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ON THE PRIMITIVE COHOMOLOGY
OF SUBMANIFOLDS

BY

GERALD LEONARD GORDON

1. Introduction

In this article, we study certain facts about the primitive cohomology of
compact submanifolds of compact Kihler manifolds. Specifically, let i" X Y
be the inclusion, where X is a compact submanifold of complex codimension q
in Y, which is a compact Kihler manifold. Let PP(X) and PP(Y) denote the
primitive cohomology of X and Y, respectively, with respect to some fixed
K/hler metric on Y. Let 7 denote the projection of cohomology onto the
primitive part. Then we shall show that

ni*HP(Y) c [RHp* 2q- (y X) PP(X)]
[i*HP(X) PP(X)] IrRHp+ 2q-t(y_ X)= O,

where R is the Leray-Norguet residue operator. Here

gHp+ 2q- (y X) c PP(X) and i*HP(Y) PP(X)
mean primitive p-forms which are residues and restrictions, respectively. If
n dimc X, then we shall show that

pn(x ri,Hn(y) @ [RH+2- (y X) c P(X)]
[i*H(Y) c P(Y)] @ RHn+2q- (Y- X),

and each summand is nondegenerate with respect to cup product, cf. (2.4)
below for an example.

In homology if we let Fp(X)= nomc (PP(X), C) Hp(X)and 0 be the
projection of/ (X) onto Fp (X), then the above result states that

Fp(X) [ker i, c Fp(X)] + OIHp+2q(Y)
0 ker i, + [IHp+ 2q(Y) c Fp(Y)],

where I is transverse intersection; and, when p n, the sums are direct. This
was proven for n 1 and 2 by the author in [6].

In Chapter 3 we give some consequences of these results and indicate their
application in studying the monodromy of compact K/ihler manifolds.
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This paper was motivated by the author’s attempt [7] to find a "nontranscen-
dental" proof of the local invariant cycle problem, cf. Griffiths [10, p. 249]; also
see Clemens [1] and Steenbrink [14]. These decompositions and the degeneracy
of a certain spectral sequence are the essential facts from Kihler geometry that
one needs to solve the problem. In Section 4, analogous results concerning this
decomposition for schemes are conjectured to be true.

In this article, all homology and cohomology will be with coefficients in C.
When we refer to cohomology classes as forms, we shall always mean the
unique harmonic representative in the class. Finally, we shall identify Hp(X)
Homc (HP(X), C) with the duality given by integration: : co --, r co. Thus, for
0 =p o9 HP(X), we shall mean Horn (o9) Hp(X) to be the unique homology
class which has period one on o), and zero periods on the orthogonal comple-
ment. Since Hom is self-dual, we shall also speak of Hom (7) for H(X).

Finally, the author would like to thank the referee for suggesting the present
proofs in Chapter 2, which are a simpler exposition than our original proofs.

2. Main results

2.1. Let i’X Y be the inclusion of a compact Kg.hler submanifold of
complex dimension n into a compact K/ihler manifold of complex dimension
n + q. Then choose a K/ihler metric on Y which gives a Hodge decomposition
of the cohomology of Y and X. Then for p < n, let r: HP(X) P’(X) be the
projective onto the primitive part, i.e., nv(x) (l) o UxP"- 2J(x), where Lx is
the Hodge operator on X. Let P"(Y) denote the primitive cohomology of Y.

2.1.1. DEFINITION. We say s Hv(X) is finite iff if co is a harmonic form
such that r o) 4: 0, then rico 4: 0. Let F,(X) denote the finite classes.
That is to say, if H"(X)- Homc (Hp(X), C)= Hp(X)* considered as dual

vector spaces via integration, co" H,(X) C by co(V)= co, then is finite iff

* P(X).
Equivalently, is finite iff 7 fx 0 where fix is the Kg.hler form and

denotes cap product.
IfX is a projective algebraic manifold, then 7 is finite iff /has a representative

in the affine part of X, i.e., finite part of X.
Let 0: Hp(X)-, Fp(X) be the projection.

2.2. THEOREM (2.2.1)
rci*HP(Y) c [RHp+ 2q- x(y X) PP(X)]

[i*HP(Y) PP(X)] nRHp+2q- x(y_ X)= O,

where R is the Leray-Norguet residue operator.

