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COMMUTING SUBNORMAL OPERATORS
SIMULTANEOUSLY QUASISIMILAR TO UNILATERAL
SHIFTS

BY
WiLLIAM W. HASTINGS

Section 1

Let S= (S, ..., S,) be an n-tuple of pairwise commuting subnormal opera-
tors on a separable, infinite dimensional Hilbert space H. An n-tuple
T=(T,,..., T;) is a normal extension of Sif T, ..., T, are normal commuting
operators on a Hilbert space K > H and T; is a normal extension of S;. T. Ito
[11, Theorem 1] has given necessary and sufficient conditions in order that S
have a normal extension T. (Recently, A. Lubin [12] and B. Abramhamse [1]
have shown (independently) that S need not have a normal extension.) A
normal extension T of S is said to be minimal if the smallest subspace of K
containing H and reducing T, ..., T, is all of K. A minimal extension T is
unique up to unitary equivalence [11, Theorem 2].

A vector x4 € H is a joint cyclic vector for S if the smallest subspace of H
containing x, and invariant under S, ..., S, is all of H. To construct examples,
let 1 be a measure with compact support in C". (By measure is meant a positive,
finite measure on the Borel subsets of C".) Let H?(u) be the I?(u)-closure of 2,,
the polynomials in z=(zy, ..., z,). Define operators W,, on I*(u) by
(W,.f)(z) = z; f(z) (multiplication by z;) and let

Ui =W, |H2<u>~

Then U, = (U,,, ..., U,,) is an n-tuple of pairwise commuting subnormal
operators and the constant function 1 is a joint cyclic vector. Furthermore
W, = (W,,, ..., W,,) is a minimal normal extension.

THEOREM 0. Suppose S = (Sy, ..., S,) is an n-tuple of pairwise commuting
subnormal operators on H with a joint cyclic vector x, of norm 1. Suppose that S
has a commuting normal extension T = (T, ..., T,) on K > H and suppose T is
minimal. Then there exists a Borel probability measure p with compact support in
C" and there exists a unitary operator V: K — I*(n) such that Vx,=1,
VH = H*(u) and T, = V*W,, V, 1 <i < n. In particular, S; = U;,, 1 <i<n.

Proof. Let A be the smallest *-subalgebra of #(K) which contains Ty, ...,
T, and I. The theorem is just the spectral theorem applied to the algebra U plus
the Gelfand-Naimark theorem.

Received March 7, 1977.

© 1978 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

506



COMMUTING SUBNORMAL OPERATORS 507

Let m, be Haar measure on the unit torus T" in C". Then U = U,,, is an
n-tuple of commuting unilateral shifts of infinite multiplicity. The purpose of
this paper is to investigate when an n-tuple of commuting subnormal operators
S is unitarily equivalent or quasisimilar to U. We will write S =~ U via Vif Vis
unitary and VS = UV, i.e, VS;= U;V, 1 <i < n. Similarly, S ~ U via X (simi-
lar) if X is invertible and XS = UX,and S ~ ~ U via (X, Y) (quasisimilar)if X
and Y are quasiinvertible (1-1 and dense range), XS = UX, and SY = YU.

For n = 1, the problem at hand has a nice solution found by S. Clary [3, 4].
Let supp u denote the closed support of the measure p, and let

A'={zeC" |z| <1}.

A measure u is said to be of type & if suppuc=A”, po=p|r<m and
| log (duo /dm) dm > — co. Clary showed that U, ~ ~ U if and only if u is of
type &. By a result of Hoover [10], if supp 4 = T, then U, ~ ~ U if and only if
u,~U.

”Clearly, if § ~ ~ U, then S has a joint cyclic vector. We make the additional
assumption that S has a normal extension. In this case there is a measure u such
that S = U,. We will say that ¢ € H?(u) is cyclic if ¢ is a joint cyclic vector for
U, that is, if 2, ¢ is dense in H?(u).

