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COMMUTING SUBNORMAL OPERATORS
SIMULTANEOUSLY QUASISIMILAR TO UNILATERAL

SHIFTS

BY

WILLIAM W. HASTINGS

Section 1

Let S (S t, S,) be an n-tuple of pairwise commuting subnormal opera-
tors on a separable, infinite dimensional Hilbert space H. An n-tuple
T (Tt,..., T,) is a normal extension of S if Tt,..., T are normal commuting
operators on a Hilbert space K H and T is a normal extension of St. T. Ito
[11, Theorem 1] has given necessary and sufficient conditions in order that S
have a normal extension T. (Recently, A. Lubin [12] and B. Abramhamse [1]
have shown (independently) that S need not have a normal extension.) A
normal extension T of S is said to be minimal if the smallest subspace Of K
containing H and reducing Tt,..., T, is all of K. A minimal extension T is
unique up to unitary equivalence [11, Theorem 2].
A vector Xo H is a joint cyclic vector for S if the smallest subspace of H

containing Xo and invariant under S t, S is all of H. To construct examples,
let t be a measure with compact support in C". (By measure is meant a positive,
finite measure on the Borel subsets of C".) Let H2(/) be the L2(/)-closure of.,
the polynomials in z (zt, z.). Define operators Wu on L2(/) by
(Wiuf)(z) zif(z (multiplication by z,)and let

V Wln2.).
Then U--(Utu, U.u) is an n-tuple of pairwise commuting subnormal
operators and the constant function 1 is a joint cyclic vector. Furthermore
Wu (Wtu, Wu) is a minimal normal extension.

THEOREM 0. Suppose S (St,..., Sn) is an n-tuple of pairwise commuting
subnormal operators on H with a joint cyclic vector Xo ofnorm 1. Suppose that S
has a commutin# normal extension T (Tt, T) on K H and suppose T is
minimal. Then there exists a Borel probability measure bt with compact support in
C and there exists a unitary operator V: K-, L2(/z)such that Vxo= 1,
VH H2(/0 and T V*W V, 1 < < n. in particular, S - U, 1 <_ < n.

Proof. Let be the smallest *-subalgebra of Ae(K)which contains Tt,
T and I. The theorem is just the spectral theorem applied to the algebra od plus
the GelfandoNaimark theorem.
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COMMUTING SUBNORMAL OPERATORS 507

Let m. be Haar measure on the unit torus "P’ in O. Then U Urn. is an
n-tuple of commuting unilateral shifts of infinite multiplicity. The purpose of
this paper is to investigate when an n-tuple ofcommuting subnormal operators
S is unitarily equivalent or quasisimilar to U. We will write S U via V if V is
unitary and VS UV, i.e., VS U V, 1 < < n. Similarly, S U via X (simi-
lar) if X is invertible and XS UX, and S U via (X, Y) (quasisimilar) ifX
and Y are quasiinvertible (1-1 and dense range), XS UX, and SY YU.
For n 1, the problem at hand has a nice solution found by S. Clary [3, 4].

Let supp denote the closed support of the measure , and let

{z c": Iz, <

A measure t is said to be of type if supp g A-, g0= g lr m and
log (dgo/dm) dm> -oo. Clary showed that U, U if and only if g is of

type . By a result of Hoover [10], if supp g T, then U, U if and only if
U,-U.

Clearly, if S U, then S has a joint cyclic vector. W make the additional
assumption that S has a normal extension, In this case there is a measure # such
that S U,. We will say that 6 HZ(/) is cyclic if b is a joint cyclic vector for
U,, that is, if . qb is dense in .H2(t).

THEOREM 1. Let/ be a measure with compact support in C". The followino
statements are equivalent.

(1) U U.
(2)

dtI log -. din. >

and UjU * whenever j # k, 1 < j, k < n.Uklt Ujlt
H2(3) d# Ib 12 dmn, where d? (m,) is cyclic.