(2.2.2)
P"(X) zi*H"(Y) [RH"+ 2q- l(y X) P"(X)]

[i*H"(Y) P"(X)] O) ,RH"+ 2q- l(y X)
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and each summand is nondegenerate with respect to cup product.

(2.2.3)
Fp(X) [ker i, cn F,(X)] + OIH+ 2(Y)

0[ker i, cn H(X)] + [IH,+ 2(Y) cn F(X)],
where I" Hp+2(Y) H,(X) is 9iven by transverse intersection.

(2.2.4) lfp n, the sums in (2.2.3) are direct, and each summand is nondeoen-
crate with respect to the intersection pairing.

Proof of (2.2.1).

2.3.1. If co i’Co and rl g(l) with co H(X) and q H2"-p(X), then
Ixco ^ r/=0.

This follows because if TX is a tubular neighborhood ofX in Y and zX is its
boundary, then

’X "X "Y-TX

The last equality follows from Stokes’ Theorem, while the first equality is the
fundamental identity involving the residue operator.

2.3.2. LEMMA.

Lx(i*H(Y)) c i*Hp+2(Y) and LxRH+- X(y_ X)c RHp+2+ l(y_ X).

Proof of I,emma 2.3.2. The first part follows because i*Lr Lx, while the
second follows from the representation of H*(Y- X) by forms of the type
ck ^ Kx + where b and r/are C-forms on Y and Kx is the kernel associated
to X, cf., Poly [13]. Then R(ck ^ Kx+ )= i*ck. Hence, if
co R(ck A Kx + rl), then Lxco R((Lrdp) ^ Kx + Lrrl). This concludes the
proof of Lemma 2.3.2.

Thus, suppose

co i*H(Y) c [RH+2- l(y_ X) m PP(X)].
Then, 09 + Lx dp i*HP(Y), for some q. Since R is a real operator, we also have
that L"x- P(9 RH2" / 2-- l(y X), by (2.3.2). Then by (2.3.1),

0 (09 / Lxqb)/ L"x-P6)= co / L"x-’Co,
"X ’X

since Lxck ^ Lnx-P L"x-p+ lc / b 0 as c 6 PP(X) and dimc X n. But
by Weil [16, p. 77], for co 6 PP(X), c x co /x Lc- Pc > 0 for some nonzero
constant %. Thus, this is a contradiction, unless co 0.
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A similar proof works for o) [i*HP(Y) PP(X)] rcRHp+ 2q-l(y_ X),
which completes the proof of (2.2.1).

Proof of (2.2.2).

2.3.3. LEMMA. IfCO HP(X)and x e2 / rl Ofor all rl i*H2"-p(x), then
09 e RHp+ 2q-l(y_ X).

Proof of Lemma 2.3.3. Thus, we assume

0= o / i*=
X Dx)(i*fl)

for all HZn-P(Y), and where Dx is the Poincare’ duality mapping
HZ"-P(X) - Hp(X). We also have the commutative diagram

H (X)

H2,-,(y)
where I is transverse intersection and D is Poincare’ duality on Y. Hence
0 , for all e H2"-P(Y), i.e., m has zero periods on IHp+ 2(Y). Thus,
0 Hom ecoker I. But the vector space transpose of I is the Gysin map-
ping G. Hence G 0. But from the exact sequence

H"+- ’(Y X) H"(X) H"+ "(Y),
we get that e RHp+2-(y_ X). This concludes the proof of Lemma 2.3.3.

Thus, suppose toe P"(X) and xCO / r/=0 for all r/e ra*H"(Y). If
2 i*H"(Y), then 2 2 + Lx for some . Then Ix 2 Ix Lx by
the hypothesis on . But a Lx Lxw a 0, since is primitive. Thus,
by Lemma 2.3.3, this completes the proof of the first part of (2.2.2).
To prove the second decomposition, it suffices to show that if m e H(X) and

Ix m q 0 for all q e RH2n-p+2q-I(Y X), then e i*Hv(Y). This is
proven by a similar argument to (2.3.3) using the commutative diagram

Hz._.(X) O Hp(X)

H2n-p+ .-x(y X) Hp Y, X)

where Oy,x is the Poincare’-Lefschetz duality isomorphism.