THEOREM 1. Let pu be a measure with compact support in C". The following
Statements are equivalent.

(1 u,=xU.

@) p<m,

jlog ;ﬁ dm, > — o0

and U;, U, = U¥, U;, whenever j+ k,1<j,k <n.
() du= |¢|* dm,, where ¢ € H*(m,) is cyclic.

THEOREM 2. Let u be a measure with compact support in C". Then U , ~ ~ U
if and only if

(@) there is a cyclic function ¢ € H*(m,) such that

du
2
4] Sdm,,

a.e. [m,]
and
(b) there is a cyclic function Y € H*(u) such that
J |p? |y du SI |p|? dm, for each p € %,

In the next two sections we take up the proof of these theorems. Along the
way we will develop several properties of pairwise commuting subnormal oper-
ators. In the last section, examples are given which show that the situation for
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n > 1 differs substantially from that for n = 1. This has implications regarding
the possible boundary values of outer and cyclic functions in H2(m,).

Section 2
This section begins with a lemma on the joint spectrum. Let
A = (Ab ceey An)

be an n-tuple of pairwise commuting operators on H and let 2 be an abelian
subalgebra of #(H) containing A4,, ..., A4, and I. Denote the joint spectrum of
A with respect to A by o4(A).

LEMMA 1. Let U be an abelian subalgebra of ¥(H) and let
A = (Al’ ceey A”)
be an n-tuple of elements of U. Suppose p,, ..., py € #,. Then

ou(p1(A), ..., Pu(A)) = {(p1(A), ..., Pu(d)): 4 € ou(A)}.

In particular, if k = 1 and W is inverse closed, then 6(p(A)), the usual spectrum of
p(A), equals p(oy(A)).

In the absence of a joint cyclic vector, a useful representation of commuting
subnormal operators seems out of reach. For their normal extensions we have
the following theorem. For a set & of operators on a Hilbert space H, &' and "
denote the first and second commutants of &, respectively, where &’ is the set of
all operators on H which commute with each element of & and &” = (£').

THEOREM 3. Let T = (T, ..., T,) be an n-tuple of pairwise commuting normal
operators on K and let W ={Ty, ..., T,}". Then there exists a projection-valued
spectral measure P with supp P = 04(T) such that

Ti=jzidP(z), I<i<n

Proof. The proof of this theorem closely parallels the proof of the spectral
theorem for a single normal operator as in [7]. The necessary spectral mapping
theorem is provided by Lemma 1. That supp P = ¢4(T) is proved using a
theorem of Coburn and Schechter [5, Theorem 2], which shows that 1 ¢ g (T)
if and only if there exists ¢ > 0 such that

T I —4)f >elf] for cach fe K.

The relationship between the spectrum of a subnormal operator S and the
spectrum of its minimal normal extension T is well understood (cf. [2]). In
particular, ¢(T) < ¢(S) and do(S) < o(T). This implies that o(S) is o(T)
together with some “holes” of ¢(T). The statements about spectrum which
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generalize to the joint spectrum of commuting subnormal operators with com-
muting normal extensions are ¢(T) < ¢(S) and ¢(S) = ¢(T)", where for a com-
pact subset E of C", E~ denotes the polynomially convex hull of E.

THEOREM 4. Let S = (Sy, ..., S,) be an n-tuple of pairwise commuting subnor-
mal operators on H with minimal normal extension T = (T}, ..., T,) on K. Let

A={T,,..., T,}” and let B be the subalgebra of £ (H) generated by S, ..., S,
and 1. Then

(1) 0y(T) = 0y-(S), and

(2) 04(S) is the polynomially convex hull of o(T).

