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ON THE PRIMITIVE COHOMOLOGY
OF SUBMANIFOLDS

BY
GERALD LEONARD GORDON!

1. Introduction

In this article, we study certain facts about the primitive cohomology of
compact submanifolds of compact Kéhler manifolds. Specifically, leti: X < Y
be the inclusion, where X is a compact submanifold of complex codimension g
in Y, which is a compact Kahler manifold. Let P?(X) and P?(Y) denote the
primitive cohomology of X and Y, respectively, with respect to some fixed
Kahler metric on Y. Let © denote the projection of cohomology onto the
primitive part. Then we shall show that

ni*H?(Y) N [RHP* 24~ Y(Y — X) n PP(X)]
= [i*H?(X) n PP(X)] n ~RH?*27" (Y — X) =0,
where R is the Leray—Norguet residue operator. Here
RHP*247Y(Y — X) n P’(X) and i*HP(Y) n PP(X)

mean primitive p-forms which are residues and restrictions, respectively. If
n = dim¢ X, then we shall show that

P(X)=ni*H"(Y)® [RH"" 21" (Y — X) n P"(X)]
= [i*H"(Y) n P"(Y)]®=RH"* 2~ (Y — X)),
and each summand is nondegenerate with respect to cup product, cf. (2.4)
below for an example.

In homology if we let F,(X)= Homc (P?(X), C) = H,(X) and 6 be the
projection of H, (X) onto F, (X), then the above result states that

F(X)=[ker iy, n Fy(X)] + 0IH,,,,(Y)
=0 ker iy + [IH,,,,(Y) n F,(Y)],

where I is transverse intersection; and, when p = n, the sums are direct. This
was proven for n = 1 and 2 by the author in [6].

In Chapter 3 we give some consequences of these results and indicate their
application in studying the monodromy of compact Kéhler manifolds.
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218 GERALD LEONARD GORDON

This paper was motivated by the author’s attempt [7] to find a “nontranscen-
dental” proof of the local invariant cycle problem, cf. Griffiths [10, p. 249]; also
see Clemens [1] and Steenbrink [14]. These decompositions and the degeneracy
of a certain spectral sequence are the essential facts from Kahler geometry that
one needs to solve the problem. In Section 4, analogous results concerning this
decomposition for schemes are conjectured to be true.

In this article, all homology and cohomology will be with coefficients in C.
When we refer to cohomology classes as forms, we shall always mean the
unique harmonic representative in the class. Finally, we shall identify H (X) =
Hom¢ (H?(X), C) with the duality given by integration: y: w — {, w. Thus, for
0 # w € H?(X), we shall mean Hom (w) € H ,(X) to be the unique homology
class which has period one on w, and zero periods on the orthogonal comple-
ment. Since Hom is self-dual, we shall also speak of Hom (y) for y € H,(X).

Finally, the author would like to thank the referee for suggesting the present
proofs in Chapter 2, which are a simpler exposition than our original proofs.

2. Main results

2.1. Leti: X <Y be the inclusion of a compact Kéhler submanifold of
complex dimension »n into a compact Kahler manifold of complex dimension
n + q. Then choose a Kéahler metric on Y which gives a Hodge decomposition
of the cohomology of Y and X. Then for p < n, let n: H?(X)— P?(X) be the
projective onto the primitive part, i.e., H*(X)=@®;, o L§P?~/(X), where Ly is
the Hodge operator on X. Let P?(Y) denote the primitive cohomology of Y.

2.1.1. DerINITION. We say y € H,(X) is finite iff if w is a harmonic form
such that {, w # 0, then nw # 0. Let F,(X) denote the finite classes.

That is to say, if H?(X) ~ Hom¢ (H ,(X), C) = H,(X)* considered as dual
vector spaces via integration, w: H,(X)— C by w(y) = |, w, then y is finite iff
y* € PP(X).

Equivalently, y is finite iff y N Qx = 0 where Qy is the Kahler form and N
denotes cap product.

If X is a projective algebraic manifold, then y is finite iff y has a representative
in the affine part of X, i.e., finite part of X.

Let 6: H,(X)— F,(X) be the projection.

22. THEOREM (2.2.1)
ni*HP(Y) n [RH?*297Y(Y — X) n P?(X)]
= [i*H?(Y) n PP(X)] n =RH?*21"Y(Y — X) =0,
where R is the Leray-Norguet residue operator.

(2.2.2)
P"(X) = ni*H"(Y) ® [RH"* 29~ 1(Y — X) n P"(X)]

= [*H"(Y) N P"(X)] @ nRH"* 24" (Y — X)
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and each summand is nondegenerate with respect to cup product.