Proof of(2.2.3) and (2.2.4). This is just a reformulation of the above results:
nimagei* c[kerGcP(X)]=0 if and only if cokeri* cPe(X)+
n coimage G

_
PP(X). But the transpose of G is I. Similarly for the other

decomposition.
This completes the proof of Theorem 2.2.
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2.4. We note that the sum in (2.2.3) need not be direct for p < n.
Equivalently,

rci,pp(y) [RHP+ 2q-(y_ X) PP(X)] PP(X).

For let T CP 3 be a torus and let a" Y CP 3 be the monoidal transform with
center T. Let X a-a(T). Then by S.G.A. 5(vii),

Ha(Y) O, Ha(X) C C - Ha(T) and i,’H3(X)H3(Y).

Then ker (i, H(X)) Ha(X) and one easily shows that

image {I" H3(Y) Ha(X)} Ha(X).

Let W Y CP and V X x CPa. Then b3(V 4 and b3(W 2 by the
Kfinneth formula. The generators of H3(V) can be given by aa, 2, fla, and f12
where and fl correspond to a basis of H3(X). Then ifa and fl are generators
of Ha(X)_ Ha(V), then 2 and f12 will correspond to x h and flx h where h
is a generator of/-/2(Cpa). The cup product for this basis will then have as
matrix (aij), where aa, a32 1, a,a a23 1 and the rest of the aij are
zero. Then Lv(o)= ea + (Z2 and Lv(fl)= fix + ]2, SO that a basis of the prim-
itive cohomology can be given by e 02 and fix f12.
Then e and fla will generate i*H3(W) and one computes that

RH4(W V) iH3(W). One can also see this equality by passing to homology
and showing that I(i,’)= and I(i,fl’)= fl (’ =Hom ,). Thus, p3(V) is
generated by zta and nX (01 1/2(a 2) + --X2(a + 2)) and
RH4 W V) p3(V) 0.

2.5. Theorem 2.2 is false for Y noncompact K/ihler. For let

V {x3 + y3 + Z3 0} C3

and let t be the monoidal transform in C3 with center the origin. Let Y be the
proper transform of V and X re-a(0) Y. Then X is a torus and i" X Y
induces an injection of Ha(X)into Ha(Y). But H3(Y)= 0. However, if we
compactify Y to I7 so that I7- Y X is also a torus, then we have that
I" H3(]7) Ha(X). In fact, if ix" Xa c I7, then (ia),Iay i,Iy for all
e H3(I7). This phenomenon is discussed below in (3.3.3).

2.6. In [7] we will actually need a slightly stronger version of Theorem 2.2.
Suppose that X (j 1, k) is a submanifold of complex codimension q in ,
a compact K/ihler manifold of complex dimension n + q. Furthermore, sup-
pose that the X are in general position so that X Jk= X is a subvariety
having normal crossings. Let i" X Y and j" X Y denote the inclusions.
Then we are going to prove a result analogous to Theorem 2.2 for X.

So, if we compute the cohomology of X using the Maier-Vietoris sequence,



222 GERALD LEONARD GORDON

we find that H’(X) ,4’ O) B’ where A’ c )j H(X) and B comes from the
relative oeyeles, i.e.,

p

s=l il <’"<is+

Let : A = P(X) be the restriction to A of the projection mapping
: H(X) P(X). We extend to H(X) by having Bp ker .

2.6.1. DEFINITION. PP(X)= Ap is a primitive p-form of X. F(X)=
Home (P(X), C)is a finite p-cycle of X.

Let 0: H(X) F(X) be the projection.
Thus, P(X) H(X) ifd only if ,, , where 0 , P(X,)

and I {1,..., k).
In Gordon [4, Proposition 2.13], it is shown that there is an exact sequence

H+2q(Y) He(X)a H+2q_,(Y- X)
where I is geometric intersection and z is the tube over cycles map, i.e., locally
the pruct with the normal sphere. In [4, Corollary 2.8], it is shown that
Hp(X)a f21 H,_+,(,) and that

k

H,tx) H,(X) H,(,) H,(X).
j=l

In fact,

H,(,)a ((V,, V,)[V H,(X) and , X2 X, for all/ j}.