Proof. Let P be the spectral measure such that T, = | z; dP(z),1 < i < n. By
Theorem 3, supp P = 0y(T). Suppose A ¢ 6.(S). To prove (1) we must show
that A ¢ supp P. Without loss of generality, we will assume that A = Q. There
exist bounded operators B,,..., B, 8" such that B,S,+ '+ B,S,= L
Choose ¢ such that

0<e<(IBy]l++|B,[)"

Let E, = {ze C" |z]| < ¢} and let K, = P(E,)K. Then K, reduces T, ..., T,
We will show that K, is orthogonal to H and, consequently, that K, = 0. For
feHand ge K,

(f; g) = ((BISI +o ann)kf; g)
cj(s.{l cee S{,nB.{l e B’.l'n A g)

— zj: Cj(BJi‘ B{,’_‘f, T‘{‘jl T:J‘ng).
Therefore,

|5 <A1 X eillByl* - B, M| TH -+ g
J
<& f1llal 2 ¢s1B1 (A
=1/ Mgl (1B |l + -+ + | B}

—0as k— oo.

That is, (f, g) =0, and so K, = 0. But this is possible only if 0 ¢ supp P.

To prove (2) note that g4S) is polynomially convex [6, Theorem II1.1.4]. In
view of (1), supp P = 0(S). Suppose 4 ¢ (supp P)*. We must show that
A ¢ 04(S). Without loss of generality, A = 0. Let € be the Banach algebra gen-
erated by &, with norm | f|| = sup {|f(z)|: z € supp P}. The maximal ideal
space of € may be identified with (supp P)* [6, Theorem IIL1.2]. Since
0 ¢ (supp P)", there exist functions fy, ..., f, in € such that z, f; +--- +
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z, f, =1 on supp P. It is easily seen that if
;= ([ apea)

then B;e€ B and B, S; + - + B,S, = 1. That is, 0 ¢ o4(S).

s
H

S. Clary has shown [3] that quasisimilar subnormal operators have equal
spectra. While it is not known whether the corresponding statement for joint
spectrum is true, we do have the following result.

PROPOSITION 1. Let u and v be measures on C" with compact supports. If
U, ~~U,, then (supp u)" = (supp v)".

Proof. Suppose U,~~U, via (X,Y). We will show that supp yuc
(supp v)”*. Suppose A € supp p but A ¢ (supp v)". Then there is a polynomial
p € @, such that |p(A)| > d = sup {|p(z)|: z e supp v}. We may assume that
|p(4)| = 1. Choose d’ such that d <d’ <1 and let O be an open set such that

A€ 0 and |p(z)| >d for each ze O. Let y = Y1. Then for each k >0,
Py = Y(p*) and, therefore,

[ 1ol 1w du< || Y)? [ |pP*dv<d®|Y]* [ d.
On the other hand
J1pPIw P du= @y [ | an
Since A € supp p and Y has dense range, o, |¢|* du # 0. Therefore, we have
@y [ [P dusd|v|? [as

for all k > 0, which is impossible. Hence, our assumption that A ¢ (supp v)*
must be false.

The Poisson kernel representation shows that each point of A" is a bounded
point evaluation for H?(m,). In general, if u is a compactly supported measure
on C", then 4 € C" is a bounded point evaluation (b.p.e.) for H?(u) if there exists
a constant C > 0 such that |p(4)| < C||p|, for every polynomial p €7 .

PROPOSITION 2. A point A€ C" is a b.p.e. for H*(u) if and only if

=

ker (U3, — %) # {0}

ji=1



COMMUTING SUBNORMAL OPERATORS 511

COROLLARY 1. Let U be a closed abelian subalgebra of £(H?(u)) which
contains Uy, ..., U,, and 1. If 1 is a b.p.e. for H*(u), then 1 € oq(U,,).

COROLLARY 2. Let u and v be measures with compact support in C". Suppose
there exists a bounded operator X : H*(u) — H%(v) with dense range satisfying
XU,=U,X. If Ais a b.p.e. for H*(v), then  is a b.p.e. for H*(p).

COROLLARY 3. IfU, ~ ~ U, then H*(u) and H*(v) have the same bounded
point evaluations.

