(f, h)= sup ]f(x + t)+f(x t)- 2f(x)[, 0 < h < 1.

t,x,x + d
O_t_h

As usual, we denote f sup, f(x)l. The following relations exist be-
tween cox(f, h)and co2(f h):

(1) cox(f h)_< cfw/co(f, h)
where cf is a constant depending on f (see [5, p. 48]);

(see [5, p. 53]).
Given an increasing positive function co on (0, 1) such that limh-o co(h) 0,

we denote by Ao the set of all continuous functions f on [0, 1] such that
cox(f, h)= O(co(h)), h O, and by A* the set of all continuous functions f on
[0, 1] such that co2(f, h)= O(co(h)), h O.

It is well known (see [5] p. 50) that with respective norms

II/ll -II/ll / sup
cox(f, h)

o <h_X co(h---------}--’ f I1" f + sup
co2(f, h______)

o<h_<x co(h)
Ao and A* are Banach spaces.
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The spaces Ah 0 < _< 1, are of course the Lip e spaces on [0, 1]. The space
A’ is known as the Zygmund class on [0, 1] and is usually denoted by A*.
For a function f which is of bounded variation on the interval [0, 1], we

denote for 0 < x < 1 by Vf(x) the total variation offon the interval [0, x] and
call Vf the variation function off.

Clearly col(f h)= O(h), h--,0, implies that f is of bounded variation and
co (Vf, h) O(h), h --, 0. On the other hand, given 0 < e < 1, one can construct
a functionfofbounded variation oft [0, 1] such that co (f, h) O(h), h ---, 0 but
co(Vf, h)--p O(h), h 0 for every e > 0. Such a construction appears in Sha-
piro [7, p. 272], and as remarked in the same paper, this fact was also noticed
by J. P. Kahane.

Piranian (unpublished) proved a stronger result, namely, that there exists a
function f of bounded variation on [0, 1] which satisfies

but o)(Vf, h) O(h), h 0 for every > O.
In fact, it is easy to prove the following more general result:

TNo 1. Let co be an increasin continuous function on [0, 1] which
satisfies co(O)= 0 and

(3) 09(h d- h2) _< co(h) / (o(h2) for 0 < h -t- h2 <_ 1,

og(h)
(4) lim -if--- de.

h-,O

Then, ]iven any positive function p on [0, 1] such that limh-.O p(h)= 0, one can
construct a continuous function f, of bounded variation on [0, 1], which satisfies
og(f, h)= O(og(h)), h - O, but og(Vf, h)=/= O(p(h)), h -. O.

The results for co2(f, h) are more complicated. We have the following:

THEOREM 2. Let o9 be a positive increasin# function on [0, 1] such that

(5) eog(h)<co(2h)Nflog(h), O<h< 1/2, 1<<fl<4,

and assume that

ci}t) dt do

Then, riven any positive function p on [0, 1] such that limh_,O p(h)= O, one can
construct a continuous function f of bounded variation on [0, 1], such that
092(f, h)= O(og(h)), h --. 0, but 09(Vf, h) O(p(h)), h - O.

Remarks. (1) It follows from (1)that o)(Vf, h)can be replaced by 092(Vf, h)
in the conclusion of Theorem 2.
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(2) It is clear that Theorem 2 is equivalent to the assertion that if o9 and p
satisfy the hypothesis of the theorem, then one can construct a continuous
function f of bounded variation on [0, 1], such that c02(f, h) O(co(h)), h O,
but f does not admit any representation as a difference of two increasing
functions f, f2 which satisfy

og,(,h)=O(p(h)), hO, j= 1,2.

(3) Concerning the integral appearing in (6)we refer to [8].

In the positive direction we have the following result:

THEOREM 3. Let f be a continuous function on [0, 1] such that

(7) I" (o92(f t))2dt < .3
"0

Then f is of bounded variation and

(8)

(9)

o92(Vf, h)= O h ’Jo t-3(o92(f’ t))2 dt h- O,

og(Vf, h)= 0 og(Vf, h) + h t-og.(f, t)dt + 1 h -- O.

The following result is an application of Theorems 2 and 3.

COROLLARY 1. (a) Given any positive function p on [0, 1] such that
limh-O p(h) O, there exists a continuous function f of bounded variation on
[0, 1] such that

but

(b)

o92(f h)=O (h In -x/2 ), h--*O,

og,(Vf, h) O(p(h)), h O.