Also, see Gordon [5], especially Section 4.
If we consider the Leray spectral sequence of the inclusion map of

Y X Y, then as Y is compact Khler, this spectral sequence degenerates at
E2q+ , i.e., E’+ m E, cf. Deligne [2]; see also Delie, et al. [3]. Then in
Gordon [8], degeneration is shown to be equivalent to the fact that

I(H,+ (Y)) H,(,).
In [8, Lemma 2.4] it is shown that this fact is essentially equivalent to the fact
that B image i* 0. This last fact is a consequence of the principle of the 2
types, cf., [3]. Thus,

In+ 2q(Y) Hp(Xj),
so that OIHe+2q(Y) makes sense.

In cohomology, in Gordon [4, Chapter 5], it is shown that one has the
following exact sequence (which is the vector space dual of the above sequence
in homology):

H, - ’(Y x) H"(X) H"*(Y)
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where G is "essentially" the Gysin map, and R is the residue operator. Also
p+l k

HP(X)a= ( He-’+x(rs)a and He(l71x)a c ( He(Xj).
s=l j=l

Then, He(X)a He(X) =, He(Xj). Thus,

RHe+2- (Y- X) He(X) Ae,
so that RHe+ 2q-(y_ X) c nAp makes sense.

2.6.2. COROLLARY. With the above notation,

(2.6.2.1)

(2.6.2.2)

0 hi*He(Y)c [RHe+2- ,(y X)c Pc(X)]
[i’He(Y)c Pc(X)] nRHe+ 2-x(y X).

Fe(X [ker i, Fe(X)] + OIHe+2(Y)
0(ker i, c He(X)a + IHp+z(Y) Fp(X).

(2.6.2.3) Furthermorefor p n, the sums in (2.6.2.2)are direct and ni*H"(Y)
and RH"+-(Y- X) c P"(X) oenerate P"(X). Similarly, i*H"(Y) c P"(X)
and xRH"+ 2- ,(y X) 9enerate P"(X).

Proof of Corollary 2.6,2. Let j: Y- X = Y- X be the inclusions. Then
consider the diagram

He+ 2q-(y_ X)fi’i’* ? He+12’-x(y_ Xj)

/
He(X)a- Y _,Ae(X) He(Xj)

where Rj is the residue operator for Xjin Y, njthe projection of He(Xj) onto its
primitive part,f is intersection with He(X) (which by the above remarks lies in
Ae(X)), and g is the inclusion mapping.
The bottom triangle commutes by the very definition of n, while the top

diagram commutes by the constructions in Gordon [4, pp. 130-133], i.e., if

7 Hv(X)a Hp(X), then

7 (7,, ) for 7j He(Xj).
Then r(V)= =x z,,jj and z,jVj He+2q_l(Y Xj). Hence,

k

v(,) j- yj

for o9 s Hp+2q- (Y- X).
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But since g is an inclusion and the result is true for each of the PP(Xj) by
(2.2.1), we have that (2.6.2.1) is true. By vector space duality, (2.6.2.2)follows.
Similarly, since PP(X)= nAp, we get that (2.2.2)implies that PP(X)will be
generated by the subspaces stated in (2.6.2.3). This proves Corollary 2.6.2.

3. Some consequences

3.1. Suppose i: X Y, where Y is a compact Kihler manifold of complex
dimension n + q and X is a compact submanifold of codimension q.
Then Hs() has a natural complex inner product defined by

(where as usual, we take the unique harmonic form in each cohomology class)
with being the usual real Hodge star operator extended to be complex anti-
linear. With respect to this inner product, we let I1 oll )/. Further-
more, if 09 PP(Y) and o9 is orthogonal to r/, then UyO9 is orthogonal to Uyr/, cf.
Weil [16, p. 22].

Let K {cot HP(Y)I i*o9 !.Xl 0}. Let K+/- be the orthogonal comple-
ment to K with respect to in HP(Y). Then K+/-= PP(Y), because
Lr H’-2(Y) K and e,(Y) _t_ Lr H’-2(Y). Finally, let /x xdenote the mapping
of cup product with the Poincare’ dual class of IX] s Hz,(Y).

