REPRESENTING HOMOLOGY CLASSES BY EMBEDDED CIRCLES ON A COMPACT SURFACE

BY

William H. Meeks, III ${ }^{1}$ and Julie Patrusky

Introduction

It is well known that a one-dimensional homology class on a torus T^{2}, that winds around one standard generator m times and the other standard generator n times can be represented by one embedded circle if and only if m and n are relatively prime. However, the classification of one dimensional homology classes that can be represented by an embedded circle on an arbitrary compact surface has until now been only partially resolved. We define a homology class in $H_{1}\left(M^{2}\right)$ to be primitive if the induced class in $H_{1}\left(M^{2}\right) /$ torsion is the zero class or is not a nontrivial multiple of any other class. In [6], [7], and [8] it is shown that primitive classes on orientable surfaces and primitive or twice primitive classes on nonorientable surfaces are precisely the classes representable by embedded circles.

Although there are algorithms (see [2] and [10]) for determining which elements of the fundamental group $\pi_{1}\left(M^{2}\right)$ can be represented by embedded circles, they are too complicated to deal with the above classification. For orientable compact surfaces we have developed an explicit algorithm for representing a primitive class by one embedded circle. When combined with the Classification Theorem for Oriented Surfaces, this algorithm becomes a useful tool for studying certain classification problems on surfaces, which we shall discuss later. We would like to thank the referee for his suggested improvements of the paper. We now outline the algorithm.

Section 1

Let $\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g}$ be the standard generators of $H_{1}\left(M_{g}, Z\right)$ where M_{g} denotes a surface of genus g. Let c_{i} be the standard circle which disconnects M_{g} between hole i and hole $i+1$.
If $\gamma=\sum_{i=1}^{g} m_{i} \beta_{i}+n_{i} \alpha_{i}$, then we will let [$\left.m_{1}, n_{1}\right], \ldots,\left[m_{g}, n_{g}\right]$ denote γ. If $\gamma=\left[m_{1}, n_{1}\right]$ is a primitive class on the torus, then γ can be represented by an embedded circle of "constant slope" n_{1} / m_{1}. Actually, for our purposes it will be better to represent $\gamma=\left[m_{1}, n_{1}\right]$ on a torus as follows: First represent γ by m_{1}

Received September 23, 1976.
${ }^{1}$ This work was supported in part by a National Science Foundation grant.

Figure 1
parallel copies of β_{1} and n_{1} parallel copies of α_{1}. By a simple homology in a small neighborhood of each point of intersection, we can represent γ by one embedded circle. This method of representing γ has the geometric advantage of achieving all the α_{1} winding of γ in an arbitrarily small neighborhood of the standard curve representing α_{1}.

The construction of the algorithm, which we shall soon outline, is based on the following principle: Given a pair of nonbounding nonhomologous and nonintersecting Jordan curves on M_{g}, cutting M_{g} along them produces either one or two connected surfaces, with a total of four boundary components. Two surfaces occur only in the case that the sum of the two homology classes is zero, and so the left sides of the curves can be joined by a path in one of the components with opposite interaction signs at each end. If there is only one surface, the left sides of the curves can also be joined by a similar path.

To demonstrate the algorithm on a surface of genus two, we have chosen the following primitive class as a representative example. Let $\gamma=[h, k],[r, s]$ be a primitive class on M_{2}, with $(h, k)=m,(r, s)=n$, and $h>r>0$ where (c, d) denotes the greatest common divisor of c and d.

Step 1. Represent γ in the standard way by m embedded circles η_{0}, \ldots, η_{m-1}, on the left, and by n embedded circles, $\delta_{0}, \ldots, \delta_{n-1}$, on the right.

For example, we can represent [3, 0], [2, 2] as indicated in Figure 2.

Figure 2

Step 2. Take connected sums of the corresponding circles η_{i} with δ_{j} until there are no more closed circles obstructing the hole on the right.

Figure 3

Step 3. Form a tube and take connected sums until there are no more circles obstructing the hole on the left.

Figure 4

Step 4. Now take connected sums by forming a new tube at the lower center of M_{2}, and then passing through the tube we constructed in Step 3.

Figure 5
We now check that after $m+n-1$ connections we have formed one embedded circle. Let $\bar{\sigma}$ refer to the connected sum of the embedded circle σ with other embedded circles.