(2.2.3)
F(X)=[ker iy, N F,(X)] + 0IH,,,(Y)
= Ofker iy, N Hy(X)] + [IH,42,(Y) 0 F,(X)],
where I: H ., ,,(Y)— H,(X) is given by transverse intersection.

(2.2.4) Ifp = n, the sums in (2.2.3) are direct, and each summand is nondegen-
erate with respect to the intersection pairing.

Proof of (2.2.1).

231 If w=i*® and n=R(7}) with o € H?(X) and n € H**"?(X), then
jx wAn= 0.

This follows because if TX is a tubular neighborhood of X in Y and X isits
boundary, then

'w/\n='(b/\i1=' dl@ A~ 7)=0.
X ‘X ‘Y-TX

The last equality follows from Stokes’ Theorem, while the first equality is the

fundamental identity involving the residue operator.

2.3.2. LEMMA.
Ly(i*H"(Y)) i*H"*z(Y) and LyRHP*29- Y -X)c RH"”““(Y - X).

Proof of Lemma 2.3.2. The first part follows because i*L, = Ly, while the
second follows from the representation of H*(Y — X) by forms of the type
¢ A Ky + n where ¢ and 5 are C*-forms on Y and K yis the kernel associated
to X, cf, Poly [13] Then R(¢ A Kx+1n)=i*$. Hence, if
®=R(¢ A Kx+ 1), then Lyw = R((Ly¢) A Kx + Lyn). This concludes the
proof of Lemma 2.3.2.

Thus, suppose

w € ni*H?(Y) n [RH?*217Y(Y — X) n PP(X)].
Then, w + Lx ¢ € i*H?(Y), for some ¢. Since R is a real operator, we also have
that Ly ?® € RH?"*24"7~1(Y — X), by (2.3.2). Then by (2.3.1),

0= . (w0 A Ly¢) A Ly P = ‘ o A Ly P®,
X X

since Ly A Ly Pd =Ly " '@ A ¢ =0 as @ € P’(X) and dim¢ X = n. But
by Weil [16, p. 77], for w € PP(X), ¢, [x @ A Ly "® > 0 for some nonzero
constant c,. Thus, this is a contradiction, unless w = 0.
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A similar proof works for w € [i(*H?(Y) n P?(X)] n aRHP* 24~ 1(Y — X)),
which completes the proof of (2.2.1).

Proof of (2.2.2).

233. LemMA. Ifw e HP(X)and [y A n=0forallny e i*H*"~?(X), then
» € RHPY24-1(Y — X),

Proof of Lemma 2.3.3. Thus, we assume

0="w/\i*ﬁ=|- )
X (D x)(h)
for all 7€ H* P(Y), and where Dy is the Poincare’ duality mapping
H?"~?(X) = H,(X). We also have the commutative diagram

H> ?(X) > H(X)
i* o I
H>" " 7(Y) == Hy2,(Y)
where [ is transverse intersection and Dy is Poincare’ duality on Y. Hence
0 = [;p,s @ for all j € H*"~7(Y), i.e., w has zero periods on IH ., ,,(Y). Thus,

0 #+ Hom o € coker I. But the vector space transpose of I is the Gysin map-
ping G. Hence Gw = 0. But from the exact sequence

HP*2a-1(Y — X) R HP(X) -5 HP*24(Y),
we get that ® € RHP*2471(Y — X). This concludes the proof of Lemma 2.3.3.

Thus, suppose w e P'(X) and [y A n=0 for all nen*H"(Y). If
A€ i*H"(Y), then A= nA + Ly¢& for some & Then [y A A= [yw A Ly&by
the hypothesis onw. Butw A Lyé = Lyw A &= 0,since wis primitive. Thus,
by Lemma 2.3.3, this completes the proof of the first part of (2.2.2).

To prove the second decomposition, it suffices to show that if & € H?(X') and
fxw A n=0 for all ne RH* P*2471(Y — X), then w € i*H?(Y). This is
proven by a similar argument to (2.3.3) using the commutative diagram

n— D
H*7(X) - H,(X)
R Ox

H>r P2 (Y — X) 25 H (Y, X)

where Dy x is the Poincare’-Lefschetz duality isomorphism.

Proof of (2.2.3) and (2.2.4). 'This is just a reformulation of the above results:
n image i* N [ker G N P?(X)]=0 if and only if cokeri* N PP(X)+
n coimage G ~ PP(X). But the transpose of G is I. Similarly for the other
decomposition.

