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REPRESENTING HOMOLOGY CLASSES BY
EMBEDDED CIRCLES ON A COMPACT SURFACE

BY
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Introduction

It is well known that a one-dimensional homology class on a torus T2, that
winds around one standard generator m times and the other standard gener-
ator n times can be represented by one embedded circle if and only if m and n are
relatively prime. However, the classification of one dimensional homology
classes that can be represented by an embedded circle on an arbitrary compact
surface has until now been only partially resolved. We define a homology class
in H(M2) to be primitive if the induced class in H(ME)/torsion is the zero
class or is not a nontrivial multiple of any other class. In [6], [7], and [8] it is
shown that primitive classes on orientable surfaces and primitive or twice
primitive classes on nonorientable surfaces are precisely the classes represent-
able by embedded circles.

Although there are algorithms (see [2] and [10])for determining which ele-
ments of the fundamental group /I:I(M2) can be represented by embedded
circles, they are too complicated to deal with the above classification. For
orientable compact surfaces we have developed an explicit algorithm for re-
presenting a primitive class by one embedded circle. When combined with the
Classification Theorem for Oriented Surfaces, this algorithm becomes a useful
tool for studying certain classification problems on surfaces, which we shall
discuss later. We would like to thank the referee for his suggested improve-
ments of the paper. We now outline the algorithm.

Section 1

Let ox, fix, %, ,8o be the standard generators of Hx(Mo, Z)where Mo
denotes a surface of genus 9. Let ci be the standard circle which disconnects M0

between hole and hole + 1.
If 7 f=x mi fli + ni ei, then we will let [rex, n x], [too, no] denote 7. If

7 [rex, n 1] is a primitive class on the torus, then 7 can be represented by an
embedded circle of "constant slope" n x/m . Actually, for our purposes it will be
better to represent 7 [rex, n x] on a torus as follows" First represent 7 by m
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FIGURE

parallel copies of fll and n parallel copies of 1. By a simple homology in a
small neighborhood of each point of intersection, we can represent 7 by one
embedded circle. This method of representing 7 has the geometric advantage of
achieving all the 1 winding of 3; in an arbitrarily small neighborhood of the
standard curve representing 1.
The construction of the algorithm, which we shall soon outline, is based on

the following principle: Given a pair of nonbounding nonhomologous and
nonintersecting Jordan curves on M0, cutting Mo along them produces either
one or two connected surfaces, with a total of four boundary components. Two
surfaces occur only in the case that the sum of the two homology classes is zero,
and so the left sides of the curves can be joined by a path in one of the
components with opposite interaction signs at each end. If there is only one
surface, the left sides of the curves can also be joined by a similar path.
To demonstrate the algorithm on a surface of genus two, we have chosen the

following primitive class as a representative example. Let 3; [h, k], [r, s] be a
primitive class on M2, with (h, k)= m, (r, s)= n, and h >r > 0 where (c, d)
denotes the greatest common divisor of c and d.

Step 1. Represent 3; in the standard way by rn embedded circles r/o,

r/m-1, on the left, and by n embedded circles, 6o, 6,_ 1, on the right.
For example, we can represent [3, 0], [2, 2] as indicated in Figure 2.

FIGURE 2



264 WILLIAM H. MEEKS, III AND JULIE PATRUSKY

Step 2. Take connected sums of the corresponding circles r/i with fit until
there are no more closed circles obstructing the hole on the right.

FIGURE 3

Step 3. Form a tube and take connected sums until there are no more
circles obstructing the hole on the left.

FIGURE 4

Step 4. Now take connected sums by forming a new tube at the lower
center of M2, and then passing through the tube we constructed in Step 3.

FIGURE 5

We now check that after m + n 1 connections we have formed one em-
bedded circle. Let ff refer to the connected sum of the embedded circle r with
other embedded circles.
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Suppose that n=km+r where k>0 and 0<r<m. If 0<i<r and
0 < j < k, then at the jm + + 1 connection, we get the connected sum

i--i # (i /6 6i+m 6 # (j-1)m+i # 3jm+i"

Hence, after km + r connections, every 3i appears in one of the connected sums
o, 1, r/-m-1. At the km + r + 1 connection, we get

# # # ...# # # # #

Since r is a generator for Z,,, at the m + n- 1 connection there is one em-
bedded circle corresponding to 0 # 1 # ""# O,,-1.

Remark. (1) If 7 [h, k], [r, s] is primitive on M2 with r > h > 0, then carry
out the above procedure as faithfully as possible. Note that Step 3 and Step 4
will become mixed together. This method will represent 7 by an embedded
circle.

(2) Let 72 PT, where 7 [h, k], [r, s] is primitive with P > 0, h > 0, r > 0,
m (h, k), and n (r, s). Applying the algorithm described above yields P
embedded circles after P(m + n 1) connections, each circle representing the
class 7. A similar mod arithmetic calculation as above proves this fact.