CoROLLARY 4. If U, ~~ U, then o4(U,) = (A")", where U is any closed,
abelian subalgebra of £ (H*(u)) containing U,,, ..., U,, and I.

Proof. 1In view of Proposition 1 and Theorem 4, 6(U,) = (A")”. The result
follows from Corollary 1 and Corollary 3.

Section 3

We now turn to the problem of characterizing those measures u for which
U, ~ ~ U. To begin, we examine the measure u restricted to the boundary of
A". For n = 1 the quasisimilarity of U, and U, implies that u|; < m. Forn > 1,
we must have p | < m,, but what can be said about y restricted to the indistin-
guished boundary of A" (that part of the boundary disjoint from T")? The
answer in the following proposition allows us to construct a measure v with
supp v = T" such that

J |p? dusj |p|>dv for each pe &,

Let ¢ be a permutation of the first n integers and define
Ty: C"—>C* (k<n)
bY ou(2) = (Zo1)s - -5 Zowy)

PROPOSITION 3. Let pu be a measure with supp u < (A")". Suppose there
exists an operator Y : H*(m,) > H?(u) with dense range satisfying YU =U,Y.
Then for each k and each o, u(n 4! (E)) = O for every set E = T* of mi-measure
zero. In particular, p|pm < m,. Furthermore, there is a cyclic function ¢ € H*(u)
such that

[ 1pPI6P du< [ |p[? dm, for every pe 2.

Proof. Suppose ||Y|| = 1 and let ¢ = Y1. We assume that ¢ is the identity
permutation; the general case follows by a similar argument. Define a measure
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von T* by v(E) = (,.-1g |@|* du. For any polynomial p € #,,
[1pPav= |pzs, ... 2) | $C) P dutz)
< I |p(zss - zi) |* dmy(2)

=J. |p|? dm.

But on T* every trigonometric polynomial (in zy, ..., z;and Z, ..., Z,) agrees in
modulus with a polynomial in %,. Furthermore, the positive trigonometric
polynomials are uniformly dense in the positive continuous functions on T*.
Therefore, | h dv < | h dm, for every positive continuous function on T*. This
is possible only if v < m,. In other words, |, -1 |¢|* du = 0 for every Borel
set E = T* with m(E) = 0. Since Y has dense range, |¢| > Oa.e. [u]. Therefore,
w(r; (E)) = 0 whenever E = T* and m(E) = 0. The last two statements of the
proposition follow by taking k = n in the above argument.

Suppose u is a measure carried by (A")~ for which p(rn;,!(E)) = 0 for each set
E = T* of m-measure zero. Then we will say that u|,,., the restriction of u to
the boundary of A", is absolutely continuous (with respect to Lebesgue meas-
ure). A continuous function ¢ on A" is said to be n-harmonic if it is harmonic in
each variable separately (cf. [13, page 16]).

PROPOSITION 4. Let u be a measure carried by (A")™ and suppose i) is

absolutely continuous. Then there exists a function R, € L} (m,) such that R, >0
a.e. [m,) and

FRTSRIRETA

dm,

for every function ¢ which is continuous on (A")” and n-harmonic in A". Further-
more, if u(A") > 0, then there is a constant ¢ > 0 such that R, > c a.e. [m,].

Proof. Let
Eak={Z: |zd(j)| = 1, lsjsk, and Iza(j)l < 1,k<j$n}.

Then | Ji=1 (s, Ex = 0(A")™\T". For each ¢ and for each k we will construct a
function R, € L (m,) such that R,, >0 and [z, ¢ du = | ¢R, dm, for every
function ¢ which is continuous on (A”)~ and n-harmonic in A". Assume for now
that ¢ > 0. As before, we assume that ¢ is the identity permutation. Write
z = (', 2"), where

Z"'—’(Zl,..., Zk) and "= (Z“.l,...,z,,).
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We have

[ ¢du=] ¢ 2)du =)

Eqk Eqk

=[ [ 9@ WP () dmyy() di(2, 2

= LH j @(2, W)P,.(w) du(Z, 2°) dm, _(w).