3.1.1. PROPOSITION. With the above notation, if O co K+/-, then
/ xco c(q!)- XL,o modulo L-Sb

for n p > s > 1 and d? PP+2(Y). Also, c, (11 011  )2(11i* 011)-2, i.e.,
depends only on the Kfihler metric.

3.1.2. Since H(Y)= Homc (Hs(Y), C), H(Y)inherits the complex inner
product from H(Y). Also for p < n, L}: H(Y) H.+ 2q(y) is an injection, and
this also induces an injection Hp(Y)--, H,+2(Y) by the identifications via
Hom. We also denote this map on homology as L}.

3.2. Proof of Proposition 3.1.1. Let coj be an orthonormal basis of K+/-.

(3.2.1) dim i*KZ= dim K+/-.

For if j aji*o9 O, then aog K.

3.2.2. LEMMA. Let W be a compact, complex manifold, Dw be the Poincare’
duality isomorphism, and, with respect to some hermitian metric, let denote the
real star operator extended to be complex antilinear. Then for 0 09 H*(W),
nom Dw(o9)=

Proof of Lemma 3.2.2. Let COl be an orthonormal basis of HP(W). Then

6 w 09 / co Owt,) o9 by the definition of the Poincare’ duality isom-
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orphism, i.e., Poincare’ duality states that (e w fl)[W] is a nondegenerate pair-
ing for e e HP(W), [3 H2"-p(w). This proves Lemma 3.2.2.

Now, consider the diagram

--m,-(x) /-/".(r)--
/

-x /-G-dx) /-/.-dY)/

where means the diagram commutes and G is the Gysin mapping of the
normal sphere bundle of X in Y.

Let ol e Kz. Then i*oj e PP(X), and, by (3.2.2),

Dxi*o C,x Hom (x)-

cj,x Hom (- 1)P(P+3)/2 ((n p)!)-x Z A,’Lx-Pi*C)J,,

where Cj,x (I i*cj IIx) -2, A, (x/-L--)2’-" and 09,, is the (r, p r) part of
ooj. This follows from Weil [16, p. 22] and the fact that (gx)-1 (-1)Pgx

Thus, this says that

i.Dxi*ogj Cj,xL"y-’ Hom (Aj) + 7

where

<L]," Hom Aj, 7> 0 and A (-1)P(P+3)/2((rI p)!)-IA,

on the (r, p r) part of coj. In other words we are using the notation of (3.1.2)
and we can always write i, Dxi*co as a sum of a multiple of Horn L"v-P and
something in its orthogonal complement. The coefficient cj,xA follows from the
calculation in the previous paragraph.
Now, we can assume that 7 >_o LnY-p-STs for 7 e Fp+2s(Y). This is be-

cause if s < 0 and =Hom 7, then i*(L"y-P-dp) L"x-P-i*d? is orthogonal
to L"x-PPP(X). Hence for s < 0, L"y-P-7 could not be in the image of
i,[Hom L"x-"P"(X)].

Thus, to complete the proof of the proposition, it suffices to show that
L],- PTo 0, because
We let tko Hom 70 e PP(Y). Then 0 (L"y-PCoj, L"y-PCko) (coj, dpo).

Now, bo ex + e2 with e e K and e2 e K+/- such that (coj, el) 0 for 1
and 2, i.e.,

(K K) (o)= [K (o)’] [" ()1.

3.2.3. LEMMA. (2 0.
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Proof of Lemma 3.2.3. We claim that

(L,- Hom 2, i, Dxi*co)= O.

By hypothesis, 2 kj dk Ly-POOk Then

0 =/:: (Lny-p Hom t2, i, Dxi*ogj)
implies that 0 : oxi,,o i*Lnr-P2 But Hom Dxi*og has nonzero projection
onto i*(L"r-Pog). Thus, this implies that

i*L"r- P2 ak Lx Pi*Ogk with a 0.
k

However, i*L-P2 k dR Lx-Pi*ogk which contradicts (3.2.1).
Hence, L,-’ Hom coj, i, Dxi*co, Lnv-p Hom tl, and >_1 Lq,-g-V all

belong to (L- Hom 2)+/-. But

Hom L,-’2

(i, Dxi*o)-L}-’Homol L,---cj,xLv-HomA))
s>l

s (L- p nom 2)x.
This proves Lemma 3.2.3.

