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STABILITY OF GAUSS MAPS
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D. BLEECKER AND L. WILSON

1. Introduction

In this article we prove that certain geometrical properties of immersions of
differentiable surfaces M (without prescribed metric) into Euclidean space E3

are generic. Our results concern properties related to the set of parabolic points
(points where the Gaussian curvature, of the metric induced by the immersion,
vanishes). Observe that all the interesting properties (in the differentiable
category) of the Gauss normal map occur in a neighborhood of this set. In
some sense our results form an extension of a small, but significant, part of
Feldman’s (et. al.) work on geometric transversality (see for example [3]-[7],
[12], [13]). Although we could use much of the machinery and many of the
constructions in these works, there seems to be little advantage to doing so in
the low-dimensional case at hand. In fact, we discovered the results before
reading these papers. We are however indebted for the idea of applying trans-
versality theory to questions of geometrical genericity. Before stating our main
result, we introduce some definitions and notation.

Let C (M, N) be the set of all C maps from a compact manifold M to an
arbitrary manifold N. We give C (M, N)the topology of uniform convergence
of each k-jet (k 0, 1, 2,...). Given an open subset S C(M, N), we call a
property of maps in S 9eneric if the subset of maps in S having that property is
open and dense in S. We are mostly concerned with the case where M is a
compact, orientable surface, N is E3, and S I(M, E3) is the set of immersions
of M into E3. We define the following properties (P1), (P2), and (P3)of maps
f I(M, E3).

(P1) The Gaussian curvature K from the metric induced on M byfhas the
property that K and dK do not vanish simultaneously. Hence the parabolic set
(K 0) consists of a finite disjoint collection of smoothly embedded circles, the
normal derivative of the Gaussian curvature on these circles is nonzero, and
none of these points are extrinsically planar: for 0 4: dK d(k k2) k dk2 +
k2 dkl, where kl and k2 are the principal curvatures at a parabolic point, which
implies that k and k2 are not both zero.

(P2) Property (P1) holds and the zero principal curvature direction field
(corresponding to the principal curvature which is zero)along the parabolic
curves is transverse to those curves except at a finite number of points. At these
points, the derivative of the angle, of transversality is nonzero as one moves
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through the point along the curve with nonzero velocity (i.e., 0(t) and ’(t) have
no common zero for a regular parameter, say arclength, for any of the parabol-
ic curves).

(P3) Properties (P1) and (P2) hold and the normal vector tof(M)in E3 at
any pointf(x) for which, 0 does not have the same direction as the normal
vector to f(M) at f(y) for any other parabolic point y. Moreover, there are at
most finitely many pairs (and no triplets, etc.)of parabolic points (necessarily

4: 0) which have parallel normal vectors. Identifying the tangent planes of
each such pair by a translation of E3, we have that the zero principal curvature
directions are transverse.

THEOREM 1.1. Properties (P1), (P2), and (P3) are generic.

It was already known (see [7])that property (P1) is generic. Our contribu-
tion is that properties (P2) and (P3) are generic. An example of an immersed
surface having (P1) but not (P2)is the standard torus (or any cyclide of Dupin).
In fact, the angle is zero everywhere along the parabolic curves. However, by
introducing suitable corrugations with troughs running along the vertical
circles of the torus (which has its hole facing upward), we can arrange that is
nowhere zero on the many parabolic curves which are nearly vertical circles
each lying between consecutive maximum and minimum circles of the corruga-
tion. Another example of a (P2) immersion is the surface of a banana or cashew
with the negatively curved part facing up so that the parabolic curve is the
boundary of the saddle of negative curvature. In this case we have two isolated
points where 0, namely the low points of the boundary of the saddle.

In a sense (to be made precise in Section 3) the points in (P2) where 0
cannot be eliminated by an arbitrarily small perturbation of the immersion.
These exceptional points have interesting properties. If C denotes a parabolic
curve on M, then these points are precisely where the osculating plane off(C)
(as a space curve) either fails to exist or coincides with the tangent plane of M
along C. If G: m S2 is the Gauss map of a (P2)-immersion, then G(C) is a
smooth curve in S2 except for a finite number of cusps which look like u2 v3

in suitable coordinates on S2. These cusps are precisely the images of the
exceptional points on C. Even though the cusps are on G(C)instead of C itself,
we will call the exceptional points of C cusps. This is in conformity with
Whitney’s notion of cusps of differentiable maps between surfaces [15].
Whitney also uses the terms "good" and "excellent" for maps between sur-

faces. We give Whitney’s original definitions for these terms in Section 3. Here
it suffices to say that a map 9: M -o N between surfaces is good iff, in local
coordinates, the Jacobian and the differential of the Jacobian do not vanish
simultaneously. The map 9 is excellent iff it is good and, at each point p, is
either nonsingular or, in some pair of local coordinate charts about p and 9(P),
is given by

