THE STRUCTURE OF SPECIAL ENDOMORPHISM RINGS OVER ARTIN ALGEBRAS¹

BY

SVERRE O. SMALØ

Introduction

For a ring Λ and a finitely generated Λ -module M we have from [2], [3] a correspondence between Mod Λ (the category of left Λ -modules) and Mod End $(M)^{op}$ (the category of left End $(M)^{op}$ -modules). This correspondence is especially interesting when M is a finitely generated generator or a special type of finitely generated projective Λ -module.

In these cases we look at a pair (Λ, M) (resp. (Γ, P)) where Λ is any ring and M a finitely generated generator (resp. Γ is any ring and P a Wedderburn projective). (For definition of Wedderburn projective, see the text.) Given (Λ, M) we construct the pair (End $(M)^{op}$, (M, Λ)). (M, Λ) is then a Wedderburn projective End $(M)^{op}$ -module. (Given (Γ, P) we construct the pair (End $(P)^{op}$, (P, Γ)). (P, Γ) is then a finitely generated generator.) If we now use this map between pairs as above twice, we have the identity.

By using this correspondence on Artin algebras Λ with the Loewy length of Λ , $\mathscr{L}(\Lambda) = n$ and the finitely generated generator

$$M = \Lambda \amalg \Lambda / r_{\Lambda}^{n-1} \amalg \cdots \amalg \Lambda / r_{\Lambda},$$

M. Auslander has proved that the global dimension of End $(M)^{op}$ is less than or equal to *n*. This shows that any Artin algebra is isomorphic to End $(P)^{op}$ for a finitely generated projective Γ -module where Γ is an Artin algebra of finite global dimension. In [5] we give examples which show that the inequality in this result of M. Auslander is optimal. In [3], M. Auslander asked for an abstract characterization of the Artin algebras we get as End $(M)^{op}$ where M is as in the theorem referred to. This is partially done in [2] and the main purpose of this paper is to give a complete such characterization. We also give a complete characterization of the End $(M)^{op}$ when $M = \Lambda \amalg \Lambda/r_{\Lambda}$ for an Artin algebra Λ . We then see that if $\mathscr{L}(\Lambda) = 2$ we get End $(M)^{op}$ as a special case of both these cases.

Section 1

Here we give some general results from ring theory and some results from [2], [3] which we shall need in the following sections and give some conventions

Received October 5, 1976.

¹ This paper represents a portion of the author's Master's thesis, written under the direction of Dr. Idun Reiten at the University of Trondheim, NLHT.

^{© 1978} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

about notation. See [1] and [4] for general background in ring theory and homological algebra.

DEFINITION. Let Λ be a ring and A and $B \Lambda$ -modules. Then A is relatively injective to B if for every Λ -module X, homomorphism $f: X \to A$ and monomorphism $i: X \to B$ there exists a $g: B \to A$ such that the diagram

commutes.

For the proof of the following result we refer to [1, p. 186].

PROPOSITION 1.1. If A and B are Λ -modules for a ring Λ where $A = A' \amalg A''$ (direct sum) then A is relatively injective to B if and only if both A' and A'' are relatively injective to B.

Now let Λ be a ring, Mod Λ the category of left Λ -modules, M a finitely generated Λ -module and $\Gamma = \text{End } (M)^{\text{op}}$. Then M has a natural structure as an End (M)-module by $f \cdot m = f(m)$ for $f \in \text{End } (M)$ and $m \in M$. This structure will in a natural way induce a Γ -module structure on (M, X) for every X in Mod Λ given by $f \cdot g = g \circ f$ for $f \in \Gamma$ and $g \in (M, X)$.

We are now going to give some results about the functor (M, -). Let A be the full subcategory of Mod Λ consisting of the Λ -modules X such that there exists a presentation $\prod M \to \prod M \to X \to 0$ with the property that

$$(M, \llbracket M) \to (M, \llbracket M) \to X \to 0$$

is exact. Let **B** be the full subcategory of Mod Γ consisting of the (M, X) for some X in Mod. A. From [2, p. 3] and results of [3, Sections 2, 3, 4] we then have the following result.