Let 1/2 < 2 < 1. Then every continuousfunctionfon [0, 1] which satisfies

o92(f, h) O(h In -x 1), h --. O,

is of bounded variation on [0, 1] and

o92(Vf, h)= O(h In /2-;t 1)
ogl(Vf, h) O (h lnl-Z ),

hO,

h-*O.
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(c) Let o be an increasingfunction on [0, 1] such thatfor some constant > 2,

(10) loo(h) < co(2h), 0 < h < 1/2.
Then every continuous function f on [0, 1] which satisfies ooz(f, h)= O(o(h)),
h 0, is of bounded variation and o92(Vf, h)= O(o9(h)), h 0.

(Examples of functions which satisfy (10) are

og(h) h (1 + ln_ 1)
for > 1,2>0.)

Part (a) clearly follows from Theorem 2 and part (b) follows from Theorem
3. Part (c) follows from Theorem 3 and the fact that (10)implies that

t dt < oo and h t-co(t) dt O(co(h)), hO.

2. Application to harmonic functions

The above mentioned results are closely related to problems of representing
harmonic functions, which satisfy certain conditions, as a difference of two
positive harmonic functions which satisfy similar conditions. More precisely,
assume that a function u is harmonic in the open unit disc

{rei, 0 _< 0 _< 2n, 0 < r < 1},
and belongs to the class h x, that is, u admits a Stieltjes integral representation:

"2

P(r, 0 t)dr(t)u(r, 0)= .Io
where P(r, 0)is the Poisson kernel andfis a function of bounded variation on
[0, 2r]. It is then possible to represent u as a difference of two positive harmonic
functions u , u2, and each such representation corresponds to a representation
offas a difference of two nondecreasing functionsfa,fz. Clearly the representa-
tions are not unique.
Assume now, that in addition of being in h x, u also satisfies some growth

conditions. The question arises whether or not u can be represented as a
difference of two positive harmonic functions, each of them satisfying some
growth condition depending on that of u.
The connection between this problem and the problems concerning the regu-

larity problems of the variation function discussed before, is furnished by the
following generalized version of a theorem of Zygrnund [9].

THEOREM 4. Let co be a decreasing function on [0, 1] which satisfies (5).
Assume that u is an h function,

.2

P(r, 0 t) df(t),O) .Io
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wheref is of bounded variation in [0, 2r]. Then u satisfies the condition

u
(r, 0)- O((1 r)-2co(1 r)), r-* 1,

80

uniformly in 0 [0, 2z] if and only/f co2(f, h)= O(co(h)), h- 0.

For co(t)- t, Theorem 4 is an equivalent form (see [2]) of a Theorem of
Zygmund [9]. The general form of Theorem 4 is obtained by minor
modifications of Zygmund’s proof and the proof in [2, pp. 249-250], by using
the estimates

t-"co(t)dt O(’-’co(6)), 6 O, (n 3, 4),

dl t-2co(t) dt<o,
"0

t-’co(t) dt O(co(5)), 5 0,
’0

which follow easily from the properties of . We omit the details.
Using Theorem 4 and Remark 2 which follows the statement of Theorem 2,

we see that Corollary 1 implies the following"

To 5. (a) For every e > 0 there exists afunction u in h which satisfies

o ln- 1)1r
unormly in 0 e [0, 2], which Mmits no representation of theform u u u,
with u, u positive harmonic functions such that

Ou (r, O)= 0(( r)-+), r 1,
0

unormly in 0 e [0, 2], for j 1, 2.
(b) t 1/2 < 2 < 1. Then every function u in h which satisfies

--OU(r,O)=O((1-r)-lln- 1 ), rl
O0 1 r

unormly in 0 e [0, 2], can be represented as a dference of two positive har-
monic functions u, u which satisfy

OUJ(r,O) O((1-r)-lln1/-1 )O0 1 r

uniformly in 0 e [0, 2].

3. Proofs of Theorems 1, 2, 3

In order to prove Theorems 1 and 2 we shall need the following simple result.
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LEMMA 1. Let B be a Banach space of continuous functions on [0, 1] with
or II II, thatfor every interval I c [0, 1] there exists afunctionf in B
which is ofbounded variation on [0, 1] such that (i)supp f c I, (ii)Ilfll < 1, (iii)
VI f

_
1 (where VI f denotes the variation off on the interval I).