THEOREM 2. Let I be a measure with compact support in Cn. Then U U
if and only if

(a) there is a cyclic function ck H2(m,) such that

d#I1 -<
and

(b) there is a cyclic function H2(g) such that

f Ipl’ I,1 d. _< f Ipl dm.for each pc ..
In the next two sections we take up the proof of these theorems. Along the

way we will develop several properties of pairwise commuting subnormal oper-
ators. In the last section, examples are given which show that the situation for
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n > 1 differs substantially from that for n 1. This has implications regarding
the possible boundary values of outer and cyclic functions in H2(mn).

Section 2

This section begins with a lemma on the joint spectrum. Let

A (A An)
be an n-tuple of pairwise commuting operators on H and let 9.I be an abelian
subalgebra of (H) containing A t, An and I. Denote the joint spectrum of
A with respect to by a(A).

LEMMA 1. Let 9.I be an abelian subalgebra of .Z(H) and let

A= (At, An)
be an n-tuple of elements of 9.1. Suppose Pt,..., Pk . Then.

a(pt(A), Pk(A))= {(Pt(2), Pk(.)): 2 try(A)}.
In particular, ifk 1 and 9.I is inverse closed, then a(p(A)), the usual spectrum of
p(A), equals p(a(A)).

In the absence of a joint cyclic vector, a useful representation of commuting
subnormal operators seems out of reach. For their normal extensions we have
the following theorem. For a set of operators on a Hilbert space H, 60’ and "denote the first and second commutants of, respectively, where 6 is the set of
all operators on H which commute with each element of and "= (’)’.
THEOREM 3. Let T (T, T) be an n-tuple ofpairwise commuting normal

operators on K and let 9.I {T, T}". Then there exists a projection-valued
spectral measure P with supp P a(T) such that

T/-- f z dP(z), 1 n.

Proof. The proof of this theorem closely parallels the proof of the spectral
theorem for a single normal operator as in [7]. The necessary spectral mapping
theorem is provided by Lemma 1. That supp P try(T) is proved using a
theorem of Cobum and Sehechter [5, Theorem 2], which shows that
if and only if there exists e > 0 such that

I[(Tj 2j)f >_ e, f for each f K.
j=l

The relationship between the spectrum of a subnormal operator S and the
spectrum of its minimal normal extension T is well understood (of. [2]). In
particular, tr(T) tr(S) and &r(S) a(T). This implies that tr(S)is tr(T)
together with some "holes" of tr(T). The statements about spectrum which
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generalize to the joint spectrum of commuting subnormal operators with com-
muting normal extensions are a(T) a(S) and tr(S) tr(T)^, where for a com-
pact subset E of Cn, E denotes the polynomially convex hull of E.

THEOREM 4. Let S (St, Sn) be an n-tuple ofpairwise commutina subnor-
mal operators on H with minimal normal extension T (Tt,..., T) on K. Let
9.1 {Tt, T}" and let f8 be the subal0ebra of .q’(H) generated by S , S,
and i. Then

(1) at(T)c o’a.(S), and
(2) try(S)is the polynomially convex hull of trr).

Proof. Let P be the spectral measure such that T zi dP(z), 1 n. By
Theorem 3, supp P a(T). Suppose 2 a,,(S). To prove (1) we must show
that 2 supp P. Without loss of generality, we will assume that 2 0. There
exist bounded operators B t, B " such that B St +...+ BS I.
Choose e such that

0 <e < ([Ina +’"+ IInll)-.
Let E {z C" z, e} and let K P(E)K. Then K reduces T, T.
We will show that K is orthogonal to H and, consequently, that K 0. For
f H and # K

( o)= ((BS +...+ BS) O)
C J

j=(jl jn)
j+...+=
j0

J

Therefore,

I(f, )1 Ilfll E c IIn ’’’" liB. I1"11’
0k.

That is, ( g) 0, and so K 0. But this is possible only if 0 upp P.
To prove (2)note that a(S)is polynomially convex [6, Theorem III.1.4]. In

view of (1), supp P a(S). Suppose 2 (supp P). We must show that
2 a(S). Without loss of generaty, 2 0. Let be the Bach algebra gen-
erated by with no Ilfll sup {If(z)l’z supp P}. The maximal ideal
space of ff may be identified with (supp P) [6, Theorem 111.1.2]. Since
0 (supp P), there exist functions ft, in ff such that zt f +’"+
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z f 1 on supp P. It is easily seen that if

then B s and BS +...+ BS I. That is, 0 a(S).