3.2.4. LEMaA. =0.

Proof of Lemma 3.2.4. It suffices to show that

(L,- Hom 1, i, Dxi*coj 0

by the same argument in (3.2.3). If

0 a Lny-p Hom 1, i, Oxi*og,
then this implies that the projection of i*1 onto the primitive part of X is
nonzero. But as K this implies that i* ai*og / + Lxq for some

PP(X) and b 0. Thus, ( ajog) K, i.e., o9 K K+/-. This proves
Lemma 3.2.4 and Proposition 3.1.1.

3.3. Using the notation of (3.1.2), we let

J { LqHp(Y)II c Ft,(X)= 0}
where I" Hp+ 2q(Y) -- Hp(X) is the intersection mapping. Let J+/- be the orthog-
onal complement to J in LyH(Y).

3.3.1. COROLLARY. Suppose that 0 J+/-. Then

i, I7 c(q!)(L,)-17 where c (llI llx) (ll ll )
Corollary 3.3.1 is equivalent to Proposition 3.1.1. This follows immediately

from the fact that I is the vector space dual to G and from the following lemma:
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3.3.2. LEMMA. J+/- L, F(Y) and J Hom L K.

The proof of the lemma is straightforward.

3.3.3. COROLLARY. Let X, j 1, k be submanifolds ofY ofcodimension
q. Let J {/ LHp(Y) II Fp(X) 0for some j), where l is intersection
with X. Let J+/- be the orthoonal complement to J in LqH(Y). Let 0 JX.
Then for all 1 i, j k,

0 (llliTl[X,)-2 (ii),(Ii)=

3.3.4. We note that Corollary 3.3.3 has applications in studying the mono-
dromy of compact Kfihler manifolds. Namely, suppose that

w {tl Itl 1} c
is a proper map such that for 0, -(t)= E is a compact Kfihler n-
dimensional manifold. Let j: m W. If T denotes the action on H,(E) induced
by x({tl0 < tl g 1}), then the local invariant cycle problem says that
ker j, image (T I) where I is induced from the identity mapping. It is easy
to show that image (T I) m ker j,. We can suppose that T is unipotent and
that -(0)= Vo has normal crossings, so that Vo X. We set k W

(X, "" X), the k-points. Now, because T and I commute with Lv,, it
suffices to consider ker j, Fn(). Then one can show that ker j, m Fn(E)is
generated by

Fp-k+ l(k)= E Fp_k+,(X, ’" X) for 2 k p,
it <"’<ik

i.e., there exists a map " @=2 Fp-R + (k) Fp() such that image= kerj,.
Furthermore, the relations among the #Fp-k+ t(k) are given by

Ik- ," H-k+ a(k-,)+ H-k+ (k),
which is induced by intersection on each component, i.e., if

Hp_k+3(Xi, Xik_l)
and I denotes intersection with X, X_ Xi, then lk-(?)=
Elk Iik(T)implies that aiR-, gI(T)= 0 in Hp().

Finally, suppose ? Fp-k + (k). Then to show that () image T I, it
can be shown that it suffices to show that belongs to the kernel of the
inclusion mapping Mk Mk_ 1" So if T is not in the kernel ofMk Mk_ 1, then
by Corollary 2.6.2, ? Ik_ where Y X m X_ . Then by Corollary
3.3.3, each of the Ii is homologous in Y, which will imply that is in the
kernel of Mk Mk_ 1. Hence Ii 0 except for at most one k, which implies
that 0 #Ik_ .
For details of these arguments for p n 2, see Gordon [9] and Todorov

[15].
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3.4. Let us consider some example of (3.3.3).

3.4.1. Let Y=CP2 XCPa, Xa=CPa xCPa, andX2=T xCPa, where
T is the nonsingular curve of degree 3 in CP2. Let Y have the Kihler metric
induced from the Segre’ embedding. Then H2(y) is generated by h and h 2 for

ha H2(CP2 x {0}) and h2 H2({o} x CPa).
Let 0 =/= 1 H(Y). Then fy Lr(l) ha + hE and LEy(1) h2 + 2ha hE, where

HomhE=[CP2 x{o}] and Homhh2=[CP xCP].
Hence h 2h2 p2(y) and Lr(h 2h2)= h h h2.