Suppose that $n=k m+r$ where $k>0$ and $0<r<m$. If $0 \leq i<r$ and $0 \leq j \leq k$, then at the $j m+i+1$ connection, we get the connected sum

$$
\bar{\eta}_{i}=\eta_{i} \# \delta_{i} \# \delta_{i+m} \# \cdots \# \delta_{(j-1) m+i} \# \delta_{j m+i}
$$

Hence, after $k m+r$ connections, every δ_{i} appears in one of the connected sums $\bar{\eta}_{0}, \bar{\eta}_{1}, \ldots, \bar{\eta}_{m-1}$. At the $k m+r+1$ connection, we get
$\bar{\eta}_{r} \# \bar{\eta}_{0}$

$$
=\left(\eta_{r} \# \delta_{r} \# \delta_{r+m} \# \cdots \# \delta_{(k-1) m+r}\right) \#\left(\delta_{0} \# \delta_{m} \# \cdots \# \delta_{k m} \# \eta_{0}\right)
$$

Since r is a generator for Z_{m}, at the $m+n-1$ connection there is one embedded circle corresponding to $\bar{\eta}_{0} \# \bar{\eta}_{1} \# \cdots \# \bar{\eta}_{m-1}$.

Remark. (1) If $\gamma=[h, k],[r, s]$ is primitive on M_{2} with $r \geq h>0$, then carry out the above procedure as faithfully as possible. Note that Step 3 and Step 4 will become mixed together. This method will represent γ by an embedded circle.
(2) Let $\gamma_{2}=P \gamma$, where $\gamma=[h, k],[r, s]$ is primitive with $P>0, h>0, r>0$, $m=(h, k)$, and $n=(r, s)$. Applying the algorithm described above yields P embedded circles after $P(m+n-1)$ connections, each circle representing the class γ. A similar mod arithmetic calculation as above proves this fact.

We now inductively generalize the algorithm A presented above for representing certain classes on M_{2} by embedded circles. Let

$$
\gamma=\left[m_{1}, n_{1}\right], \ldots,\left[m_{g}, n_{g}\right]
$$

be a primitive class with $m_{i}>0$ on the surface M_{g}.
(1) Represent γ in the standard way by embedded circles around each hole.
(2) Apply parts 2, 3, 4 of the algorithm A to the circles around hole 1 and hole 2. After $\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)-\left(m_{1}, n_{1}, m_{2}, n_{2}\right)$ connections we have ($m_{1}, n_{1}, m_{2}, n_{2}$) circles around the first two holes.
(3) Now apply the algorithm A to the circles around hole 2 and hole 3. After $\left(m_{1}, n_{1}, m_{2}, n_{2}\right)+\left(m_{3}, n_{3}\right)-\left(m_{1}, n_{1}, m_{2}, n_{2}, m_{3}, n_{3}\right)$ connections we are left with ($m_{1}, n_{1}, m_{2}, n_{2}, m_{3}, n_{3}$) circles. Continue applying A to hole 3 and hole 4 , hole 4 and hole $5, \ldots$, hole $g-1$ and hole g. Since $\left(m_{1}, n_{1}, \ldots, m_{g}, n_{g}\right)=1$, we terminate this procedure with one embedded circle.

When $\gamma=\left[m_{1}, n_{1}\right], \ldots,\left[m_{g}, n_{g}\right]$ is primitive but the m_{i} are not necessarily positive, slight variations in the connections after step 1 are required to yield a general algorithm for representing γ. Least there be any uncertainty or ambiguity in the general case, we outline the completion of the algorithm. We encourage the reader to conceptualize the following in geometric terms so that he may carry out the algorithm directly.

Let $g: M_{1} \rightarrow M_{1}$ be the order four diffeomorphism of a torus $M_{1}=\mathbf{R}^{2} / Z^{2}$
induced by the matrix

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Let $f: M_{1} \rightarrow M_{1}$ be an isotopy of g which changes g in a neighborhood of the two fixed points to be the identity function on disc neighborhoods of these points. The diffeomorphism $f: M_{1} \rightarrow M_{1}$ induces a diffeomorphism $f_{i}: M_{g} \rightarrow M_{g}$ with (1) $f_{i *}\left(\alpha_{i}\right)=\beta_{i},(2) f_{i *}\left(\beta_{i}\right)=-\alpha_{i}$ and (3) f_{i} is the identity outside of the region bounded by the curves c_{i-1} and c_{i} in Figure 1.