$. Clary has shown [3] that quasisimilar subnormal operators have equal
spectra. While it is not known whether the corresponding statement for joint
spectrum is true, we do have the following result.

PROPOSITION 1. Let p and v be measures on Cn with compact supports. If
U U, then (supp #)^ (supp v) ^.

Proof. Suppose U U, via (X, Y). We will show that supp #
(supp v)^. Suppose 2 supp # but 2 (supp v)^. Then there is a polynomial

such that Ip(2)l > d sup supp v}. We may assume that
Ip(2) 1. Choose d’ such that d < d’ < 1 and let 0 be an open set such that
60 and Ip(z) >d for each z60. Let ,=Y1. Then for each k>0,

pp Y(p) and, therefore,

On the other hand

f P (d’) fo I’P
Since 2 6 supp # and Y has dense range, o l@ 12 d# 4: 0. Therefore, we have

(d’)2k fo I 12 d# <_ d2kll Yll 2 f dv

for all k > 0, which is impossible. Hence, our assumption that 2 (supp v)
must be false.

The Poisson kernel representation shows that each point of A is a bounded
point evaluation for H2(m,). In general, if # is a compactly supported measure
on C, then 2 C is a bounded point evaluation (b.p.e.) for H2(/) if there exists
a constant C > 0 such that <- C IIpll. for every polynomial p.

PROPOSITION 2. A point 2 C" is a b.p.e, for H2(//)/f and only if

( ker (U’,- [i)= {0}.
j=l
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COROLLARY 1. Let 9.I be a closed abelian subalgebra of L’(H2(#))which
contains UI,..., U, and I. If 2 is a b.p.e, for H2(#), then 2 tr(U,).

COROLLARY 2. Let # and v be measures with compact support in Cn. Suppose
there exists a bounded operator X" H2(#)--. H2(v) with dense ranoe satisfying/
XU U X. If 2 is a b.p.e, for H2(v), then 2 is a b.p.e, for H2(#).

COROLLARY 3.
point evaluations.

IfU Uv, then H2(#) and H2(v) have the same bounded

COROLLARY 4. if U U, then tr(U)= (An) -, where 9.I is any closed,
abelian subalgebra of (H2(#)) containing UI,..., Un and I.

Proof. In view of Proposition 1 and Theorem4, tr(U) (A)-. The result
follows from Corollary 1 and Corollary 3.

Section 3

We now turn to the problem of characterizing those measures/ for which
Uu U. To begin, we examine the measure # restricted to the boundary of
A. For n 1 the quasisimilarity of Uu and U. implies that # Ix m. For n > 1,
we must have/]r ’ m, but what can be said about # restricted to the indistin-
guished boundary of A (that part of the boundary disjoint from "P’)? The
answer in the following proposition allows us to construct a measure v with
supp v T such that

f P 12 d# _< f P 12 dv for each p #n.

Let tr be a permutation of the first n integers and define

"C" Ck (k<n)
by n,k(Z)= (Z,t),

PROPOSITION 3. Let # be a measure with supp # c (An)-. Suppose there
exists an operator Y" H2(mn)--, H2(#) with dense range satisfying YU = UY.
Then for each k and each a, #(Tr-kX(E))= 0 fbr every set E "F’ of ink-measure
zero. In particular, # Ir " mn. Furthermore, there is a cyclicfunction H2(#)
such that

f Ipl2 f Ipl2 dmn for every p .
Proof. Suppose Y[I 1 and let Y1. We assume that tr is the identity

permutation; the general case follows by a similar argument. Define a measure
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v on Tk by v(E)= ,_ttE ck 12 d#. For any polynomial p ,
f P 12 dv f p(zt, z)I (z)I d#(z)

<- f P(Zx’"" z,)l2 dmn(Z)

But on Tk every trigonometric polynomial (in z t, z and t, k) agrees in
modulus with a polynomial in k. Furthermore, the positive trigonometric
polynomials are uniformly dense in the positive continuous functions on Tk.
Therefore, h dv < h dmk for every positive continuous function on Tk. This
is possible only if v , mk. In other words, ,_ ttE 14)12 d# 0 for every Borel
set E Tk with m,(E) 0. Since Y has dense range, I1 > 0 a.e. [#]. Therefore,
#(n-k (E)) 0 whenever E T and ms(E) 0. The last two statements of the
proposition follow by taking k n in the above argument.