We now inductively generalize the algorithm A presented above for re-
presenting certain classes on M2 by embedded circles. Let

7 [ml, nl],..., [mo, no

be a primitive class with mi > 0 on the surface

(1) Represent 7 in the standard way by embedded circles around each hole.
(2) Apply parts 2, 3, 4 of the algorithm A to the circles around hole 1 and

hole 2. After (ml, nl)+ (m2, n2)- (ml, nl, m2, n2) connections we have
(ml, nl, m2, n2) circles around the first two holes.

(3) Now apply the algorithm A to the circles around hole 2 and hole 3.
After (m,, n, m2, n2)+ (ma, ha)- (m,, n, m2, n2, ma, ha)connections we are
left with (ml, n 1, m2, n2, ma, ha) circles. Continue applying A to hole 3 and hole
4, hole 4 and hole 5, hole 9 1 and hole 9. Since (m 1, n 1, too, no) 1, we
terminate this procedure with one embedded circle.
When 7 [m l, n 1], [mo, no] is primitive but the mi are not necessarily

positive, slight variations in the connections after step 1 are required to yield a
general algorithm for representing 7. Least there be any uncertainty or ambig-
uity in the general case, we outline the completion of the algorithm. We encour-
age the reader to conceptualize the following in geometric terms so that he may
carry out the algorithm directly.

Let 9:M1 --+ M1 be the order four diffeomorphism of a torus M1 RZ/z2
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induced by the matrix

Let f: M ---’ M be an isotopy of 9 which changes 9 in a neighborhood of the
two fixed points to be the identity function on disc neighborhoods of these
points. The diffeomorphism f: M1 M1 induces a diffeomorphism
f: Mo Mo with (1)f,(,)= fli, (2)f,(fli)= -, and (3)f is the identity out-
side of the region bounded by the curves ci-1 and ci in Figure 1.
By application of appropriate least powers of the different f we get an

f: MM with

7’ =f,(7 [ml, nl], [mo, no])= [hi, kl], [ho, ko]
where hi > 0 whenever m and ni are not both zero. Apply the algorithm to 7’ to
get one embedded circle c. Now, f-1(c) is the circle representing by the
algorithm.
We now consider the case of when M is an oriented compact surface with

boundary.

THEOREM 1. Let M be a compact oriented surface with boundary curves c 1,

c2, c, + oriented as the boundary. Let M be the surface obtained by placin9
disks on each boundary component ofM and let i: M M denote the inclusion
map. A one-dimensional homology class 7 on M can be represented by an em-
bedded circle if and only if i,(7) is a nonzero primitive class or if
7-- +---2= Ki[ci] where K is 0 or 1.

Proof If a homology class 7 on M can be represented by an embedded
circle e, then i,(7) can be represented by an embedded circle. Hence i,(/) is a
primitive class on M. Assume that e does not intersect the boundary of M and
that i,(7)= 0. In this case e disconnects M into two pieces M and M2. If
Cn+l C7_ M2, then there is a natural homology between _+e and = Ki[ci]
where Ki equals 0 or 1. This shows our conditions are necessary. We now prove
they are sufficient.

Suppose that i,(7) is a nonzero primitive class on M. Then by applying the
algorithm i,(7) can be represented by an embedded circle e in M c . Note
that 7 [e] ,".= m[c]. Following the technique in the algorithm we take
the connected sum of e with ml copies of cl. Thus we may assume that m 0.
An inductive argument shows that we can represent 7 by an embedded circle. If

+-,’i= K[ci] with K equal to 0 or 1 then 7 can be directly represented by
an embedded circle. 7-1

Section 2

We now apply the algorithm to give a geometric proof that the diffeomor-
phisms on a surface M0 induce the automorphisms of HI(M, Z) which
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preserve intersection-pairing on homology; equivalently, with respect to the
standard basis of Hx(Mo, Z), the automorphisms induced by the diffeomor-
phisms generate the group So of 29 x 29 integer symplectic matrices.

Generators for So were first found by Clebsch and Gordan in 1866. In 1890,
H. Burkhardt [1] showed that these generators are induced by homeomor-
phisms of Mo. See [5] for further discussion.

THEOREM 2. If L: Hx(mo, Z) Hx(MgZ) preserves intersection-pairin9 on
homology, then L is induced by a diffeomorphism ofMg.

Proof Let 0i, fli denote the standard representatives for the standard gen-
erators , fl of Ht(Mo, Z). Suppose L()= r/ and L(fl,)=

Claim. If there exists a diffeomorphism fk" Mo --" Mo with fk,(r/i) CZ and
fk,(6) fl for all i< k where k < 9, then there exists a diffeomorphism
fk+ x" Mo Mo such that fk+ 1,(qi)-" (Xi and fk+ 1,(6i)= fli for all/< k + 1.