By application of appropriate least powers of the different f_{i} we get an $f: M \rightarrow M$ with

$$
\gamma^{\prime}=f_{*}\left(\gamma=\left[m_{1}, n_{1}\right], \ldots,\left[m_{g}, n_{g}\right]\right)=\left[h_{1}, k_{1}\right], \ldots,\left[h_{g}, k_{g}\right]
$$

where $h_{i}>0$ whenever m_{i} and n_{i} are not both zero. Apply the algorithm to γ^{\prime} to get one embedded circle c. Now, $f^{-1}(c)$ is the circle representing γ by the algorithm.

We now consider the case of when M is an oriented compact surface with boundary.

Theorem 1. Let M be a compact oriented surface with boundary curves c_{1}, c_{2}, \ldots, c_{n+1} oriented as the boundary. Let \bar{M} be the surface obtained by placing disks on each boundary component of M and let $i: M \rightarrow \bar{M}$ denote the inclusion map. A one-dimensional homology class γ on M can be represented by an embedded circle if and only if $i_{*}(\gamma)$ is a nonzero primitive class or if $\gamma= \pm \sum_{i=1}^{n} K_{i}\left[c_{i}\right]$ where K_{i} is 0 or 1.

Proof. If a homology class γ on M can be represented by an embedded circle α, then $i_{*}(\gamma)$ can be represented by an embedded circle. Hence $i_{*}(\gamma)$ is a primitive class on \bar{M}. Assume that α does not intersect the boundary of M and that $i_{*}(\gamma)=0$. In this case α disconnects M into two pieces M_{1} and M_{2}. If $c_{n+1} \subset M_{2}$, then there is a natural homology between $\pm \alpha$ and $\sum_{i=1}^{n} K_{i}\left[c_{i}\right]$ where K_{i} equals 0 or 1 . This shows our conditions are necessary. We now prove they are sufficient.

Suppose that $i_{*}(\gamma)$ is a nonzero primitive class on M. Then by applying the algorithm $i_{*}(\gamma)$ can be represented by an embedded circle α in $M \subset \bar{M}$. Note that $\gamma-[\alpha]=\sum_{i=1}^{n} m_{i}\left[c_{i}\right]$. Following the technique in the algorithm we take the connected sum of α with m_{1} copies of c_{1}. Thus we may assume that $m_{1}=0$. An inductive argument shows that we can represent γ by an embedded circle. If $\gamma= \pm \sum_{i=1}^{n} K_{i}\left[c_{i}\right]$ with K_{i} equal to 0 or 1 then γ can be directly represented by an embedded circle.

Section 2

We now apply the algorithm to give a geometric proof that the diffeomorphisms on a surface M_{g} induce the automorphisms of $H_{1}\left(M_{g}, Z\right)$ which
preserve intersection-pairing on homology; equivalently, with respect to the standard basis of $H_{1}\left(M_{g}, Z\right)$, the automorphisms induced by the diffeomorphisms generate the group S_{g} of $2 g \times 2 g$ integer symplectic matrices.

Generators for S_{g} were first found by Clebsch and Gordan in 1866. In 1890, H. Burkhardt [1] showed that these generators are induced by homeomorphisms of M_{g}. See [5] for further discussion.

Theorem 2. If $L: H_{1}\left(M_{g}, Z\right) \rightarrow H_{1}\left(M_{g} Z\right)$ preserves intersection-pairing on homology, then L is induced by a diffeomorphism of M_{g}.

Proof. Let $\overline{\alpha_{i}}, \overline{\beta_{i}}$ denote the standard representatives for the standard generators α_{i}, β_{i} of $H_{1}\left(M_{g}, Z\right)$. Suppose $L\left(\alpha_{i}\right)=\eta_{i}$ and $L\left(\beta_{i}\right)=\delta_{i}$.

Claim. If there exists a diffeomorphism $f_{k}: M_{g} \rightarrow M_{g}$ with $f_{k *}\left(\eta_{i}\right)=\alpha_{i}$ and $f_{k *}\left(\delta_{i}\right)=\beta_{i}$ for all $i<k$ where $k \leq g$, then there exists a diffeomorphism $f_{k+1}: M_{g} \rightarrow M_{g}$ such that $f_{k+1 *}\left(\eta_{i}\right)=\alpha_{i}$ and $f_{k+1 *}\left(\delta_{i}\right)=\beta_{i}$ for all $i<k+1$.