This completes the proof of Theorem 2.2.
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24. We note that the sum in (2.2.3) need not be direct for p <n.
Equivalently,

ni*PP(Y) @ [RHP* 247 (Y — X) ~ PP(X)] S PP(X).

For let T =« CP;beatorusand let 0: Y — CP; be the monoidal transform with
center T. Let X = ¢~ }(T). Then by S.G.A. 5(vii),

H,(Y)=0, H(X)=C@®C=x~HT) and i,: Hs(X)>H,(Y).
Then ker (i, | H,(X)) = H,(X) and one easily shows that
image {I: Hy(¥) > Hy(X)} = Hy(X).

Let W=Y xCP,and V=X X CP,. Then bs(V)=4and b,(W) = 2 by the
Kiinneth formula. The generators of H*(V) can be given by «;, a5, B4, and f,
where o, and B, correspond to a basis of H*(X). Then if « and B are generators
of HY(X)~ H'(V), then a, and B, will correspond to o x h and B x h where h
is a generator of H*(CP'). The cup product for this basis will then have as
matrix (a;;), where a4 = a3, = 1, a4y = a3 = —1 and the rest of the g;; are
zero. Then Ly (o) = oy + o, and L, (B) = B + B, so that a basis of the prim-
itive cohomology can be given by o, — a, and f; — f,.

Then o, and B; will generate i*H*(W) and one computes that
RH*(W — V) = iH*(W). One can also see this equality by passing to homology
and showing that I(i, %) = o% and I(i, f%) = B% («* = Hom o;). Thus, P*(V)is
generated by mx; and wf;, (o;=3(x; — &) + 3(ay + ) and
RH*(W — V) A P3(V) =0.

2.5. Theorem 2.2 is false for Y noncompact Kahler. For let
V={x*+y+z*=0}cC?

and let 7 be the monoidal transform in C? with center the origin. Let Y be the
proper transform of V and X =n"*(0) n Y. Then X isatorusandi: X ¢ Y
induces an injection of H,(X) into H,(Y). But H;(Y)= 0. However, if we
compactify Y to ¥ so that Y — Y = X, is also a torus, then we have that
I: Hy(Y) 3 H(X). In fact, if iy: X, <Y, then (iy),I,y=i,Iy for all
7 € H;3(Y). This phenomenon is discussed below in (3.3.3).

2.6. In [7] we will actually need a slightly stronger version of Theorem 2.2.
Suppose that X; (j =1, ..., k) is a submanifold of complex codimension gin Y,
a compact Kdhler manifold of complex dimension n + g. Furthermore, sup-
pose that the X ; are in general position so that X = (k-1 X;is a subvariety
having normal crossings. Let i: X < Y and i;: X; = Y denote the inclusions.
Then we are going to prove a result analogous to Theorem 2.2 for X.

So, if we compute the cohomology of X using the Maier-Vietoris sequence,
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we find that H?(X) = A” @ B where A” = @ ; H?(X ;) and B comes from the
relative cocycles, i.e.,

p
0-B>@® @ H X, nnX

s=1 ip<-<igtq

is+ 1)'

Let n: A - @%_; P?(X;) be the restriction to 4” of the projection mapping
@ =m;: @; HP(X;)—> @D; PP(X ;). We extend n to H?(X) by having B” < ker .

2.6.1. DEFINITION. PP(X)=mnA” is a primitive p-form of X. Fy(X)=
Hom¢ (P?(X), C) is a finite p-cycle of X.

Let 6: H,(X)— F,(X) be the projection.

Thus, w € PP(X) = H?(X) if and only if w = } ;. ; w; where 0 # w; € PP(X})
and I {1, ..., k}.

In Gordon [4, Proposition 2.13], it is shown that there is an exact sequence

Hp+2q(Y) —I“*HP(X)A ‘;’ Hp+2q-l(Y - X)

where I is geometric intersection and 7 is the tube over cycles map, i.e., locally
the product with the normal sphere. In [4, Corollary 2.8], it is shown that
H,(X)y= @22 H,_,.+,(M,), and that

Q—)a—

H,(X)a 0 Hy(X) = H)(M,)s =

J

H p(X i)‘

1

In fact,
H,(M)a= {1, ..., w)|vj€ Hy(X;) and y; n X;=1y; 0 X;, for all i # j}.

Also, see Gordon [5], especially Section 4.