Eok

Define a measure v,, on T by

vo(E) = jmm P,.(w) du(z, 2").

Then v,, is positive and finite for almost every (with respect to m,_,) w. Further-
more, v,, < m; by hypothesis. If

Dy

Ro(z, w) = dm,

),

then

Jo LI, 0 WP 00 dute ) dm-y(o)
=] 9 wRale, w) dmy(z) dm )

= [ $ERa(:) dm,(c).
Next, define R, on T" by Ro(W) = {4 P,(w) du(z). Then

.[ an o(z) du(z) = Ln J-“ d(W)P,(w) dm,(w) du(z)
= L,, d(w) J'M P,(w) du(z) dm,(w)

= [ SRo(w) dmy(w)

Notice that the above computations show that R, and R, are in L!(m,). There-
fore, we may drop the requirement that ¢ be positive.

Finally, let R, = Ry + Y %=1 3, R, where the inner sum is over those per-
mutations of the first n integers for which o(k + 1) < a(k +2) < - < a(n).
(This restriction on o is merely a device to avoid duplication; different choices
of ¢ give rise to the same set E_, whenever k <n — 1.)
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If 4(A") > 0, then the function R, is positive and lower semicontinuous (cf.
[9, pp. 454-455)).

COROLLARY 5. If uis a measure which satisfies the hypotheses of the proposi-
tion, then

d
f [p|? dusj |p|2(R“+d—'::—;)dm,,

for every polynomial p e %,

Proof. Let ¢ be the function which is continuous on A" U T", n-harmonic
in A" and agrees with |p|* on T". Then ¢ is a trigonometric polynomial, hence
continuous in (A")". Since |p|? is n-subharmonic, |p|* < ¢ in A"; by continu-
ity, this inequality holds throughout (A")”. Applying the proposition to ¢, the
proof is complete.

COROLLARY 6. If u is a measure which satisfies the hypotheses of the proposi-
tion, then H*(m,) = H?(u).

COROLLARY 7. Suppose the measure i satisfies the hypotheses of the proposi-
tion and suppose m, < u. Define a measure v by

dv= (R” + ap )dm,,

dm,

If Y € H3(v) is cyclic, then there exists a cyclic function § € H*(u) such that
¥ =y ae [m,) and such that | |p*|§|* du < | |p|*|¢|* dv for each p € Z,.

Proof. Suppose € H?(v)is cyclic. Choose polynomials p, such that p, — ¥
in H?(v). The sequence {p,} is Cauchy in H?(u) by Corollary 5 and hence has a
limit € H?(u). Since m, is absolutely continuous with respect to u and v, we
have =y ae [m,). Again by Corollary 5, for pe 2, | |ppi|* du<
§ |ppi|? dv. Hence,

[ 1pP13R dus [ 1pP Iy I v

Finally, let g, by polynomials such that g,y — 1 in H?*(v). Then

[ 11— a P du= tim [ |1 - qup;? du

j—o

j=o

= [ 11— qyP v

Therefore, ¥ is cyclic.
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LEMMA 2. Let p be a measure carried by (A")™. Suppose there is an operator
X: H?(u) » H*(m,) such that X has dense range and XU, = UX. Then there
exists a cyclic function ¢ € H*(m,) such that

du
|6 < —ae. [m]

Proof. We may assume that | X|| = 1. If ¢ = X1, then Xp = p¢ for each
polynomial p € %, Since X has dense range, ¢ is cyclic.
For f e H*(u),