Suppose # is a measure carried by (A)- for which #(nk (E)) 0 for each set
E Tk of mk-measure zero. Then we will say that # 1, the restriction of # to
the boundary of A, is absolutely continuous (with respect to Lebesgue meas-
ure). A continuous function 4) on A is said to be n-harmonic if it is harmonic in
each variable separately (ef. [13, page 16]).

PROPOSITION 4. Let # be a measure carried by (A")- and suppose # IoA, is
absolutely continuous. Then there exists afunction R L(m) such that R >_ 0
a.. [m,] and

f(a,)_ ck d#= fr (R, + m)dm,,
for everyfunction c which is continuous on (An) and n-harmonic in An. Further-
more, if #(An) > O, then there is a constant c > 0 such that Ru >_ c a.e.

Proof. Let

E-- {z: z<j)l 1, 1 <_ j < k, and z<l < x, k < j < n}.

Then ,-i o Eol d(An)-\T. For each a and for each k we will construct a
function Rrk Lt(m,,) such that Rok >_ 0 and JEo, b d# j Ro, dmn for every
function b which is continuous on (A) and n-harmonic in A. Assume for now
that 4)> 0. As before, we assume that a is the identity permutation. Write
z (z’, z"), where

z’= (z,, Zk) and z"= (z+t, z,,).
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We have

f., d# I, (2’, ") d,(’, 2")

rE., -, c(z’, w)Pz,,(w)dm.-k(W)d(z’, z")

L-, f., ,(z’, w)P.,,(w)ap(z’, z")amn-k(w).

Define a measure v on Tk by

f fz,,(w) dp(z’, z"),v()

en v is positive and finite for almost every (with respect to mn_k) W. Fuher-
more, v mk by hypothesis. If

g,(z’, w)= dv,
(’,

then

f_ f. (z’, w)P,,(w) d,(z’, z") dm._k(W

f_, f (z’, w)R.k(Z’ W)dmk(Z’

Next, dee go on by go(w)= P(w)d(z). en

fa" *(z)dg(z) fa, I *(w)P:(w)dm(w)dg(z)

f ,(w)o(w)(w).

Notice that the above computations show that R. and Ro are in Lt(). ere-
fore, we may drop the requirement that $ be positive.

Finally, let Ru Ro +- R.k, where the inner sum is over those per-
mutations of the first n integers for which (k + 1)< (k + 2)<-.. < (n).
(is restriction on is merely a devi to avoid duplication; different choices
of a #ve rise to the sine set E.k whenever k < n- 1.)
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If #(A") > 0, then the function Ro is positive and lower semicontinuous (cf.
[9, pp. 454-455]).

COROLLARY 5.
tion, then

If# is a measure which satisfies the hypotheses ofthe proposi-

(f lp[2 d# f lpl2 Rg +- dm

for every polynomial p .
Proofi Let tk be the function which is continuous on A" w "P’, n-harmonic

in A" and agrees with [p [2 on T". Then b is a trigonometric polynomial, hence
continuous in (A")-. Since [p is n-subharmonic, P = <- in A"; by continu-
ity, this inequality holds throughout (A")-. Applying the proposition to b, the
proof is complete.

COROLLARY 6. If# is a measure which satisfies the hypotheses ofthe proposi-
tion, then H(mn)c H2(/t).

COROLLARY 7. Suppose the measure # satisfies the hypotheses ofthe proposi-
tion and suppose mn , #. Define a measure v by

dr= R, + dmn.

if n2(v) is cyclic, then there exists a cyclic function e n2(/) such that
a.e. [m,] and such that P I1; d _< $ P I" ’ dfo each p

Proof. Suppose H2(v) is cyclic. Choose polynomials Pk such that Pk
in n2(v). The sequence {Pk} is Cauchy in n2(/) by Corollary 5 and hence has a
limit H2(/). Since mn is absolutely continuous with respect to/ and v, we
have a.e. [m,]. Again by Corollary 5, for p , ppl d# <_

PPk 12 dr. Hence,

f Iplell’ d <_ f 1p121012

Finally, let q by polynomials such that q 1 in HZ(v). Then

f ll- qk 12 d# lim f ll- qpl d

lim f 1 qkP 12 dv
joo

f II qkbl2 dv.