PROPOSITION 1.2. (M, -): $\mathbf{A} \to \mathbf{B} \subseteq \text{Mod } \Gamma$ is a full and faithful functor, where (M, -) also denotes (M, -) restricted to $\mathbf{A} \subseteq \text{Mod } \Lambda$.

DEFINITION. Let add M denote the full subcategory of Mod Λ consisting of the Λ -modules which are summands of finite sums of copies of M and let Add M denote the full subcategory of Mod Λ consisting of the Λ -modules which are summands of arbitrary sums of copies of M.

PROPOSITION 1.3. (M, -) induces an equivalence between Add M and the full subcategory of Mod Γ consisting of the projective Γ -modules and between add M and the full subcategory of finitely generated projective Γ -modules.

See [2, p. 5] and [3, Sections 2, 3, 4].

PROPOSITION 1.4. If M is a finitely generated generator then A described above is all of Mod Λ .

See [2, p. 5] and [3, p. 247].

In the following let Γ be a ring, P a finitely generated projective Γ -module and $\Lambda = \text{End} (P)^{\text{op}}$. We then have the following results taken from [2, p. 15] and [3, p. 218].

PROPOSITION 1.5. The full subcategory **B** of Mod Λ consisting of the Λ -modules B = (P, X) for a Γ -module X is equivalent to Mod (Λ).

COROLLARY 1.6. (P, -): Mod $\Gamma \to \text{Mod }\Lambda$ will induce an equivalence between the full subcategory \mathbb{C}_P of Mod Γ consisting of the Γ -modules Y with presentation $\prod P \to \prod P \to Y \to 0$, and Mod Λ .

DEFINITION. Let Ker (P, -) be the full subcategory of Mod Γ consisting of the Γ -modules A such that (P, -)A = (P, A) = 0.

We now give some results about Ker (P, -) taken from [2, p. 17] and [3, p. 222].

PROPOSITION 1.6. (a) If $0 \to A' \to A \to A'' \to 0$ is exact in Mod Γ then A lies in Ker (P, -) if and only if A' and A'' lie in Ker (P, -).

(b) Ker (P, -) is closed under direct limits.

(c) For every Γ -module B there exists a unique maximal submodule $B' \subseteq B$ such that B' is in Ker (P, -).

(d) *If*

$$0 \to K' \to A' \xrightarrow{f} A \to K \to 0$$

is exact in Mod Γ , then (P, f) is an isomorphism if and only if K' and K lie in Ker (P, -).

We now give some useful definitions.

DEFINITION. The unique maximal submodule B' of B in Ker (P, -) is called the (P, -)-torsion of B.

DEFINITION. A Γ -module A is said to be (P, -)-torsionfree if the (P, -)-torsion of A is zero.

As before, let Γ be a ring, P a finitely generated projective Γ -module and $\Lambda = \text{End} (P)^{\text{op}}$. We will now describe a full subcategory of Mod Γ which also is equivalent to Mod (Λ) via the functor (P, -). But first we will describe a functor $G: \text{Mod } \Gamma \to \text{Mod } \Gamma$ [2, p. 23], [3, p. 221].

Let X be a Γ -module and X' = X/(P, -)-torsion X. Now consider the exact sequence

$$0 \to X' \to E_0(X') \xrightarrow{\phi} V \to 0,$$

where $E_0(X')$ is the injective envelope of Χ'. Let G(X) = $\phi^{-1}[(P, -)$ -torsion V] let $X \to G(X)$ be and the composition $X \to X/(P, -)$ -torsion $X \to G(X)$. Observe that if X is (P, -)-torsionfree then $X \to G(X)$ is a monomorphism. The operation of G on morphisms is natural and done in [2], [3].