If we consider the Leray spectral sequence of the inclusion map of
Y — X < Y, then as Y is compact Kahler, this spectral sequence degenerates at
E, 41, i€, E5, ~ E7, cf. Deligne [2]; see also Deligne, et al. [3]. Then in
Gordon [8], degeneration is shown to be equivalent to the fact that

I(Hp424(Y)) € Hy(M)a.

In [8, Lemma 2.4] it is shown that this fact is essentially equivalent to the fact
that B n image i* = 0. This last fact is a consequence of the principle of the 2
types, cf., [3]. Thus,

IHp+2q(Y) = G')j Hp(xj)’

so that OIH ., ,,(Y) makes sense.

In cohomology, in Gordon [4, Chapter 5], it is shown that one has the
following exact sequence (which is the vector space dual of the above sequence
in homology):

Hp+24—1(y — X) R, HP(X)A -G, H"”“(Y)
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where G is “essentially” the Gysin map, and R is the residue operator. Also
p+1

k
HP(X),= @ H?*"'(M,), and H’(M{)rc @ H*(X)).
s=1 ji=1

Then, H?(X), n H?(X) = @3-, H?(X}). Thus,
RH?* 24~ 1(Y — X) A H?(X) < A",
so that RH?*2471(Y — X) n nA” makes sense.

2.6.2. CoOROLLARY. With the above notation,

(2.62.1)
0 = ni*H?(Y)n[RH?P*2"Y(Y — X) n PP(X)]
= [i(*H?(Y) n PP(X)] n "RH?* 24~ }(Y — X).
(2.622)
Fy(X) = [ker iy N Fy(X)] + 61H, . 5,(Y)
= O(ker i, N H,(X)a) + IH 1 ,,(Y) N F,(X).
(2.6.2.3)  Furthermore for p = n, the sums in (2.6.2.2) are direct and ni* H*(Y)

and RH"*24" (Y — X) n P"(X) generate P"(X). Similarly, *H"(Y) n P"(X)
and nRH"*?1"Y(Y — X) generate P"(X).

Proof of Corollary 2.62. Leti; Y — X;<= Y — X be the inclusions. Then
consider the diagram
Hp+2q—1(Y _ X) T (ij* ('B Hp+2q-1(Y - XJ)
j
O
R Rj
HP(X)y ——A7(X) —— @ H"(X,)
i

\EJ 1""

® P(X;)

where R; is the residue operator for X ;in Y, n;the projection of H?(X ;) onto its
primitive part, fis intersection with H?(X') (which by the above remarks lies in
AP(X)), and g is the inclusion mapping.

The bottom triangle commutes by the very definition of 7z, while the top
diagram commutes by the constructions in Gordon [4, pp. 130-133], i, if
y € Hy(X)s N H,(X), then

Y=y .-, n) fory; e Hy(X;)

Then T('))) = Z’;=1 Tl,j?j and rl,jyj € Hp+2q—l(Y - XJ). Hence,

k. .
o=y ‘ Rj(w)=.' R(w) for w e HP*217 (Y — X).
Y

() i=1"yj
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But since g is an inclusion and the result is true for each of the P?(X ;) by
(2.2.1), we have that (2.6.2.1) is true. By vector space duality, (2.6.2.2) follows.
Similarly, since PP(X)= nAP, we get that (2.2.2) implies that P?(X) will be
generated by the subspaces stated in (2.6.2.3). This proves Corollary 2.6.2.

3. Some consequences

3.1. Suppose i: X = Y, where Y is a compact Kahler manifold of complex
dimension n + ¢q and X is a compact submanifold of codimension gq.
Then H*(Y) has a natural complex inner product defined by

{o,my=| o A %1
Y

(where as usual, we take the unique harmonic form in each cohomology class)
with # being the usual real Hodge star operator extended to be complex anti-
linear. With respect to this inner product, we let ||y = ({», ) )2 Further-
more, if ® € PP(Y) and o is orthogonal to 1, then Ly w is orthogonal to L} #, cf.
Weil [16, p. 22].

Let K = {w € H(Y)|i*w n P?(X) = 0}. Let K* be the orthogonal comple-
ment to K with respect to {-,-) in H?(Y). Then K* < P?(Y), because
LyH?"?(Y) < K and P?(Y) L Ly H?~*(Y). Finally, let A ydenote the mapping
of cup product with the Poincare’ dual class of [X] € H,,(Y).

3.1.1. PROPOSITION. With the above notation, if 0 + w € K™, then
A xo = ¢,(q!) LY » modulo L{ *¢,
for n—p>s>1 and ¢, PP**5(Y). Also, ¢, = (|o| ) (|i*w|) % ie, ¢,

depends only on the Kahler metric.