Then liven any positive function p on [0, 1] such that limh-O p(h)= 0 there
exists a function fo in B which is of bounded variation on [0, 1] and

co(Vfo, h) :/: O(p(h)), h - O.

Proof Let I, [e,, ft,] be a sequence of mutually disjoint intervals in[0, 1]
such that p(fl, e,) < n- z, n 1, 2, By the hypothesis on B, there exists for
every n 1, 2, a function f, in B with support in 1, such that f, < n-2
and Vi.(f,)= n -2. Clearly the function fo f, is in B and is of bounded
variation on [0, 1]. However,

Vfo(fl,)- Vfo(a,,) VIn(L
>,

so that co(Vfo, h)--: O(p(h)), h -, O, and the lemma is proved.

Proofof Theorem 1. Theorem 1 will be proved by showing that for co which
satisfies the conditions of Theorem 1, the Banach space A, satisfies the hypoth-
esis of Lemma 1.

Let I--- [a, b] c [0, 1] and set 5 b a. Since limb.,o co(h)/h oo we can
find a positive integer n such that

(11) 6co nn > 2-"
Consider the function 0 on (- oo, oo) defined by O(x) co(x) for 0 < x < 5/2<
O(x) co(6/n x) for a/2n <_ x <_ a/n and O(x) 0 elsewhere. Letfbe the func-
tion on [0, 1] defined by

f(x)= 0 x-a O<x < 1.
j=O F/

It is clear that suppf I and that Vf= 2nco(6/2n); hence by (11) we have
1/i f > 1. It is also easily verified (see [5, p. 45]) thatf Ao and f l -< 1. Thus
Ao, satisfies the hypothesis of Lemma 1.

Proof of Theorem 2. Again, we shall show that for co which satisfies condi-
tions (5) and (6) of Theorem 2, the Banach Space A*o, satisfies the hypothesis of
Lemma 1.

Let D,= ,=1 co(2-k) and consider the sequence of trigonometric
polynomials

p,(x) D2 co(2 -k) cos 2kx,
k=l
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We claim that

(12) IIP I1 1, - 1, 2,

(13) co2(p,,h)<_co(h), O <_ h <_ l, n--I, 2,...,

where c is a constant independent of n, and

(14) lim V (p)= oe.

It is clear that (12)holds, and (13)is proved by a standard argument which uses
(5) (see [1, p. 317]).
We turn to the proof of (14). Since co is increasing, we have

I’2- (o9(t)) dt< 2" 22t(o9(2-))2(lS) t-----2-/-1

and therefore it follows from (4) that

(16) Z (o9(2-))222= oe.
k=0

Let M, D-1(2,= (o9(2-k))222k) x/2. It follows easily from (5), (16)that

(17) lim M, oe.

Applying a lemma of Sidon (see [4, p. 108]) and Parseval’s identity to the
trigonometric polynomials p’, we obtain

(1) Ip’(x)l dx c Ip’(x)l2 dx cM, n , 2,

where c is an absolute positive constant.
Since

Vp.-- Ip’(x)ldx,

we obtain (14)from (17)and (lS).
We construct now a sequence of continuous functions 9,, n 1, 2, with

compact supports which have the same properties as the trigonometric polyno-
mials p,, n 1, 2,....

Let 9 be a C2 function on (-oe, oe)such that 9(x)= 1 for Ix < rr and
9(x) 0 for Ix > 4. Consider the functions 9, 9" P,, n 1, 2, We claim
that

(19) sup 119, lifo < oe,

(20) o92(9,, h)< Kx og(h), 0 < h _< 1,
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n 1, 2,..., where Kt is a positive constant independent of n, and
4

(21) lim V ,= c.
noo --4.

It is clear that (19) follows from (12) and (21) follows from (14). Since g is a
C2 function of compact support, co(g, h) O(h), h 0, and to2(9, h) O(h2),
h 0. Therefore using the estimate

o2(gP,, h) Ilall o2(P,, h)+ []p, ]] o2(g, h)+ o(g, 2h)o(p, h), 0 N h N 1

(which follows from the definitions of and o2) we obtain by virtue of (12)
and the properties of g that o2(gp,, h) K2(o(h) + h2 + ho(p, h)), n 1,
2, where K2 is a constant independent of n. Therefore using (2), (12), and
(13) we have

o2(gp, h) N K3 o(h) + h2 t-2o(t) dt n= 1,2,...,

where K3 is another constant independent of n. But (5) easily implies that

h2 1 + t-2c0(t) dt O(o)(h)), hO;

hence (20)is proved.
To complete the proof of the theorem, consider an interval I [a, b] c [0, 1]

and set c (a + b)/2, (b a)/8. For every n 1, 2,..., let f, be the func-
tion on [0, 1] defined by