PROPOSITION 1.7. Let Γ be a ring and P a finitely generated projective Γ -module. For an A in Mod Γ the following are equivalent.

(a) $(P, -): (\Gamma, A) \rightarrow ((P, \Gamma), (P, A))$ is an isomorphism.

(b) $(P, -): (X, A) \rightarrow ((P, X), (P, A))$ is an isomorphism for all X in Mod Γ .

(c) $A \rightarrow G(A)$ is an isomorphism.

(d) Extⁱ (K, A) = 0 i = 0, 1 and K in Ker (P, -).

(e) If $0 \to A \to E_0(A) \to E_1(A)$ is a minimal injective copresentation of A then $E_i(A)$ is (P, -)-torsionfree for i = 0, 1.

See [2, p. 24] and [3, pp. 221-223].

DEFINITION. The full subcategory of Γ -modules consisting of the Γ -modules A which satisfy the equivalent properties in Proposition 1.7 will be denoted by \mathbf{D}_{P} .

PROPOSITION 1.8. \mathbf{D}_{P} is equivalent to Mod Λ via the functor (P, -).

Further, \mathbf{D}_{P} has that following property.

PROPOSITION 1.9. The inclusion of $\mathbf{D}_{\mathbf{P}}$ in Mod Γ is left exact.

Now let Λ be an Artin algebra and M a finitely generated generator. Then of course Λ is in add M, so (M, Λ) is a finitely generated projective Γ -module where $\Gamma = \text{End } (M)^{\text{op}}$.

PROPOSITION 1.10. Let Λ be an Artin algebra, M a finitely generated generator and $\Gamma = \text{End} (M)^{\text{op}}$. Then the following hold.

(a) The natural ring homomorphism $\beta: \Lambda \to \operatorname{End}_{\Gamma} (M, \Lambda)^{\operatorname{op}}$ is an isomorphism.

(b) $((M, \Lambda), -) \circ (M, -) = ((M, \Lambda), (M, -)) = \mathrm{id}_{\mathrm{Mod}\,\Lambda}$

(c) For every Γ -module X, $((M, \Lambda), X)$ is a finitely generated Λ -module if and only if $T_{(M,\Lambda)}(X)$ (the submodule of X generated by all Im f where f: $(M, \Lambda) \to X$) is a finitely generated Γ -module.

(d) The natural ring homomorphism $(\Gamma, \Gamma) \rightarrow ((M, \Lambda), \Gamma), ((M, \Lambda), \Gamma))$ is an isomorphism.

See [2, p. 31] and [3, p. 221].

We are now going to give the definition of a Wedderburn module (see [2, p. 23] and [3, pp. 244–246].

DEFINITION. Let Γ be an Artin algebra. If P is a finitely generated projective Γ -module with the property that $(P, -): (\Gamma, \Gamma) \rightarrow ((P, \Gamma), (P, \Gamma))$ is an isomorphism, then P is called a Wedderburn Γ -module.

We now see that if Λ is an Artin algebra and M is a finitely generated generator, then (M, Λ) is a Wedderburn End $(M)^{op}$ -module.

PROPOSITION 1.11. Let Γ be an Artin algebra, P a Wedderburn Γ -module and $\Lambda = \text{End} (P)^{\text{op}}$. Then the following hold.

- (a) (P, Γ) is a finitely generated generator over Λ .
- (b) $(P, -): \Gamma^{op} \to \operatorname{End}_{\Lambda}(P, \Gamma)$ is an isomorphism.
- (c) The natural homomorphism $P \rightarrow ((P, \Gamma), \Lambda)$ is an isomorphism.

Now consider the map V between pairs given by V(R, A) =(End $(A)^{op}$, (A, R)) for a ring R and an R-module A. If we now let (R, A) be the pair (Λ, M) ((Γ, P)) when $\Lambda(\Gamma)$ is an Artin algebra and M a finitely generated generator (P a Wedderburn Γ -module), we see that V applied twice gives the identity and that (M, Λ) is a Wedderburn End $(M)^{op}$ -module ((P, Γ) a finitely generated End $(P)^{op}$ -generator).