3.1.2. Since Hy(Y)= Hom¢ (H*(Y), C), H{(Y) inherits the complex inner
product from H*(Y). Also for p < n, L}: H?(Y)— H?*29(Y) is an injection, and
this also induces an injection H,(Y)— H,,,,(Y) by the identifications via
Hom. We also denote this map on homology as L§.

3.2.  Proof of Proposition 3.1.1. Let w; be an orthonormal basis of K*.

(3.2.1) dim *K* = dim K*.

Forif Y, a;i*w; =0, then }; a;w; € K.

3.2.2. LemMmA. Let W be a compact, complex manifold, Dy be the Poincare’
duality isomorphism, and, with respect to some hermitian metric, let % denote the

real star operator extended to be complex antilinear. Then for 0 + w € H¥(W),
Hom Dy(w) = ([lo]w)™*(%o).

Proof of Lemma 3.2.2. Let w; be an orthonormal basis of H?(W). Then
0= fw wi A ¥ ®;= [p, (s, w; by the definition of the Poincare’ duality isom-
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orphism, i.e., Poincare’ duality states that (o U B)[W] is a nondegenerate pair-
ing for o € HP(W), B € H*"~?(W). This proves Lemma 3.2.2.

Now, consider the diagram

2n—p(X) (i_*HZn—p(Y)

o [

¥ H2n—p(X) ‘B—’Hln—p(Y) o

Dx t (Dy)—1
~ HI() —S— Hr P24(Y)

i*, A X

H(Y)

where [] means the diagram commutes and G is the Gysin mapping of the
normal sphere bundle of X in Y.
Let w; € K*. Then i*w; € P?(X), and, by (3.2.2),

DXl*Cl)J = Cj,X Hom (;X)_ ll*wj
= ¢ Hom (— 1P 02 (n = p)) 5 A, L5 %
r

where ¢; x = (|i*w; [ x)7% A, = —(\/—1)*"? and w,, is the (r, p — r) part of
;. This follows from Weil [16, p. 22] and the fact that (¥y)™' = (—1)"%y.
Thus, this says that

l*Dxl*wJ = Cj’XL';—p Hom (A(I)J) + ’))
where

(Ly " Hom A®;, ) =0 and A= (—1P"*3?((n - p)!)~14,

on the (r, p — r) part of ;. In other words we are using the notation of (3.1.2)
and we can always write i, Dyi*w; as a sum of a multiple of Hom Ly & and
something in its orthogonal complement. The coefficient c; x 4 follows from the
calculation in the previous paragraph.

Now, we can assume that y =Y, o Ly ?7%, for y; € F,,,(Y). This is be-
cause if s < 0 and ¢, = Hom y,, then i*(L} 7 ~5¢,) = Ly ?~*i*¢, is orthogonal
to Ly PPP(X). Hence for s <0, L}y ? %, could not be in the image of
i,[Hom Ly PP?(X)].

Thus, to complete the proof of the proposition, it suffices to show that
Ly Pyo = 0, because *y Ly ?(A®;) = (q!) 'L} w;.

We let ¢o = Hom y, € PP(Y). Then 0= Ly Pw, Ly ?do) =@}, o)
Now, ¢, = a; + a, with a; € K and «, € K* such that <wj, a;)=0fori=1
and 2, i.e,,

(K®K') n () =[K n (@) ]S [K" 0 (@))']

3.23. LemmA. o, =0.
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Proof of Lemma 3.2.3. We claim that
(Ly™? Hom ay, i, Dyi*w;) = 0.
By hypothesis, a, = Y« ; d Ly Pw,. Then
0 # {Ly"? Hom «,, i, Dyi*w;)

implies that 0 # | Dxisw; i¥Ly Po;. But Hom Dyi*w; has nonzero projection
onto i*(L}y"Pw;). Thus, this implies that

*Ly Pa, =Y a Ly Pi*w,  with a;# 0.
k
However, i*L} ™ Po, = Y. ; di Ly "i*w, which contradicts (3.2.1).

Hence, L}"? Hom wj, i, Dxi*wj, Ly ? Homa,, and Y., Ly 7%y, all
belong to (L} ? Hom a,)". But

Hom Ly Pa, =
(i*Dxi*wj — Ly"PHom ay — Y, Ly P%, — ¢; xLy~? Hom Aa‘)j)
s>1
€ (Ly"? Hom a,)*.
This proves Lemma 3.2.3.