(x, y)-o (x2, y) or (x, y)-o (xy- x3, y).
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(In the first case p is called a fold point and in the second p is called a cusp
point.) Whitney proved that for maps in Coo (M, N) the property of excellence is
generic. The map 9 is stable iff there is an open neighborhood U of 9 in
Coo(M, N) such that 91 U implies 91 k 9 h-X for diffeomorphisms
h’M- M and k" N---, N. Using this terminology, we establish in Section 3
that, for the Gauss map G" M S2 of an immersion f: M E3,fhas (P1)iff G
is good, f has (P2)iff G is excellent, and/has (P3) iff G is stable.
The basic tool used in the proofs of genericity of (P1), (P2), and (P3)is the

Thom Transversality Theorem. Roughly speaking, we show that for fto have
any of these properties the jet extension of f must be transverse to certain
submanifolds of an appropriate jet space. A key step in the proof is Proposition
2.2, that the map grad" Coo(E2, E -, Coo(E2, E2) given by F--(Fx, Fy) sends a
dense set of functions in C(E2, E x) to excellent maps in Coo(E2, E2). This map
is essentially the map which sends a function to the Gauss map of its graph
followed by a central projection onto the tangent plane of S2 at the north pole.

There is also a topological consequence of our result..We show in Section 3
that each cusp of a (P2)-immersion can be assigned a value + 1/2. The algebraic
sum of the cusps is then x(M-) where M- c M is the subsurface of negative
Gaussian curvature.
The reader may proceed to Section 3 where there is additional motivation

and also an explicit example of a family of quartic surfaces with cusps.

2. Genericity of stability of Gauss maps

Supposefis an immersion of a closed, oriented surface M into E3. The Gauss
map G(f)" M --, S2 associates to each x M the unit outward normal vector to
f(M) at f(x).

LEMMA 2.1. The transformation G" I(M, E3) __, C (M, $2) is continuous.

Proof Let I x(2, 3) denote the space of rank 2 jets in J x(2, 3) and IX(M, E3)
the corresponding subbundle of JX(M, E3) (for a thorough discussion of jet
spaces see [9]). Let ux denote the partial derivative of a function u: E2 --, E with
respect to a coordinate x in E2. We can choose as coordinates of jaf(O)
JX(2, 3), wheref- (u, v, w), the sextuple

Iff is an immersion, then v (ux, vx, wx) x (u,, v r, wr)(0 is a nonzero vector
normal to the image off; as v never vanishes, p defined by p(jXf(O)) v/Iv is a
C function on I (2, 3). Each coordinate patch on M has an associated coordi-
nate patch on JX(M, E3) on which we can define p; restricting ourselves to
oriented patches, the local p’s agree on overlaps yielding a C map p:
IX(M, E3) ---* S2. Then G equals p,o jx restricted to I(M, E3); G is continuous
by 11.3.4 and 11.3.5 of [9]. V-1
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For each pair of manifolds M, N and nonincreasing, finite sequence

co-- (il, ik)
of nonnegative integers there is a fiber subbundle S of Jk(M, N) called a
Thom-Boardman singularity (see [1], [8], and [10]). If we let S(f)= {x M:
flf(x) S’}, then Si*(f)is the set of points x at which dim (ker Tf)= i,,
Sil’i’-(f) is the set of points x at which dim (ker Tx(f [S"(f)))= i, etc. In
particular, we have partitions J3(E2, E2) SO w S w S2 (SO is short for
r-lS, where r: j3(E2, E2)jI(E2, E2) is the natural projection, etc.),
$1= S1’ w S 1’1, and S 1’1 S1’1’ w S 1’1’1. Let lkdenote 1, 1, 1 k-times’, k
will always vary from 1 to 3. The codimensions of S2 and the S 1. are 4 and k
respectively. We sayf Coo(E2, E2) is 9ood (respectively excellent)ifjlf(respec
tively jar) intersects all Thom-Boardman singularities transversally; actuallyf
is excellent iff jar intersects S2 and the S 1. transversally. Iff is excellent, then
Sl’(f) is the set offold points and Sl’l’(f)is the set of cusp points ($1’1’1(f)
S2(f) ). A mapping between surfaces is good (respectively excellent)if its
coordinate representatives are.
The Gauss map of the graph of F e C(E2, E1) is a map from E2 to the unit

sphere S2 and, by choosing the coordinates on S2 given by radial projection
from the center of the sphere onto the tangent plane z 1 followed by 180
rotation in that plane, we represent this Gauss map as grad F (F, Fr).