Let a, b H2(X) with. a= [CP x {o}] and b= [{o} x CP]; and let c,
d HE(X2] with c= IT x {o}] and d= [{o} x CP]. Hence, (i),a (i2),c
and (i),b (i2),d. Let a* =Hom a, etc., so that

Hence a e F2(X) ana c 3d Fz(X).
Then a is generated by

Hom L(1)= [CP2 x {o}1 + 2[CP x CPx],
and J is generated by [CP2 x{o}]-[CP xCP]=, i.e., I=a-b,
I2() c- 3d. Furthermore,

(i),I (i),(a b)= (/2),(c- 3d)= ](/2), I2
)and 6 (1112 llx2)2, 2 (I Ix [ x

3.4.2. As another example, let Y=CP xCP xCP=a xb xc with
X=a xc and X2=b xc. Suppose Y has the product metric. So, if
a* =Hom a, etc., then Or Lr(1) a* + b* + c*, and v2(y)is generated by
a*-b* and b*-c*. If=a xb, then (ia),I=a@b=(i2),I2. Butin
this case, J H(Y), i.e.,

I[Lr(a- b)- Lr(b- c)]
(Lx(1))* ana [2L(a b)+ L(b c)] (L2(1))*.

3.5. In fact, for p 2 we can actually prove a stronger result than 3.3.1.

3.5.1. COROLLARY. t X be submanifolds of Y of codimension q for
j=l,...,k.t

Jo {7 LH2(Y)[OIi7 Ofor some j}

where O is the projection onto the finite part of Xi. t J be the orthogonal
complement to Jo in L H:(Y). Suppose 0 7 J. Then for all 1 i, j k, we
have

(OIllx)-2(i),(OI) oiIillxi)-2(ii),(oiIiy).



ON THE PRIMITIVE COHOMOLOGY OF SUBMANIFOLDS 229

The proof is the same as for (3.1.1) with the obvious modifications. The
essential fact one needs is that Ijdo is still orthogonal to Ijd in Hp(Xj).
Note that in 3.4.2, do H,(Y) as well.

3.5.2. However, 3.5.1 is false for p _> 3. For example for the case p 3, we
start with T cCP,, where T denotes the torus in CP2 c CP4. Let
rca: Y’--* CP4 be the monoidal transform with center T and let (t a)- a(T) X’.
Then consider

X’=X’ x{o}c Y’ xCPa,
and let 2: Y-* Y’ x CPa be the monoidal transform with center X’. Let
X (rt2)-(X’)and let X2 Y’ .
Then ba(X’)= 2= b3(X’)= b3(Y’)and ba(Y’)=0. This gives p3(y,)=

H3(y’). Also, ba(Xa)= 2, b3(Xa)= 4, b,(Y)= 0 and b3(Y 4; and so again
P3(y)=H3(y).

Let e and fl be an orthonormal basis for Ha(T), which are considered as a
basis for Ha (X’) and Ha(X a) as well. Let e Lx,(e) and fla Lx,(), which are
an orthogonal basis for H3(X’). We let cz2= -(rt2)-ae and/32 -(r2)-afl,
which completes ea and fla to a basis of H3(Xa). Then Lxl(e)= ea + e2 and
Lx,(fl) fix + f12.

3.5.2.1. LEMMA. {0a, 2, fix, f12} are an orthogonal basis of H3(Xa).

ProofofLemma 3.5.2.1. It is clear that (a, fl) 0 since (a, fl) 0 in T. It
suffices to show that (aa, 2)= 0. But Horn Dx(a2)= -(rta)-afl, i.e.,
rca X’--, T so that (rta)-a(fl) defines a class in H5(X’); and in the inclusion of
X’c X a, we identify (rc a)-afl with its image. It is the dual to 2, since
2 (rt) -de so that the dual ore2 will be the dual ore in X’, the base of the
bundle. But

(ZI" (1)-1 gx,()" (71)-lj 0.

This is because in the fibre Fe over Q . fl, we have that

Fe=CP2 xCPa and Lx,(a) Fe=CPa x{o}
while (rta)-a(fl) FQ CP2 x {o}. But (CPa x {o}) (CP2 x {o}) 0 in CP2 x
CPa. This concludes the proof of Lemma 3.5.2.1.