324. LemMMA. o, =0.

Proof of Lemma 3.2.4. It suffices to show that
(L Hom ay, i, Dyi*w;) =0
by the same argument in (3.2.3). If
0 # aJ = <L’)‘/—p Hom 0(1, l*Dxl*(UJ>,
then this implies that the projection of i*a; onto the primitive part of X is
nonzero. But as o, € K this implies that i*a; = a;i*w; + ¢ + Ly¢ for some
¢ e PP(X) and ¢ # 0. Thus, («; — a;w;) € K, ie, w;e K n K*. This proves
Lemma 3.2.4 and Proposition 3.1.1.
3.3. Using the notation of (3.1.2), we let
J={y e LYH,(Y)|Iy n F,(X)=0}
where I: H,, ,(Y)— H,(X)is the intersection mapping. Let J* be the orthog-
onal complement to J in L{ H,(Y).

3.3.1. COROLLARY. Suppose that 0 # y € J*. Then

Iy = c,(@)(L§) ™"y where ¢, = (|7 x)*(Iv][x)~*

Corollary 3.3.1 is equivalent to Proposition 3.1.1. This follows immediately
from the fact that I is the vector space dual to G and from the following lemma:
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332. LemMMA. J* < L§F,(Y)and J ~ Hom L{ K.
The proof of the lemma is straightforward.

3.33. CoOROLLARY. Let X;,j=1,...,k be submanifolds of Y of codimension
q. Let J ={y e LYH,(Y)|1;y n F (X ;) = O for some j}, where I is intersection
with X ;. Let J* be the orthogonal complement to J in LYH (Y). Let 0 # y € J*.
Then for all 1 <i,j <k,

0% (1)l x) 2 @)elTiv) = (1701 %)~ 25T ).

3.3.4. We note that Corollary 3.3.3 has applications in studying the mono-
dromy of compact Kahler manifolds. Namely, suppose that

mW-{t||t| <1}eC

is a proper map such that for t# 0, n~!(¢)=V, is a compact Kahler n-
dimensional manifold. Let j: ¥, = W.If T denotes the action on H ,(V;) induced
by n,({t|0 < |t| <1}), then the local invariant cycle problem says that
ker j, = image (T — I) where I is induced from the identity mapping. It is easy
to show that image (T — I) < ker j,. We can suppose that T is unipotent and
that #~*(0) = ¥, has normal crossings, so that ¥, = | J; X;. We set M, = U
(Xi, n+-*n X,,), the k-points. Now, because T and I commute with L, it
suffices to consider ker j, N F(V;). Then one can show that ker j, N F(V;) is
generated by

Fp“k‘*‘l(Mk):. Z Fp_k+1(Xilf'\"’f\Xik) fOI‘ZSkSP,
i < <ig
i.e.,there exists amap g: @f=, F,_y+1(M) - F,(V;) such that image g= ker j,.
Furthermore, the relations among the gF,_, ., ,(M,) are given by

PR Hp—k+3(Mk~— )= H, ;. 1(Mk),
which is induced by intersection on each component, i.e., if
Y€ Hp ji3(Xi, 00 Xy )

and I, denotes intersection with X; n---n X, _, n X,, then I,_,(y)=
Y Ii,(v) implies that gI,_,y =Y, g1, (y) = 0 in H,(V,).

Finally, suppose y € F,_;1(M,). Then to show that g(y) € image T — I, it
can be shown that it suffices to show that y belongs to the kernel of the
inclusion mapping M, = M, _,. So if y is not in the kernel of M, = M, _,, then
by Corollary 2.6.2,y = I,_; a where Y = X; n - n X, _,. Then by Corollary
3.3.3, each of the I, a is homologous in Y, which will imply that y is in the
kernel of M, = M, _,. Hence I;, o = 0 except for at most one k, which implies
that 0 = gl,_; o = gy.

For details of these arguments for p = n = 2, see Gordon [9] and Todorov

[15].
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3.4. Let us consider some example of (3.3.3).