Proof of Claim. First cut M into left- and right-hand pieces N_{1} and N_{2} along the curve c_{k-1} in Figure 1 so that

$$
A=\left\{\overline{\alpha_{i}}, \overline{\beta_{i}} \mid i<k\right\} \subset N_{1} \quad \text { and } \quad B=\left\{\overline{\alpha_{i}}, \overline{\beta_{i}} \mid i<k\right\} \subset N_{2} .
$$

Since $f_{k *}\left(\eta_{k}\right) \cap \gamma=0$ for all $\gamma \in A$, the constructive nature of the algorithm allows us to represent $f_{k *}\left(\eta_{k}\right)$ by an embedded circle $\sigma_{1}: S^{1} \rightarrow N_{2}$. By the Classification Theorem for Oriented Surfaces with Boundary, there is a diffeomorphism $I: N_{2}-\sigma_{1} \rightarrow N_{2}-\bar{\alpha}_{k}$ inducing a diffeomorphism $g: N_{2} \rightarrow N_{2}$ interchanging σ_{1} and $\bar{\alpha}_{k}$ such that $\left.g\right|_{\partial N_{2}}=\operatorname{id}_{\partial N_{2}}$. Note that $g_{*}\left(f_{k *}\left(\eta_{k}\right)\right)=\alpha_{k}$.

Since g preserved intersection pairing on homology,

$$
\rho=g_{*}\left(f_{k *}\left(\delta_{k}\right)\right)=r \alpha_{k}+\beta_{k}+\sum_{i=k+1}^{g}\left(m_{i} \alpha_{i}+n_{i} \beta_{i}\right)
$$

By Step 1 of the algorithm ρ can be represented by a system of circles ρ_{1}, $\rho_{2}, \ldots, \rho_{s}$ with the property that ρ_{1} intersects $\overline{\alpha_{k}}$ in one point and is the only circle appearing between c_{k-1} and c_{k} in Figure 1. Application of the algorithm to the circles $\rho_{1}, \ldots, \rho_{s}$ yields one embedded circle $\sigma_{2}: S^{1} \rightarrow N_{2}$ such that σ_{2} geometrically intersects $\bar{\alpha}_{k}$ in one point. Since $N_{2}-\left(\overline{\alpha_{k}} \cup \overline{\beta_{k}}\right)$ and $\left.N_{2}-\overline{\left(\alpha_{k}\right.} \cup \overline{\sigma_{2}}\right)$ are diffeomorphic, after making proper identifications, we obtain a diffeomorphism $h: N_{2} \rightarrow N_{2}$ with

$$
h_{*}\left(\alpha_{k}\right)=\alpha_{k}, \quad h_{*}\left(g_{*}\left(f_{k *}\left(\delta_{k}\right)\right)\right)=\beta_{k} \quad \text { and }\left.\quad h\right|_{i N_{2}}=\operatorname{id}_{i N_{2}} .
$$

Extend the diffeomorphisms g and h to M_{g} by the identity on N_{1}. Now define $f_{k+1}: M_{g} \rightarrow M_{g}$ by $f_{k+1}=h \circ g \circ f_{k}$. This proves the claim.

By induction, the claim yields a diffeomorphism $f: M_{g} \rightarrow M_{g}$ such that $f_{*}\left(\eta_{i}\right)=\alpha_{i}$ and $f_{*}\left(\delta_{i}\right)=\beta_{i}$ for all $i, 1 \leq i \leq g$. Hence, $\left(f^{-1}\right)_{*}=L$.

The next corollary is a new result and its proof follows directly from the statement and proof of Theorem 2.

Corollary. Suppose $\gamma_{1}, \ldots, \gamma_{k} \in H_{1}\left(M_{g}, Z\right)$ are rationally independent classes expressed in vector notation in terms of the standard basis of $H_{1}\left(M_{g}, Z\right)$. Then these classes can be represented by pairwise disjoint embedded circles iff they appear as the first k column vectors of a $2 g \times 2 g$ integer symplectic matrix.

Example. If $\gamma_{1}=[1,0],[0,0]$ and $\gamma_{2}=[1,0],[3,0]$ on M_{2}, then $\gamma_{1} \cap \gamma_{2}=0$ on homology, but any two embedded circles representing these classes geometrically intersect.

Section 3

In this section we shall apply the algorithm to generalize a result of Papakyriakopoulos. In [9] he proved a special case of the following theorem for homotopy 3-spheres. It seems that our theorem applied to a homology 3-sphere of genus 2 should give a counterexample to his group theory conjecture 2 in [9].

Note. We will call a system $\left\{X_{i}, Y_{i} \mid i=1,2, \ldots, g\right\}$ of circles on a surface N of genus g canonical if $M-\bigcup_{i=1}^{g}\left\{X_{i} \cup Y_{i}\right\}$ is a sphere with g holes.