Thus, 0a -02 and ]1 2 are a basis for F3(Xa).
Let a= (i),a and b= (il),a2. Then a and b are orthogonal, as o is

orthogonal to 02 in X. Then, up to positive constants, I Lra Lx o + and
I2 Lrb Lx o , while 0 4= I2 Lra F3(X2) and I2Lrb 0, since Y’ X2.

Thus, Ly(il), a2 and Lr(i2), f12 generate do, and a basis of d is given by
Lr(ia), 0 and Lr(i2), fla. But, up to positive constants,

(ia),OalaLra--(il), (-- (ia),(a- 2)
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while

(i2), 0212 Lra (i2), 2.
However (ix),(l 02) and (i2), 02 are linearly independent in Ha(Y).
The reason the proof breaks down is that 0 11Lra is a multiple of 0111Lrb,

i.e., 01Jo is not orthogonal to 01J in Fa(X1).

4. Some conjectures about schemes

Suppose that Y is an integral algebraic k-scheme, where k is an arbitrary
algebraically closed field of any characteristic. We assume that Y is a smooth
subscheme of projective space PN(k) and the dimension of Y is n + q. Suppose
further that X for j 1, s are smooth subschemes of Y of codimension q
and that it: X Y are the inclusions.

Let denote a Weil cohomology theory, of. Kleiman [11]. We also suppose
that satisfies the second Lefschetz theorem, which states that
Liz: "-i(Z)-, /t"/i(Z) is an isomorphism for all where Z is a smooth sub-
scheme of PN(k) of dimension n, of. Katz-Messing [10]. Let

P"-’(Z) ker L+ 11 "-’(Z),

and call P"-’(Z) the primitive cohomology. Let 7t" "-i(Z)--, P’-i(Z)denote
the projection. If Dz denotes Poincare’ duality, viewed as an isomorphism
’-i(Z) --, "+i(Z), then Dz induces a nondegenerate pairing on ’(Z) for all
by (a, b} a" Dzb and is the Kronecker pairing.

4.1. DEFINITION. Suppose we tensor the coefficient field of with the
complex numbers. Then we shall say that Z has property I(Z)if for all
a p,-i-2i(Z), Dz(Lza) cL,z+ where c is a nonzero constant depending on
a, i, n, and j, and the overbar denotes complex conjugation.
Then for j 1, s we define G: P(Xi)- P+2,(y), the Gysin homo-

morphism, by Gj (Dr)- (i), Dx.
4.2. Conjecture. If I(Xi) and I(Y) are true, then

(i) 7t(i)*dC(Y) [ker G P’(Xj)]

[(i)*J(Y) P’(X)] c 7t(ker G (X))= 0.

(ii) P"(X)= 7t(ij)*f"(Y) [ker G P"(X)]
[(i)*J(Y) P"(X)] 7t(ker G dg"(Xi))

Let X _- Xj and suppose that i" X Y has normal crossings in Y. Let
f: ;(X) -’ --1 P(X) be defined by

a ] i(ji)*a
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where n: P(X)--, PP(X) is the projection map and j: X c X is the inclu-
sion. Define PP(X) to be the orthogonal complement with respect to (.,. of
kery Let n: P(X) PP(X) be the projection.

4.3. Conjecture. Suppose that the spectral sequence of the inclusion map-
ping Y- X c Y degenerates at E2q+ and suppose that I(Y) and I(X) are true
for all j. Then for p _< n, ker (zi* ’(Y)) ker (fx (Y)) where fx is cup
product with 7x e ocg2q(Y) (Tx being the "dual" class to the algebraic cycle X).
Suppose A {1, s} and let

J(A) {09 g/fP(Y) (i)*o9 c P"(X) 0 for some j A}.
Let J+/-(A) be the orthogonal complement in YgP(Y) to J with respect to
Let I1"11 denote the norm with respect to (.,.). Finally, let fxbe cup product
with the dual class to the algebraic cycle X.

4.4. Conjecture. Suppose that I(Y)and I(X)are true for all j A. If
0 co J(A), then for all j A,

fx,(Co)-Ilmllr)(ll(i)*collx)-Z(q!)-’LIo) modulo

for n p > s >_ 1 and b P+2(y).
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