3.4.1. Let Y=CP2 ><(jl)l, X1=CP1 XCPI, and X2= T XCPI, Whel‘e
T is the nonsingular curve of degree 3 in CP,. Let Y have the Kahler metric
induced from the Segre’ embedding. Then H?(Y) is generated by h, and h, for

h, € H*(CP, x{0o}) and h, € H*({o} xCP,).
Let0+ 1€ H(Y). ThenQy, = Ly(1) = h, + hyand L}(1) = h3 + 2h h,, where
Hom h} = [CP, x{0}] and Hom h h, =[CP; xCP,].
Hence h, — 2h, € P*(Y) and Ly(h, — 2h,) = h? — hy h,.
Let a, b € Hy(X,) with a=[CP, x{o}] and b= [{o} X CP,]; and let c,

d € Hy(X,] with ¢=[T x{o}] and d = [{o} x CP,]. Hence, (i), a=3(i2).c
and (i), b = (i), d. Let a* = Hom aq, etc., so that

(i )*Ly(1) = a* + b*, (i)*Ly(1) = $c* + d*.

Hence a — b € F,(X,) and ¢ — 3d € F,(X,).
Then J is generated by

Hom L3(1) = [CP, X {o}] +2[CP; x CPy],
and J* is generated by [CP, x{o}] — [CP; XCP{]=ua, ie, I;a=a—b,
I,(ot) = ¢ — 3d. Furthermore,

(i)sI1o = (iy)g(a = b) = 3(iz)4(c — 3d) = 3(ix), Lo

and 6 = (|1 o] x,)% 2 = (|1 o] x,)*

34.2. As another example, let Y =CP, XCP; XxCP{=a Xb Xc with
X;=a Xc and X,=b xc. Suppose Y has the product metric. So, if
a* = Hom a, etc., then Qy = Ly(1) = a* + b* + ¢*, and P?*(Y) is generated by
a* — b* and b* — c*. If a=a xb, then (iy),[,;2=a# b= (i), ], Butin
this case, J = H,(Y), ie.,

I[Ly(a — b) = Ly(b — ¢)]
= (LXI(]'))* al’ld 12[2Ly(a - b) + Ly(b - C)] = (LXZ(]'))*'
3.5. In fact, for p = 2 we can actually prove a stronger result than 3.3.1.

3.5.1. CoRrOLLARY. Let X; be submanifolds of Y of codimension q for
j=1...,k Let
Jo = {')) € L?/HZ(YHOJIJ')) = O“fOV somej}

where 0; is the projection onto the finite part of X ;. Let J§ be the orthogonal
complement to J, in L} H,(Y). Suppose O + 7 € Jg. Then for all 1 < i, j < k, we
have

013701 x,) 2036, 1;7) = (10: 17 ] x.) 2 (@) (0: 1),
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The proof is the same as for (3.1.1) with the obvious modifications. The
essential fact one needs is that I;J, is still orthogonal to I;J5 in H,(X).
Note that in 3.4.2, J, = H,(Y) as well.

3.5.2. However, 3.5.1 is false for p > 3. For example for the case p = 3, we
start with T < CP,, where T denotes the torus in CP, < CP,. Let
ny: Y’ — CP, be the monoidal transform with center T and let (z,)" }(T) = X".
Then consider

X' =X x{o}cY xCP,,
and let ©,: Y- Y xCP; be the monoidal transform with center X'. Let
X, =(n,)"'(X')and let X, =Y < Y.
Then b,(X')=2=by(X')=bs3(Y’) and b,(Y')=0. This gives P3(Y')=
H?(Y'). Also, by(X,) =2, bs(X,)=4, by(Y) =0 and b4(Y) = 4; and so again
P3(Y) = H3(Y).

Let « and § be an orthonormal basis for H(T), which are considered as a
basis for H,(X’) and H,(X ) as well. Let a; = Lx/(«)and ; = Lx/(f), which are
an orthogonal basis for H3(X'). We let o, = —(n,) '« and B, = — ()" '8,
which completes o; and B; to a basis of H3(X,). Then Ly ()= a4 + o, and
Lx,(B) = B1 + Ba.

3.521. LemMA. {ay, oy, By, B2} are an orthogonal basis of Hy(X ).

Proof of Lemma 3.5.2.1. Tt is clear that {o;, ﬁj> = 0 since {«, B> =0inT.It
suffices to show that {a;, a,)=0. But Hom Dy,(2;) = —(n,) !B, ie,
ny: X'~ T so that (z,)”!(B) defines a class in H5(X'); and in the inclusion of
X' = X, we identify (m,)"'f with its image. It is the dual to o,, since
a, = —(my) " ‘o so that the dual of o, will be the dual of & in X', the base of the
bundle. But

o () B =Ly(2) () 'p=0.
This is because in the fibre Fy over Q = « - B, we have that
Fo=CP, xCP; and Ly(x) N Fy=CP, X{o}

while (n,)"}(8) " Fo = CP, x {o}. But (CP, x {0}) - (CP, x {o})=0in CP, x
CP,. This concludes the proof of Lemma 3.5.2.1.