Theorem 3. Suppose M^{3} is a homology 3-sphere and T and T^{\prime} are solid g-holed handlebodies giving rise to a Heegard splitting of M^{3}. If $N=\partial T=\partial T^{\prime}$ then there exist two canonical systems

$$
\left\{X_{i}, Y_{i} \mid i=1,2, \ldots, g\right\} \quad \text { and } \quad\left\{X_{i}^{\prime}, Y_{i}^{\prime} \mid i=1,2, \ldots, g\right\}
$$

for N with the following properties.
(i) X_{i} is contractible in T.
(ii) X_{i}^{\prime} is contractible in T^{\prime}.
(iii) X_{i} is homologous to Y_{i}^{\prime}.
(iv) Y_{i} is homologous to X_{i}^{\prime}.

For simplicity we will give the proof of the above theorem for the case when $g=2$. The proof of the general case can be carried out in an inductive manner.

Lemma. Let γ_{1} and γ_{2} be independent homology classes on $N=\partial T$ which are zero homology classes on T. Then γ_{1} and γ_{2} can be represented by disjoint embedded circles contractible in T if and only if γ_{1} and γ_{2} expressed in terms of the usual basis for N appear as the first two columns of a 4×4 symplectic matrix.

Proof. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be the generators of the usual homology basis for $N=\partial T$. Since the homology of T is generated by β_{1} and β_{2}, γ_{1} can be represented by k copies of α_{1} and l copies of α_{2}. Since the α_{i} bound disks and the connected sum of circles bounding disks again bound disks, the algorithm demonstrates that γ_{1} can be represented by a circle δ_{1} bounding a disk in T.

For convenience, assume that $\delta_{1}=\alpha_{1}$ on N. Since $\gamma_{2}=0$ on T and γ_{1} and γ_{2} appear as the first two columns of a symplectic matrix, then γ_{2} is homologous
to $\pm\left(k \alpha_{1}+\alpha_{2}\right)$. By applying the algorithm to γ_{2}, we can easily represent γ_{2} by a circle δ_{2} which is contractible in T with δ_{1} and δ_{2} free of intersections.

Proof of Theorem 3. By Theorem (32.3) in [9], there exists a canonical system $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}\right\}$ for N with X_{i} contractible in T and Y_{i} homologous to zero in T^{\prime}. By the corollary to Theorem 2 , we can assume that $\left[Y_{1}\right]$ and $\left[Y_{2}\right]$ appear as the first 2 columns of a symplectic matrix for N considered to be bounding T^{\prime}. By the above Lemma [Y_{1}] and $\left[Y_{2}\right]$ can be represented by embedded circles X_{1}^{\prime} and X_{2}^{\prime} which are contractible in T^{\prime}. By arguments similar to the proof of Theorem 2, X_{1}^{\prime} and X_{2}^{\prime} can be completed to give a canonical basis $X_{1}^{\prime}, X_{2}^{\prime}, Y_{1}^{\prime}, Y_{2}^{\prime}$ of N with Y_{1}^{\prime} homologous to X_{1} and Y_{2}^{\prime} homologous to X_{1}^{\prime}. This completes the proof of our theorem.

References

1. H. Burkhardt, Grundzüge einer allgemeinen Systematik der hyperelliptischen Funktionen erster Ordnung, Math. Ann., vol. 35 (1890), pp. 198-296.
2. D. R. J. Chillingworth, Winding numbers on surfaces, II, Math. Ann., vol. 199 (1972), pp. 131-153.
3. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math., vol. 69 (1956), pp. 135-206.
4. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math., vol. 76 (1962), pp. 531-540.
5. W. Magnus, et al., Combinatorial group theory, Interscience, N.Y., 1966, pp. 172-179.
6. W. Meeks and J. Patrusky, Representing codimension-one homology classes by embedded submanifolds, Pacific J. Math., vol. 72 (1977), to appear.
7. W. Meeks, Representing codimension-one homology classes on compact nonorientable manifolds by submanifolds, preprint.
8. M. Meyerson, Representing homology classes of closed orientable surfaces, Proc. Amer. Math. Soc.,
9. C. D. Papakyriakopoulos, A reduction of the Poincare conjecture to group theoretic conjectures, Ann. of Math., vol. 77 (1963), pp. 250-305.
10. B. L. Reinhart, Algorithms for Jordan curves on compact surfaces, Ann. of Math., vol. 75 (1962), pp. 209-222.

University of California
Los Angeles, California