Therefore, is cyclic.
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LEMMA 2. Let lz be a measure carried by (An)-. Suppose there is an operator
X" H2(/z) H2(mn) such that X has dense ranoe and XU UX. Then there
exists a cyclic function p H2(mn) such that

d#I, <- ma.e. [m.].

Proof. We may assume that IIxl[-- 1. If tk x1, then Xp pdp for each
polynomial p . Since X has dense range, tk is cyclic.
Forf H2(/),

Ilxfll..-- lim II(zl z,.)"xfll,.

lim IIX(z
koo

< lim II(z

In particular, for p ,, P I1 din. <_ [p [z dto. Arguing as in the roof
of Proposition 3, we may conclude that j h lb 1 dm,, < h d#o for every posi-
tive continuous function h. This is possible only if

d#I, -< a.e. [mn].

Proofof Theorem 2. Suppose U, U. By Proposition 1, supp/z c (An) -.
Statement (a) follows from Lemma 2 and (b) from Proposition 3.

Conversely, suppose (a)and (b)are true. By (b), z1... zk.nl2 Iff 12 d/z < 1
for every choice of kl,..., kn, k_>0. This is possible only if
Cn\(An)- [I//[2 d# 0. Since q is cyclic, this implies that supp # c (An)-. We
may define bounded operators

X: nZ()--, nZ(m,,) and Y: HZ(m,,) n()
by the requirement that Xp ckp and Yp qp for each p 6 ,. The operators
X and Y have dense range because b and q are cyclic. By Proposition 3 and (a),
# Ix. and mn are mutually absolutely continuous. It follows easily that Y is
quasiinvertible. Finally, suppose Xf= O. Clearly, f= 0 a.e. Iraqi. It is easily
verified that there is a cyclic function h 6 n2(#)such that h b@ a.e. [mn].
Combining (a) and (b), we have

I I/llhl dv<_f I/l dr=O;

that is, f O.

We now turn to the proof of Theorem 1. Let Z be the set of all n-tuples of
integers and let Z be those elements ofZ whose coordinates are all nonnega-
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tive. The set Z" with the operation of addition is a group. Let F be a subsemi-
group of Z which contains Z5 and such that

r -r ((0, 0)},
while F -F Z. Let A be the set of those continuous functions on T"
whose Fourier coefficients vanish off F. Then A is a Dirichlet algebra (cf. [8])
and m is a multiplicative measure on A. Let Ao be those elements f e A for
which fdm O. Let # be a measure on T. A generalized version of Szeg6’s
Theorem states that

inf {l-f12d#=exp logdmn.fAo

LEMMA 3. Suppose supp/ c A and suppose

dtf log -mdmn > -o.

Then 0 is a b.p.e, for H2(#).

Proof. We may assume that # is carried by T. Let fo be the orthogonal
projection of 1 into the closure of Ao in/(/). By the generalization of Szego’s
Theorem mentioned above, fo 4 1. Let tk be the orthogonal projection of
1 -fo into H2(/). Then tk is not zero because (b, 1)= (1 -fo, 1)4 0. But

ker
j=l

because for p , (U, p) (b, zp) (1 -fo, zip)= 0. In view of Proposi-
tion 2, the proof is complete.

Proof of Theorem 1. (1)=(2). Suppose Uu U. Then Vl,,..., Un, are
isometries, which implies that supp/z c T. By (a)of Theorem 2 and
Proposition 3,

d#f log --m dmn >
and/z , m,. A simple computation using the unitary equivalence shows that
Uj,U U Uj, whenever j k.

(2) (3). Suppose (2) holds. By Lemma 3 there exists

__
ker U

such that I1 ,11 --1. Since u, u are commuting isometries and
Ujl U Ukl* Ujl for j k, it is easy to verify that Il2 d# dm or

dm. Since/z is a finite measure, ff- e L2(m). Furthermore, for
jZn,

(zj, - ),,, (zd/, 1)u 0
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whenever Jk is negative for some k, 1 <_ k < n. That is, dp - H2(m,,). That
b is cyclic follows from the fact that b- H2(g).