DEFINITION. Let Λ be a ring and A a Λ -module. Then the socle of A is defined by Soc A = M where M is the maximal semisimple submodule in A.

DEFINITION. A Wedderburn Γ -module P is a minimal Wedderburn Γ -module if the only indecomposable summands in P are the projective covers of the simple modules in Soc $(E_0(\Gamma) \amalg E_1(\Gamma)$ (see [2, p. 33] and [3, pp. 255–256]).

PROPOSITION 1.12. Let Λ be an Artin algebra and M a finitely generated generator over Mod Λ . Then (M, Λ) is a minimal Wedderburn Γ -module where $\Gamma = \text{End} (M)^{\text{op}}$ if and only if every indecomposable injective Λ -module occurs as a summand of $E_0(M) \amalg E_1(M)$.

In the rest of this paper let r_{Λ} be the radical of the ring Λ . By the Loewy length $\mathscr{L}(\Lambda)$ of an Artin ring Λ we mean the least integer *n* such that $r_{\Lambda}^{n} = 0$.

Section 2

In this section we are going to give a complete characterization of End $(M)^{op}$ for an Artin algebra Λ and $M = \Lambda \amalg \Lambda/r_{\Lambda}$, where there is no restriction on the Loewy length of Λ .

DEFINITION. Let R be a ring and A an R-module. A submodule B of A is characteristic if whenever $f \in (A, A), f(B) \subseteq B$.

The following proposition is a generalization of a result stated in [2, p. 43] without proof.

PROPOSITION 2.1. Let Λ be an Artin algebra, $\{Q_1, \ldots, Q_s\}$ a complete set of nonisomorphic projective Λ -modules and for each of these let $Q_i \supset A_{0,i} \supset A_{1,i} \supset \cdots A_{m_i,i} = 0$ be a proper chain of submodules of Q_i with each $A_{k,i}$ a characteristic submodule of Q_i and $A_{0,i} = r_{\Lambda}Q_i$. Let

$$M = \coprod_{i} (Q_{i} \amalg Q_{i}/A_{m_{i}-1,i} \amalg \cdots \amalg Q_{i}/A_{0,i}) \quad and \quad \Gamma = \operatorname{End}(M)^{\operatorname{op}}.$$

Then Γ has the following properties:

(1) Every projective Γ -module P without proper projective submodules has a unique composition series with nonisomorphic composition factors.

(2) Let $\{P_1, \ldots, P_n\}$ be a complete set of nonisomorphic projective Γ -modules without proper projective submodules and let P' be an arbitrary indecomposable projective Γ -module. Then there exists a unique $i \in \{1, 2, \ldots, n\}$ such that $P'/r_{\Gamma}P'$ occurs as a composition factor in the composition series of P_i .

Proof. We first observe that since every simple Λ -module is in add M, the projective Γ -modules without proper projective submodules are exactly the projective Γ -modules of form (M, M_i) for a simple Λ -module M_i .

If we now look at one particular of these, we have the following exact sequences in mod Λ :

n....

$$\begin{array}{ccccccccc} 0 \rightarrow A_{0,i} & \rightarrow Q_i & \xrightarrow{pm_i} & M_i \rightarrow 0 \\ 0 \rightarrow A_{0,i} / A_{m_i-1,i} \rightarrow Q_i / A_{m_i-1,i} & \xrightarrow{pm_i-1} & M_i \rightarrow 0 \\ & \vdots & & \\ 0 \rightarrow A_{0,i} / A_{1,i} & \rightarrow Q_i / A_{1,i} & \xrightarrow{p_1} & M_i \rightarrow 0 \\ 0 \rightarrow 0 & \rightarrow Q_i / A_{0,i} & \xrightarrow{p_0} & M_i \rightarrow 0. \end{array}$$