PROPOSITION 2.2. For a dense set of F Coo(E2, El), grad F is excellent.

Proof The transformation F grad F induces a map

F: j4(E2, E1) j3(E2, E2).
Let T’= F-1S0" for each co. The Jacobian matrix of grad F is the Hessian
matrix of F; thus T2 is a codimension 3 submanifold of J’(E2, E1) and TO is
open. We will show that F intersects the S lk transversally, whence the Tlk are
codimension k submanifolds and j4FctTl iff j3(grad F),S1 (where
means "intersects transversely"). The proposition will then follow from Thom’s
Transversality Theorem.
A cochart for a codimension p submanifold P of a manifold N is a pair (U, tk)

with U open in N and 4: U --, Ep a submersion such that b- 1(0) U P. If
f C(M, N) and P is covered by cocharts (U, )for each of which bo fis a
submersion, then f, P (see 11.4.3 of [9]). We apply this to the case
M J4(E2, El), N j3(E2, E2), P S 1’1’1 and f= F, the cases P S and
P S 1’1 being simpler.
We choose as coordinates of j4F(x, y) the tuple

(x, y, F Frryr)
and as coordinates of j3(u, v)(x, y)the tuple

x, y, u, v, Ux, l)yyy).
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Let p denote the polynomial u,vr urv on ja(E2, E2). We designate by pxthe
polynomial u, vr + ux vr u,r v ur V,x. In like manner, we have polyno-
mials pr, q=jac(u,p)=uxpr-urp,, r=jac(v,p), s=jae(u,q) and

jac (v, r) on j3(E2, E2). Gaffney in [8] shows that S’:’ is contained in

(p, q, s)-x(0) w(p, r, t)-’(O).
2 Os/c3v andStraightforward calculation yields Op/Ov u, c3q/Ov u, u,

c3p/Ov c3p/Ov Oq/Ov 0. Thus ({u 4: 0}, (p, q, s)) is a cochart for
S x’x’x. Similarly,

({u 4: 0}, (p, q, s)) and ({v :p 0 or v 4: 0}, (p, r, t))
are cocharts. Together these cocharts cover S x’ ’ .
Note that p F equalsFF F2, a polynomial on J4(E2, E). IfF :fi 0,

then

c(qo F)/cFyyy F2xx 4:0 and c(s F)/Oryyyy Fax --/: O.

Since p F only depends on the 2-jet and q F on the 3-jet, partials of these
with respect to the higher jet variables vanish. Thus (p, q, s) F is a submersion
on {Fxx 4: 0}. Similarly, (p, r, t) F is a submersion on {Fyy @ 0}. If Fxy 4:0
and p F 0, then Fxx 4: 0. Thus T1’1’x is covered by {Fxx 4: 0} and {Fyy 4: 0}.
Thus F c S1’1’1. [--]

Remark. The analogous proposition for grad: C(Em, E)- C(Em, Em) is
not true. While F c Slk for all k, F is not transverse to S2 and F-1S2 has
codimension 3; so if m > 3, we cannot in general avoid nontransverse corank 2
singularities.

THEOREM 2.3. Let M be a closed, oriented surface. The set of immersions
whose Gauss maps are excellent is open and dense in I(M, Ea).

Proof Openness follows from Lemma 2.1. I4(M, E3) is the union of open
sets O1, O2, and O3, where

O1 {z J4(fx, rE, fa)(X): H (f2, f3) is nonsingular at x}
and O2 and O3 are defined analogously. For each z in Oi define hi(z) to be
j4(f/o H-1)(y), where y H(x). Each

7i: 0 J4(E2, E)
is a submersion. The fibers of the submersion 7 are the orbits in O under the
pseudo-group of local diffeomorphisms on M, i.e., each fiber is the set ofjets of
immersions having a given image germ. For each , n- 1T and n- 1T agree in
O c Oj because" ifj’F(0) is in T and if G is obtained by interchanging the ith
and jth component functions of F, then j4G(0) is also in T% Thus, for each o,
we have a submanifold W n- 1T whose codimension equals that of T%
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Furthermore, j4f , WI, iff j3G(f c S’. Density follows by Thom’s Trans-
versality Theorem.