(3) (1). Trivial.

Section 4

If Uu U, several properties of/ follow immediately.

(1) supp/ (A)-.
(2) The restriction of # to the boundary of A is absolutely continuous.
(3) log (dv/dm,,) dm,, > -c.
(4) If o is the restriction of V to , then Uo U.

For n 1, properties (1), (2), and (3)imply that U, U. Ifn > 1, however,
properties (1(4) do not imply that U, U. Even ifsupp = , (F(3) do
not imply that U, U.

Example 1. Define the meure a on T2 by

d(z, w)= z- w 12 dm2(z, w).
en there does not exist an operator X: H2() n2(m2) such that
XU UX and such that (X1)(0) 0. In other words, there is no outer func-
tion e n2(m2)such that

](z, w)12 ]z w 12 a.e. [m2].

Prooy Suppose x" n2()n2(m2) d XV,.= V,X, i= 1, 2. Let
X1, and write a + , where 1(0)= 0. Let p(z, w)= =o -k.

en we must have

f P, 121 b 12 dm2 <_ [1X 2 f Pn 121 z w 12 dm2 2 IlX .
Since (Pn, Pn b 0,

f Ip.cbl2 dm2 > lal2 f Ipl2 dm2 ]al2(n + 1).

This is possible only if a 0.

Example 2. Define h /-?(m2) by h(z, w)= .=o (k + 1)-2/3kWk, and
define a measure # by dt= hl2 dm2. If Y" H2(m2)--,H2(t)such that
YU= Uo, Y, i= 1, 2, then (Y1)(0)=0. In particular, Y cannot be
quasiinvertible.

Proof This proof is similar to the previous one. Let b Y1, and write
a + b where tk (0) 0. (Since dl.t/dm2 > c > 0, 0 is a b.p.e., and so (0) is
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well-defined.) For the polynomial p, defined in the last proof

f Ip.dphl 2 dm2 < IIY]l 2 f ]p.]2 dm2 I]Y[]2(n + 1).

Since (p,, p,bx)u 0, we must have lal Ip.hl dm2 < IIYll2(n + 1). One
may check that

f p, hl2 dm2 >_ c(n + 1)5/3

Thus, we must have a 0.

Example 3. Let # be the measure defined in Example 2. Let

E {(z1, z2, z3) C3: Iz, Izzl 1 and Z3 0},
and define a measure v carried by T3 w E by

v 173 m3 and dr(z1, z2, o)= a#(zl, z2).
Suppose there exists an operator Y: H2(m3) H2(/z) such that YU Uu Y. Let
b Y1 and let

(z,, z,.)= (z,, z, 0).
Then e HZ(!) and the operator I7: HZ(mz) HZ(l) defined by ITf= f is
bounded. As shown in Example 2, this implies that b(0) (0) 0. Therefore,
Y cannot have dense range.

Example 4. Suppose h 2’=o a,,’w" L2(mz) with [Ihll,_ 1. Then
there exists a cyclic function f e HZ(m,)such that hl If a.e. [mz] if, and
only if, hl= 1 a.e. [m2].

Proof Suppose there is a cyclic functionf H2(m2)such that Ifl Ihl
a.e. [mz]. Define a measure / by d/z h 12 dmz. By Theorem 2, there is a
unitary operator X" HZ(#)--. H2(m,) such that Uu U via X. If X*I, then
$ ker U. ker U. and I$12 d dm2; that is,

I Izlf z a.e. [m].
But, it is easy to show that ker U ker U is spanned by the constant
function 1.

To see a consequence of Example 4, supposef(z, w) 2z w. Then there is
no outer function 9 n2(m2)such that If 12 Iv 12 a.e. [m2]. The reason is
that 12z w 12 w on T2, and consequently, there is no cyclic function
9 n2(m2)such that

101 12z-wl a.e. [mz].
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Furthermore, g cannot be outer because an outer function bounded away from
zero is easily seen to be cyclic. This example also shows that unlike the case
n 1, we can have Uu U but U, g U, where Uu, U.u are isometrics.
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