Here Q_i is the projective cover of the simple Λ -module M_i and the maps are the natural ones. These sequences now give rise to the following exact sequences in mod Γ :

$$\begin{array}{cccc} 0 \rightarrow (M, A_{0,i}) & \rightarrow (M, Q_i) & \rightarrow (M, M_i) \\ 0 \rightarrow (M, A_{0,i}/A_{m_i-1,i}) \rightarrow (M, Q_i/A_{m_i-1,i}) \rightarrow (M, M_i) \\ \vdots & \vdots & \vdots \\ 0 \rightarrow (M, A_{0,i}/A_{1,i}) & \rightarrow (M, Q_i/A_{1,i}) & \rightarrow (M, M_i) \\ 0 & \rightarrow (M, Q_i/A_{0,i}) & = (M, M_i). \end{array}$$

Now let

 $B_{k,i} = \operatorname{Im} (M, p_{k,i})$

 $= \{f: M \to M_i | \text{ there exists } g: M \to Q_i / A_{k,i} \text{ such that } f = p_{k,i} \circ g \}.$ It now follows easily that

$$0 \subset B_{m_{i,i}} \subset B_{m_{i-1,i}} \subset \cdots \subset B_{2,i} \subset B_{1,i} \subset (M, M_i) = P_i$$

is a proper chain of submodules of P_i since $(M, Q_i/A_{k,i}), k = 0, 1, \ldots, m_i$, is a set of nonisomorphic indecomposable projective Γ -modules. Now an easy exercise using that each $A_{k,i}$ is a characteristic submodule of the projective Λ -module Q_i gives that Im $(M, g) = B_{k,i}$ for every nonzero Λ -homomorphism $g: Q_i/A_{k,i} \to M_i$.

To prove (1) it now only remains to show that P_i does not have other submodules than the ones constructed. This follows since (M, -) is a full and faithful functor and since projective covers exist in Mod Λ when Λ is an Artin algebra.

Property (2) now follows by the construction above, from the fact that every indecomposable projective Γ -module is of the form $(M, Q_i/A_{k,i})$. Observe that $\mathscr{L}(P_i) = m_i + 1$ if P_i is as in the proof of Proposition 2.1.

DEFINITION. An Artin algebra Γ is called a *pre unipro* Artin algebra if it satisfies conditions 1 and 2 in Proposition 2.1.

We now give a definition concerning the length of an End $(P)^{op}$ -module B in terms of a certain length of B as a Γ -module, where P is a projective Γ -module.

DEFINITION. Let Γ be an Artin ring, P a finitely generated projective Γ -module and B any finitely generated Γ -module. Then we define $l_P(B) = n$ where n is the number of composition factors in a composition series of B isomorphic to a simple summand in $P/r_{\Gamma} P$.

We now have the following lemma.

LEMMA 2.2. Let Γ be an Artin algebra, P a finitely generated projective Γ -module and B any finitely generated Γ -module. Then $l(P, B) = l_P(B)$ where l(P, B) is the length of (P, B) as an End $(P)^{\text{op}}$ -module.

Proof. Suppose first $l_P(B) = 0$. Then (P, B) = 0 and vice versa. We claim that (P, S) is simple as an End $(P)^{\text{op}}$ -module for every simple summand S in $P/r_{\Lambda}P$. Let $f: P \to S$ be a nonzero homomorphism and $g: P \to S$ any other homomorphism. Then there exists an $h: P \to P$ such that the diagram

commutes. In other words, f generates (P, S) as an End $(P)^{op}$ -module. f was arbitrary so (P, S) is simple as an End $(P)^{op}$ -module. Now the rest follows by induction.