Proof of Claim. First cut M into left- and right-hand pieces N and N2

along the curve Ck-1 in Figure 1 so that

A {ti, flili < k} = N1 and B {i, fill < k} = N2.

Since fk,(r/k)C 0 for all 7 A, the constructive nature of the algorithm
S By theallows us to represent fk,(r/k) by an embedded circle a N2.

Classification Theorem for Oriented Surfaces with Boundary, there is a diffeo-
morphism I" N2 a - N2 k inducing a diffeomorphism 9" N2 N2
interchanging a and k such that 9 I,-= id. Note that 9,(fk,(r/k))= ak.

Since preserved intersection pairing on homology,

p + + +
i=k+l

By Step 1 of the algorithm p can be represented by a system of circles p
P2,..., P with the property that Pl intersects ek in one point and is the only
circle appearing between Ck- and Ck in Figure 1. Application of the algorithm

Sto the circles P l, P yields one embedded circle a2 - N__2suchthat a2
geometri__cally intersects -k in one point. Since N2--(k w ilk)and
N2- (k W a2 are diffeomorphic, after making proper identifications, we
obtain a diffeomorphism h" N2 --* N2 with

h,(k) (Xk, h,(o,(fk,(fk)))= k and h [,2- id,u2.
Extend the diffeomorphisms 9 and h to Mo by the identity on N 1. Now define
fk + 1" Mo Mo by fk + h 9 fk" This proves the claim.

By induction, the claim yields a diffeomorphism f: MoMg such that
f,(r/) (x and f,(6)= i for all i, 1 _< < g. Hence, (f-1), L. 7-1

The next corollary is a new result and its proof follows directly from the
statement and proof of Theorem 2.
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COROLLARY. Suppose 7,, 7k H,(Mo, Z) are rationally independent
classes expressed in vector notation in terms of the standard basis ofH,(Mo, Z).
Then these classes can be represented by pairwise disjoint embedded circles iff
they appear as the first k column vectors ofa 29 x 29 integer symplectic matrix.

Example. If 7,=[1,0], [0,0] and 72=[1,0], [3,0] on M2, then
71 72 0 on homology, but any two embedded circles representing these
classes geometrically intersect.

Section 3

In this section we shall apply the algorithm to generalize a result of Papaky-
riakopoulos. In [9] he proved a special case of the following theorem for
homotopy 3-spheres. It seems that our theorem applied to a homology 3-sphere
of genus 2 should give a counterexample to his group theory conjecture 2 in [9].

Note. We will call a system {Xg, Y[i 1, 2, 9} of circles on a surface N
of genus g canonical if m f= {Xi k..) Y/} is a sphere with 9 holes.

THEOREM 3. Suppose M3 is a homology 3-sphere and T and T’ are solid
g-holed handlebodies giving rise to a Heegard splitting ofM3. IfN c3T c3T’
then there exist two canonical systems

{Xi, Y/li 1,2,...,9} and {XI, Y’il 1,2,...,9}

for N with the following properties.

(i) Xi is contractible in T.
(ii) XI is contractible in T’.
(iii) Xi is homologous to Y’i.
(iv) Yi is homologous to X’i.

For simplicity we will give the proof of the above theorem for the case when
9 2. The proof of the general case can be carried out in an inductive manner.

LEMMA. Let and 2 be independent homology classes on N c3T which are
zero homology classes on T. Then 1 and 2 can be represented by disjoint
embedded circles contractible in T ifand only if), and 72 expressed in terms ofthe
usual basis for N appear as the first two columns of a 4 x 4 symplectic matrix.

Proof Let al, a2, ill, fiE be the generators of the usual homology basis for
N t3T. Since the hmology of T is generated by fll and f12, 71 can be repre-
sented by k copies of a and copies of a2. Since the ag bound disks and the
connected sum of circles bounding disks again bound disks, the algorithm
demonstrates that 71 can be represented by a circle 61 bounding a disk in T.
For convenience, assume that 61 a on N. Since 2 0 on T and ), and 2

appear as the first two columns of a symplectic matrix, then 72 is homologous
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to _+ (k + 2). By applying the algorithm to 72, we can easily represent 72 by a
circle ’2 which is contractible in T with 61 and 62 free of intersections.

Proof of Theorem 3. By Theorem (32.3)in [9], there exists a canonical
system {X 1, X2, Y1, Y2} for N with X/contractible in T and Yi homologous to
zero in r’. By the corollary to Theorem 2, we can assume that [Y] and [Y2]
appear as the first 2 columns of a symplectic matrix for N considered to be
bounding T’. By the above Lemma [Y1] and [Y2] can be represented by em-
bedded circles X’ and X which are contractible in T’. By arguments similar to
the proof of Theorem 2, X and Xz can be completed to give a canonical basis
X, X, Y’, Y of N with Y’I homologous to X1 and Y’2 homologous to X’.
This completes the proof of our theorem.
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