See [16] or VII.6.3 of [9] for a proof of the following result.

PROPOSITION 2.4. IfM and N are surfaces, M compact, then 9 C(M, N)
is stable iff

(a) g is excellent, and
(b) the images offold curves intersect at most pairwise and transversally,

whereas images of cusps do not intersect with images of other singular points.

Let GS denote the set of those f I(M, E3) whose Gauss map g is stable.

THEOREM 2.5. Suppose M is a closed, oriented surface. Then GS is open and
dense in I(M, E3 ).

and

Proof. First we translate (2.4.b) into conditions on jet extensions. Define

Mr=M x... M (rtimes)

Mr)= {(xx, xr) Mr: x =/: xj whenever 4: j}.

Let : jk(M, N)--. M and fl: fi(M, N) N be the canonical projections.
Define at: jk(M N)r

_
M in the obvious fashion. Then

rfi(M, N) (at) ’(Mr))
is the r-fold k-jet bundle. Each f C(M, N) has a jet extension fl:
Mr) --. rfi(M, N) defined by

The diagonal of N is A {(y, y)e Nr}.
Then A (E2)(3) x A x (S1)3 is a submanifold of 3J3(E2, E2) of codimen-

sion 7, and A2 (E2)2) x A x S x S1, and ,43 (E) x A x (s)2 are sub-
manifolds of 2 J3(E2, E2) of codimensions 5 and 4 respectively. By Proposition
2.4 and the proof of VI.5.6 of [9], an excellent mapfis stable iff 3j3g A and
2j3g ct Ai, i- 2, 3. As in the proofs of Proposition 2.2 and Theorem 2.3, we
can lift the A to submanifolds W of rJ4(M, E3), r 2, 3, and 3 respectively,
such that and A have the same codimension and such that ,j4f Wi iff
rj3g Ai. Thus, by the Multijet Transversality Theorem and Theorem 2.3, GS
is dense in I(M, E3). Openness follows from Lemma 2.1 and the openness of the
set of all stable maps. ]

3. Geometric and topological consequences

First we wish to prove the equivalence of the properties (P1), (P2), and (P3)
to the properties of the Gauss map of the immersion being good, excellent, and
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stable respectively. The definitions of good and excellent given in Section 2 are
not well-suited for this demonstration. By exercise 4 following Section 4 in
Chapter 6 of [9], these definitions are equivalent to the following original
definitions of Whitney [15].

Let 9 be a C mapping from an open set U = E2 to -,2 and let J be its
Jacobian matrix. If det J(p) --/: O, then p U is said to be a regular point of 9;
otherwise p is a singular point. Whitney calls p a 9ood point for 9 if p is regular or
if grad (det J)(p) --/: O. If 9 is good, that is each point of U is good for 9, then the
singular set det J 0 is a 1-manifold (by the implicit function theorem). Sup-
pose p is a singular point of a good map 9 with b(t) a regular parametrization
of the singular curve through p. Whitney calls p a fold point of 9 if
d(g dp)/dt 0 and a cusp point of g if d(g dp)/dt 0 and dZ(g dp)/dt2 0 at
p. Cusp points are necessarily isolated. A point p is an excellent point of a good
map g if it is either regular, or else a fold or a cusp point, and g is excellent if
each point of U is excellent for g.
Whitney’s definition of cusp appears different from the definition of "simple

cusp" in [9]. The two are seen to be equivalent once it is shown that a point p on
a singular curve C of a good map 9 is a cusp iff the angle between the tangent
to C and the kernel of J is zero at p and has nonzero derivative as one passes
through p along C with nonzero velocity. To this end we may select local
coordinates about p, say (t, s), such that q)(t)= (t, 0)is a regular parametriza-
tion of the singular curve of g through p (0, 0). Let (u, v) be local coordinates
about g(p), and let g(t, s) (u(t, s), v(t, s)). At each point (t, 0), g has rank 1. So
the vectors (u,, u) and (v,, v) are dependent on (t, 0) but not both zero and are
perpendicular to the kernel of the derivative of g. Consequently, sin (t, 0) can
be expressed as at least one of