We now give a complete characterization of the Artin algebras we get as End $(M)^{op}$ for an Artin algebra Λ and $M = \Lambda \amalg \Lambda/r_{\Lambda}$ with no restriction on the Loewy length of Λ . **THEOREM 2.3.** An Artin algebra Γ' is Morita equivalent to an Artin algebra Γ where $\Gamma = \text{End} (\Lambda \amalg \Lambda/r_{\Lambda})^{\text{op}}$ for an Artin algebra Λ if and only if:

(a) Γ' is pre unipro.

(b) $l(P) \leq 2$ for every projective Γ' -module P without proper projective submodules.

(c) $P/r_{\Gamma'}P \not\subseteq \Gamma'$ for every nonsimple projective Γ' -module P without proper projective submodules.

(d) Γ' is relatively injective to every projective Γ' -module P without proper projective submodules.

Proof. Suppose first that $\Gamma' = \text{End}(M)^{\text{op}}$ for an Artin algebra Λ and $M = \Lambda \amalg \Lambda/r_{\Lambda}$. Then Γ' is Monita equivalent to the ring $\Gamma'' = \text{End}(N)^{\text{op}}$ where $N = \coprod_i M_i$ for a complete set $\{M_i\}$ of nonisomorphic indecomposable summands in M by [1, p. 268]. Now from Proposition 2.1, Γ'' is pre unipro.

Let the equivalence from Mod Γ' to Mod Γ'' be given by F and the inverse by G. Let P be a projective Γ' -module without proper projective submodules. Then F(P) has the same property as Γ'' -module since equivalence preserves the lattice of submodules and projective modules [1, pp. 257-258]. So F(P) has a unique composition series with nonisomorphic composition factors. Now since G is exact, takes nonisomorphic modules to nonisomorphic modules, and preserves the lattice of submodules $P \simeq GF(P)$ has the same property, i.e., Γ' satisfies (1) in the definition of pre unipro Artin algebra.

Now let P_1, \ldots, P_n be a complete set of nonisomorphic projective Γ' -modules without proper projective submodules. Then $F(P_1), \ldots, F(P_n)$ is a complete set of nonisomorphic Γ' -modules without proper projective submodules. Now if P is any indecomposable projective Γ' -module there exists a unique *i* such that $F(P)/r_{\Gamma''}F/(P)$ is a composition factor in $F(P_i)$. Then $GF(P)/r_{\Gamma'}GF(P)$ is a composition factor in $GF(P_i)$ and this is unique. So we have that pre unipro is preserved by equivalence and therefore Γ' is pre unipro. Now suppose that $P/r_{\Gamma'}P \subseteq \Gamma'$ for a nonsimple projective Γ' -module P without proper projective submodules. Then $P = (M, M_i)$ for a simple nonprojective Λ -module M_i and since (M, -) is a full functor there exists a nonzero homomorphism $f: M_i \to M$ such that Im $(M, f) = P/r_{\Gamma'}P \subseteq \Gamma'$. Since M_i is simple f must be mono; therefore also $(M, f): (M, M_i) \to (M, M)$ is mono. This is a contradiction, since Im (M, f) was supposed to be $P/r_{\Gamma}P$.

To prove (d) consider the diagram

$$0 \to X \to P$$
$$\downarrow$$
$$\Gamma'$$

for every X such that $X \subseteq P$, where P is a projective Γ' -module without proper projective submodules. From (b) it follows that X = P or $X = r_{\Gamma'}P$ which is simple. If X = P, $X \to P$ must be an isomorphism since P is of finite length, so the diagram can trivially be completed to a commutative diagram. Now suppose l(P) = 2 and that $X = S = r_{\Gamma'} P$. From the proof of Proposition 2.1 we have that $P = (M, M_i)$ for a simple Λ -module M_i and that X = Im(M, p) where $p: Q_i \to M_i$ is a projective cover. We have then the diagram

$$(M, Q_i)$$

$$S \to P = (M, M_i)$$

$$\downarrow$$

$$\Gamma = (M, M).$$

But now (M, -) is an equivalence between add M and $p(\Gamma')$, the category of finitely generated projective Γ' -modules, so we get the diagram