Thus, & = a; — a, and f = B, — B, are a basis for F;(X,).

Let a= (i;),o; and b = (i), «,. Then a and b are orthogonal, as «;, is
orthogonal to «, in X,. Then, up to positive constants, I, Ly a = Ly, o+ aand
I Lyb= Ly o—a, while 0+ I, Lya € F5(X,)and I,Lyb = 0,since Y’ = X,.

Thus, Ly(i;), ®, and Ly(i,), B, generate J,, and a basis of Jj is given by
Ly(iy), oy and Ly(i,), B;. But, up to positive constants,

(i1)40111Lya= (i1)s0 = (i1)g(2ty — a5)
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while

(i2) 0212 Lya = (i3), 0.

However (i,),(¢; — a,) and (i,), a, are linearly independent in H;(Y).
The reason the proof breaks down is that 8,1, Lyais a multiple of 6,1, Lyb,
ie., 8, J, is not orthogonal to 0, J5 in F3(X,).

4. Some conjectures about schemes

Suppose that Y is an integral algebraic k-scheme, where k is an arbitrary
algebraically closed field of any characteristic. We assume that Y is a smooth
subscheme of projective space P y(k) and the dimension of Y is n + q. Suppose
further that X for j= 1, ..., s are smooth subschemes of Y of codimension ¢
and that i;: X; = Y are the inclusions.

Let # denote a Weil cohomology theory, cf. Kleiman [11]. We also suppose
that # satisfies the second Lefschetz theorem, which states that
Ly: #""{(Z)— #"*(Z) is an isomorphism for all i where Z is a smooth sub-
scheme of Py(k) of dimension n, cf. Katz-Messing [10]. Let

P"~i(Z) =ker L; | #"(2),

and call P"~(Z) the primitive cohomology. Let n: #™"~/(Z)— P"~}(Z) denote
the projection. If D, denotes Poincare’ duality, viewed as an isomorphism
H""H(Z)— #"+(Z), then D induces a nondegenerate pairing on #**(Z) for all
i by {a,b) =a- D,b and - is the Kronecker pairing.

4.1. DEFINITION. Suppose we tensor the coefficient field of # with the
complex numbers. Then we shall say that Z has property I(Z) if for all
a € P"~172i(Z), D (Lia) = cL; Ja where c is a nonzero constant depending on
a, i, n, and j, and the overbar denotes complex conjugation.

Then for j=1,..., s we define G;: #P(X;)— #?*?4(Y), the Gysin homo-
morphism, by G; = (Dy)™! ° (i;)y ° Dx,

42. Conjecture. If I(X;) and I(Y) are true, then
() () #7(Y) o [ker G; A PX )]
= [(i;}*#P(Y) n PP(X;)] N n(ker G; n H#P(X;)) = 0.
() P(X;)= n(i))* #7(Y) ® [ker G, n P'(X,)]
= [(i;*#™(Y) n P"(X;)] @ n(ker G; N H#™"(X}))
Let X = ( JS-; X; and suppose that i: X < Y has normal crossings in Y. Let
[ #P(X)— D5~ PP(X;) be defined by

S
a— @ nj;)*a
j=1
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where 7;: #P(X;)— PP(X ) is the projection map and j;: X; = X is the inclu-
sion. Deﬁne PP(X) to be the orthogonal complement with respect to{-, ) of
ker f. Let m: #P(X)— PP(X) be the projection.

4.3. Conjecture. Suppose that the spectral sequence of the inclusion map-
ping Y — X < Y degenerates at E,, . ; and suppose that I(Y) and I(X ;) are true
for all j. Then for p < n, ker (mi* | #P(Y)) = ker (Qx | #?(Y)) where Qy is cup
product with y, € # 2‘1( ) (vx being the “dual” class to the algebraic cycle X).

Suppose 4 = {1, ..., s} and let

J(4) = {w e #7(Y)|(i;)*0 n PP(X;) =0 for some j € A}.

Let J*(A4) be the orthogonal complement in #°?(Y) to J with respect to < -, - ).
Let |- || denote the norm with respect to €+, - ). Finally, let Q,be cup product
with the dual class to the algebraic cycle X ;.

44. Conjecture. Suppose that I(Y) and I(X;) are true for all je A. If
0# w € J*(A), then for all j € 4,

Qx (@) = o]y (I(;}*w]x) *(q)"'L{w modulo L§™*¢
forn—p>s=>1and ¢, € PPT2(Y).
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