+
If p is a cusp point, then (ut, v,)= (0, 0)at (0, 0)while (u,, v,)=/: (0, 0)at (0, 0).
Thus

2 1/2a’(0) (sin a)’(0)= c(ut/(u2 + us )/ctlt=o u,/lus at (0, 0)
or

x’(O) v,t/I v at (0, 0).
One of these is well-defined and nonzero (use the fact that

(utv usvt)(t, O) =-- 0
whence u,tv uv, at (0, 0) to dispel the cases v, =/: 0, v 0 or u, # O,
u 0). One can reverse the argument to get the converse.

Since the determinant of the Jacobian of the Gauss map is essentially the
Gaussian curvature, it is plain from Whitney’s definition that f: M E3 has
(P1) iff G: M --, S2 is good. Also from the preceeding paragraph we now have
thatfhas (P2) iff G: M -, S2 is excellent. Note that the singular curves of(; are
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the parabolic curves and the kernels of J(G) make up the zero principal curva-
ture direction line field along the parabolic curves. To show that (P3) is equiv-
alent to the stability of G, we need only show that (P3) is equivalent to (a) and
(b) of Proposition 2.4. The derivative of the Gauss map is just the second
fundamental form when we identify TpM with TG(p)S2 via translation. Let p,
and P2 be fold points with G(pa)= G(p2) and let 4a(t) and 42(t) regularly
parameterize the fold curves with 4 (0)= p and 4)2(0) P2. Since the matrix
Jac (G), (considered as second fundamental form) is symmetric for each p, the
images of Jac (G)p and Jac (G)p are transverse iff their kernels (which are
perpendicular to their images) are transverse. The kernels are just the zero
principal curvature directions. The rest is immediate.
Now we establish the other geometric properties of cusps mentioned in the

introduction. Letting T be the unit tangent field along a parabolic curve C of a
(P2) immersion, the curvature vector of C (as a space curve) is T’= xN
ko + k, n where ko is the geodesic curvature of C in M and k, is the normal
curvature of M in the direction of T, n is the unit normal to M and is the
normal to T in M. Since k, 0 precisely at cusps, it follows that N is tangent to
M (i.e., the tangent plane of M and the osculating plane of C coincide) at, and
only at, cusps. Note, however, that the osculating plane may not be defined (in
the usual way) at cusps where ko 0. In fact, the map

(x, y)w-, (x, y, ax4 + bxEy + cy)
has an excellent Gauss map iff bc 4:0 and b2 4: 4ac and, in this case, the
osculating plane is not defined at the cusp (0, 0, 0) iff b2 6ac. Also the
parabolic curve is

y (b2 6ac)x2/bc.
The centrally projected image of this curve under the Gauss map is

(b2 4ac)[4x3/c, 3x2/b],
a cusp-like semicubical parabola. The special case when ax4 + bx2y + cy2 is of
the form (y mxZ)(y x2) is easier to visualize. (Note that the graph is below
the plane z 0 between the parabolas y mx2 and y x2.)

Recall that we also promised to indicate the sense in which cusps cannot be
eliminated by arbitrarily small perturbations of a (P2)immersion. The details
of the following type of argument can be supplied with the help of [11]. There is
a neighborhood O of a given (P2) immersion fo such thatf O implies that

f tf + (1 t)fo
also has (P2) for 0 < < 1. Let 9, be the Gauss map of f, p the projection
M x 1 1, and G the map (9, P): M x 1 S2 x I, i.e., G(x, t)= (9,(x), t). Let

d(x, t)= det (Jac G)(x, t) (= det (Jac g,)(x)).

G is transverse to all Thom-Boardman singularities (in fact, it is locally stable
by the local version of Theorem V.7.1 of [9]). Its singular set S consists of a fold
surface F (the union of the fold curves of the 9,) and a cusp 1-manifold C
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(consisting of all cusp points of the g). Pick a point (x, t) S and let
L p- (t). Since g, is good, grad (dlL) is nonzero at x, hence the tangent space
of S at (x, t) is not contained in L. Thus p Is is a submersion. The line
K ker (Jac G) at (x, t) lies in L. If (x, t) C, then K is tangent to S, but not to
C. Thus L does not contain the tangent space to C at (x, t). Thus p lC is a local
diffeomorphism. Let T be the unit vector field on I; there is a C vector field X
on M x I such that (Dp)X T and such that X IS is tangent to S and X IC is
tangent to C. The flow b, ofX maps p- (0) onto p- (t), so induces a diffeomor-
phism from M to M sending the singular set of go to that of gt, preserving folds
and cusps.