I o = lim ey 2 s,
= klim "X(zl Zny‘f”mn
< lim ey 21,

= 1/ o

In particular, forpe 2, |p|*|¢ 2 dm, < | | pl’ duo. Arguing as in the proof
of Proposition 3, we may conclude that | k|¢|* dm, < | h dp, for every posi-
tive continuous function h. This is possible only if

lo]* <

du
pry a.e. [m,).
Proof of Theorem 2. Suppose U, ~ ~ U. By Proposition 1,supp u = (A")".
Statement (a) follows from Lemma 2 and (b) from Proposition 3.
Conversely, suppose (a) and (b) are true. By (b), | |24 -+~ z]* |y P du <1
for every choice of k..., k, k;>0. This is possible only if
fom@n- |W|* du=0. Since ¥ is cyclic, this implies that supp u = (A")”. We
may define bounded operators

X: H*(u)—> H*(m,) and Y: H*(m,)— H*(n)

by the requirement that Xp = ¢p and Yp = yp for each p € %, The operators
X and Y have dense range because ¢ and y are cyclic. By Proposition 3 and (a),
#|m and m, are mutually absolutely continuous. It follows easily that Y is
quasiinvertible. Finally, suppose Xf = 0. Clearly, f=0 a.e. [m,]. It is easily
verified that there is a cyclic function h € H?(u) such that h = ¢y ae. [m,).
Combining (a) and (b), we have

[1r Iz du<| |fPau=0;
™

that is, f= 0.

We now turn to the proof of Theorem 1. Let Z" be the set of all n-tuples of
integers and let Z”, be those elements of Z" whose coordinates are all nonnega-
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tive. The set Z" with the operation of addition is a group. Let I" be a subsemi-
group of Z" which contains Z". and such that

I'n -T={0,...,0)},

while I' U —T'=Z" Let A be the set of those continuous functions on T"
whose Fourier coefficients vanish off I'. Then A is a Dirichlet algebra (cf. [8])
and m, is a multiplicative measure on 4. Let A, be those elements f € A for
which ( fdm, = 0. Let u be a measure on T". A generalized version of Szegd’s
Theorem states that

du
— P du=
fl:lAfof [1—fPdu= exp‘J‘ log am,

LEMMA 3. Suppose supp u = A" and suppose

du
J log dm,
Then 0 is a b.p.e. for H*(u).

Proof. We may assume that u is carried by T". Let f,, be the orthogonal
projection of 1 into the closure of 4, in I?(u). By the generalization of Szego’s
Theorem mentioned above, f, # 1. Let ¢ be the orthogonal projection of
1 — f, into H?(u). Then ¢ is not zero because (¢, 1) = (1 — fo, 1) # 0. But

¢ e () ker Ut
j=1

because for p € 2, (U, p) = (¢, z;p) = (1 — fo, z;p) = 0. In view of Proposi-
tion 2, the proof is complete.

Proof of Theorem 1. (1)=(2). Suppose U,~U. Then U, ..., U,, are
isometries, which implies that supp 4 < T". By (a) of Theorem 2 and
Proposition 3,

Jlog;;: dm, > —©

and u < m,. A simple computation using the unitary equivalence shows that
U,;, Uk, = U, U, whenever j # k.

(2): (3). Suppose (2) holds. By Lemma 3 there exists € ()j-, ker U}
such that |y||,=1. Since Uy, ..., U,, are commuting isometries and
U, Ut = U,,,‘ U,, for j#k, it is easy to venfy that |y |? du=dm, or
dy = |y~ *|* dm,. Since u is a finite measure, y ~! € I>(m,). Furthermore, for
j € Zn,

@ ™ = (Y, 1), =0
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whenever j is negative for some k, 1 < k < n. Thatis, ¢ = y~! € H*(m,). That
¢ is cyclic follows from the fact that ¢~ * € H?(u).
(3)=(1). Trivial

Section 4
If U, ~ ~ U, several properties of u follow immediately.
(1) supp pu< (A")".
(2) The restriction of u to the boundary of A" is absolutely continuous.

() | log (du/dm,) dm, > — co.
(4) If p, is the restriction of u to T then U, ~~U.

For n = 1, properties (1), (2), and (3) imply that U, ~ ~ U.Ifn > 1, however,
properties (1)-(4) do not imply that U, ~ ~ U. Even if supp p = T% (1)-(3)do
not imply that U, ~~ U.