(x-c) O<_x<_lf,,(x) 9, 6

Since supp g c [-4, 4] it is clear that suppf c I, and (19), (20), (5) imply that
sup IlL II; < oo. Since v f vt g, it follows from (21) that
lim_.oo V f, oo. Consequently, A* satisfies the hypothesis of Lemma 1, and
the proof of Theorem 2 is complete.
We turn now to the proof of Theorem 3. We shall need the following lemmas.

LEMMA 2. Letf be a periodic continuousfunction on (-, with period T
and assume that t-a(coE(f, t))2 dt < o. Then f is absolutely continuous and

T ,1

J’- r (f’(x))2 dx <_ c "oi t-3()2(f’ t))2 dt

where c is a constant which depends only on T.

This lemma was proved by Stein and Zygmund [8] in a somewhat different
context. For a simple proof due to L. Carleson the reader is referred to [7].
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LEMMA 3.

(22)
Then

(23)
and

(24)

Let g be a continuous function on [-1, 1] and assume that
.1 ((g,

ta dt < oo

Vg<c
-1

t-3(g02(O, t)) dt
’0

+ Io(1)- g(- 1)1

0

Vg-Vg
0 -1

) 1/2
_< C .to t-3(go2(g, t)) dt

where c is an absolute constant.

Proof. Consider the linear function

x+l
L(x)=9(-1)+ L (9(1)-9(-1)), <x<oo

and let G be the periodic function on (- , c) with period 4 such that G(x)
f(x)-L(x)for -l_<x<land G(x)-G(2-x)for l_<x<3. Itiseasyto
check that o2(G, h) _< 3o2(9, h), 0 < h <_ 1 (see [5, p. 51]) and therefore using
Schwartz’s inequality we obtain from Lemma 2 and (22) that

V V G’(t)[ dt C t-3(gO2(g t))2 dt(25) G < G .(
Hence from the definition of G it follows that

v o -< + <- c t-(o,(o, tit t + 10(/- 0(- II
-I -I -I

This proves (23).
The estimate (24) follows from (25) by adding the obvious inequalities

\

+/- VG-VL)_Vg_VG/VL0 0 0 0 0

o o o (q o
VG- VL<_-V<_+_ G- V L
-! -1 -1 -1

and using the fact that Vo L V L.
We are now in position to complete the proof of Theorem 3.
Letfbe a function which satisfies the hypothesis of the theorem and assume

that 0_< x-h _<x _<x +h <_ 1.
We have to estimate

x+h

AVf(x Vf(x + h)+ Vf(x h)- 2Vf(x V f- V f
0 x-h
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Consider the function

9(t f(x + ht),
It is clear that

0)2(], () 0)2(L h6), 0 _< 5 _< 1 and
o

va- v o.
0 -1

Therefore using (7) and the estimate (24) of Lemma 3 we obtain

AVf(x)I
_

c (-3(0)2(f, h))2 d ch (-3(002(f ())2 d(
"0

This proves (8).
To prove (9), one proceeds similarly using (2) and (23). We omit the details.
We conclude with some remarks.

(1) In the estimates (8) and (9) of Theorem 3, one cannot in general replace
"O" by "o". This can be easily seen by considering the function f(x)= x for
some a > 1.

(2) In the investigation of the regularity properties of the variation function
one may consider moduli of smoothness of order higher than 2, that is Cog(f, h)
for k > 2 (see [5, p. 47] for the definition). However, there are no essential
differences between the results for 0) 2 and those for 0)k, k > 2. By replacing 0)2
by 0)k, for some k > 2, in the hypotheses ofTheorems 2 and 3, it follows that the
conclusion of Theorem 2 remains unchanged, and the estimates (8)and (9)of
Theorem 3 are replaced by similar estimates. The proofs are the same as for 0)2.

(3) Analogous problems to those treated in this paper may be asked for the
Lebesgue decomposition of a function ofbounded variationfinto its absolutely
continuous part fa and its singular part fs; that is, one may study the relation
between the regularity properties offand those offa andfs. These problems are
investigated in [3], [6], and [7].
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