Finally we prove that z(M-) is the algebraic number (defined below) of
cusps. If the immersion f: M E3 is assumed to have (P2), M- is bounded by
perhaps several smooth closed parabolic curves C. The cusps are the points
along C where the zero principal direction field Z is tangent to C. Note that Z
extends to a line field (in fact a principal direction line field) throughout M-
since M- has no umbilics. Also since C is compact without any planar points,
Z even extends to a collared neighborhood N ofM-. We let Z be this extension
of Z to N. The integral curves ofZ (which are lines of curvature) are tangent to
C precisely at the cusps. From (P2), the angle of transversality ofZ to C has a
nonzero derivative when 0 as we move along C with nonzero velocity. This
implies that at a cusp point p, the integral curve of Z through p locally lies in
just one of M- or M+ N. In these cases p is given the value -1/2 or +1/2
respectively. Now if we "close" the surface M- by identifying (separately) each
of the connected boundary curves C of M- to a point p,, M- becomes a
compact (possibly not connected) surface. Retaining the line field (on M-
in the process, we have a line field Z on with singularities at the points p.
Consulting the figures and theorems in [14, p. 324-332], we see that the index of
Z at the point Pi is one plus the algebraic number of cusps on the boundary
curve Ci. Thus z(M-) Z(Q) # {p} algebraic number of cusps. Note that
our proof establishes the desired formula for each component of M-. As a
corollary, we deduce that the number of cusps on the boundary of each com-
ponent of M- must be even since Z is integer-valued. Moreover, we can predict
the algebraic number of cusps which will result when an immersion having only
(P1) is perturbed slightly so as to have (P2). This is because the Euler character-
istic of each component ofM- does not change under a small perturbation of a
(P1) immersion (use the (P1) version of the homotopy argument used above for
(P2)). We may apply this to the standard torus in E3, or to a torus which has
been sliced in half and then smoothly capped twice to form a surface diffeomor-
phic to a sphere. In the first case, after perturbing, the algebraic number of
cusps will be 0 (e.g., the corrugated torus), while in the second case the alge-
braic number would be 1 (i.e., at least two cusps, as in the "generic" banana).

4. Lines of further inquiry

The program followed in this paper can also be attempted for m dimensional
manifolds M to be immersed in Em+ . The analysis used in this paper will
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continue to work in the case of the Boardman singularities S’, where
09 (1, 1, 0); however, it will not work for the higher corank singularities
(see the remark after Proposition 2.2). For an immersionfof M into Em+k one
has a Gauss map 9 from M into G,k, the Grassman manifold of k-planes in
Ere+k, which has dimension mk. The property of being an immersion (respec-
tively embedding) is generic for C(M, am,k) iff k >_ 2 (respectively k > 3), so
our program is not so interesting (if strictly mimicked) for higher codimension
immersions.
Now we state some open questions. What are necessary and sufficient condi-

tions for a map from M into S2 to be the Gauss map of an immersion ? For
germs of maps, rank 1 is sufficient. Suppose M is the disjoint union ofM/, M-
and C, where M/ and M- are open with common boundary C, itself the
disjoint union of embedded circles. Suppose there are finitely many given
points on C with specified values + 1/2 such that, for each component M* of M-,
7,(M*) equals the sum of the specified values on the boundary of M*. Is there an
immersion with stable Gauss map having C as parabolic set, cusps at the given
points with the given values, and M/ and M- the regions of positive and
negative Gaussian curvature respectively? Such a stable map can be con-
structed according to Eliasberg [2], but we do not know if it can be chosen to be
a Gauss map. One might in addition require the immersion to have given
Gaussian curvature functions on M/ and M-.

Comment. Since the writing of the above we have learned of a paper, still in
the process of revision, of Michael Menn entitled Generic 9eometry. In this
paper, he proves our Theorem 2.3, and examines the singularities which occur
generically in the higher dimensional codimension 1 case. However his
methods are very different and much less elementary than our approach.
Moreover, he does not consider the question of stability or geometric
interpretation.
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