Example 1. Define the measure u on T? by
du(z, w) = |z — w|? dmy(z, w).

Then there does not exist an operator X: H?(u)— H?(m,) such that
XU, = UX and such that (X1)(0) # 0. In other words, there is no outer func-
tion ¢ € H?(m,) such that

|6l W) < |2 = w]? ac. [ms]

Proof. Suppose X: H*(u)— H*(m;) and XU, =U;X, i=1, 2. Let
¢ = X1, and write ¢ = a + ¢,, where ¢;(0) = 0. Let p,(z, w) = Y- Z*w" %
Then we must have

[ 1P| @ dmy < |XI2 [ |pa? |z = w]? dm, = 2| X |
Since (p,, pn 1) =0,
[ 1Pug? dm; > |af [ |pa? dm; = |a[*(n + 1)
This is possible only if a = 0.

Example 2. Define he I2(m,) by h(z, w)= Y, (k + 1)"2*2*w*, and
define a measure u by du= |h|> dm,. If Y: H*(m;)—> H*(u) such that
YU;=U,Y, i=1, 2, then (Y1)(0)=0. In particular, Y cannot be
quasiinvertible.

Proof. This proof is similar to the previous one. Let ¢ = Y1, and write
¢ = a + ¢, where ¢,(0) = 0. (Since du/dm, > ¢ > 0,0 is ab.p.e., and so ¢(0)is



518 WILLIAM W. HASTINGS

well-defined.) For the polynomial p, defined in the last proof
[ 1pagh* dmy < [ Y] [ |pf? dmy = [ Y]2(n + 1)

Since (pn, Pu 1), =0, we must have |a|* | |p,h|* dm, < ||Y|*(n + 1). One
may check that

[ 1puh? dmy = c(n + 1)°"
Thus, we must have a = 0.

Example 3. Let u be the measure defined in Example 2. Let
E={(zy, 23, 23) € C: |z;| = |2,] =1 and z3 =0},
and define a measure v carried by T®> U E by
vls=m; and dv(zy, z,, 0) = du(zy, z,).

Suppose there exists an operator Y: H*(m3) —» H?(u)such that YU = U, Y. Let
¢ = Y1 and let

&(Zh ;) = ¢(z1, 23, 0).

Then ¢ € H?(p) and the operator ¥: H?(m,)— H*(u) defined by Yf= ¢f is
bounded. As shown in Example 2, this implies that ¢(0) = $(0) = 0. Therefore,
Y cannot have dense range.

Example 4. Suppose h=Yx%_o a,z"W" € I>(m,) with |h|,,=1 Then
there exists a cyclic function f € H*(m,) such that |h| = | /| a.e. [m,] if, and
only if, |h| =1 ae. [m,)].

Proof. Suppose there is a cyclic function f € H?(m,) such that | f| = |h]|
a.e. [m,). Define a measure u by du = |h|* dm,. By Theorem 2, there is a
unitary operator X: H?(u) - H*(m,) such that U, = U via X. If ¢ = X*1, then
¢ € ker U¥, n ker U%, and |¢|* du = dm,; that is,

|| f P =1ae [m,)

But, it is easy to show that ker U}, n ker U%, is spanned by the constant
function 1.

To see a consequence of Example 4, suppose f(z, w) = 2z — w. Then there is
no outer function g € H?(m,) such that | f |* = |g|* a.e. [m,]. The reason is
that |2z — w| = |2 — zw| on T?, and consequently, there is no cyclic function
g € H*(m,) such that

lg| = |2z — w| ae. [m,].
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Furthermore, g cannot be outer because an outer function bounded away from
zero is easily seen to be cyclic. This example also shows that unlike the case

n

10.
1L

12.
13.

= 1, we can have U, ~ U but U, ¢ U, where U,,, ..., U,, are isometries.
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