$$\begin{array}{cccc} Q_i & \stackrel{p}{\to} & M_i \\ \downarrow^{g} & & \\ M_i & \to & M \end{array}$$

in mod Λ . Then since M_i is simple and Q has a unique maximal submodule, there exists an $h: M_i \to M_i$ such that the diagram

$$\begin{array}{c} Q_i \to M_i \\ \downarrow \swarrow_h \\ M_i \to M \end{array}$$

commutes. Then the diagram

$$(M, Q_i)$$

$$\downarrow$$

$$S \rightarrow (M, M_i) = P$$

$$\downarrow \swarrow$$

$$(M, M_i)$$

$$\downarrow$$

$$(M, M)$$

also commutes, i.e., Γ' is relatively injective to P.

To prove the converse we first need a couple of lemmas.

LEMMA 2.4. Suppose that Γ' satisfies conditions (a), (b), and (c) in Theorem 2.3 and let $P_{\Gamma'} = P_0(\operatorname{Soc} \Gamma')$ be the projective cover of $\operatorname{Soc} \Gamma'$. Then an indecomposable Γ' -module K is in Ker $(P_{\Gamma'}, -)$ if and only if $K \cong P/r_{\Gamma'}P$ for a nonsimple projective Γ' -module P without proper projective submodules.

Proof. Suppose $K = P/r_{\Gamma'}P$ for a nonsimple projective Γ -module P without proper projective submodules. Then $(P_{\Gamma'}, K) = 0$ by Lemma 2.2.

Now suppose K is an indecomposable Γ -module in Ker $(P_{\Gamma'}, -)$. Then the projective cover of $K, f: \coprod P_i \to K$, is such that all the P_i are indecomposable nonsimple projective Γ -modules without proper projective submodules. Because every simple summand in the socle of $\coprod P_i$ is a summand in $P_{\Gamma'}/r_{\Gamma'}P_{\Gamma'}$ it follows that Soc $\coprod P_i = \coprod \text{Soc } P_i \subseteq \text{Ker } f$, but $\coprod \text{Soc } P_i = \coprod r_{\Gamma'}P_i$, so K is semisimple. Therefore K is simple and isomorphic to $P/r_{\Gamma'}P$ for a nonsimple projective Γ' -module without proper projective submodules.

LEMMA 2.5. Let Γ' satisfy conditions (a), (b), (c), and (d) in Theorem 2.3 and let $P_{\Gamma'}$ be as in Lemma 2.4. Then $P_{\Gamma'}$ is a minimal Wedderburn Γ' -module.

Proof. If we are able to prove that $P_{\Gamma'}$ is a Wedderburn Γ' -module it is clear from the way we select $P_{\Gamma'}$ that it is minimal. Now let K be an indecomposable Γ' -module in Ker $(P_{\Gamma'}, -)$. Then from Lemma 2.4 we have the exact sequence $0 \rightarrow r_{\Gamma'} P \rightarrow P \rightarrow K \rightarrow 0$ for a projective Γ' -module P without proper projective submodules. From this sequence we get the long exact sequence

$$0 \to (K, \Gamma') \to (P, \Gamma') \to (r_{\Gamma'}P, \Gamma') \to \operatorname{Ext}'(K, \Gamma') \to \operatorname{Ext}'(P, \Gamma') = 0.$$

Now it follows from (c) that $(K, \Gamma') = 0$ and from (d) that $(P, \Gamma') \rightarrow (r_{\Gamma'}P, \Gamma')$ is epic, so Ext¹ $(K, \Gamma') = 0$, i.e., $P_{\Gamma'}$ is a Wedderburn Γ' -module.

We are now able to give the rest of the proof of Theorem 2.3. It follows from the general Wedderburn correspondence that $\Gamma' \cong \text{End} (P_{\Gamma'}, \Gamma')^{\text{op}}$ so it remains to show that $(P_{\Gamma'}, \Gamma')$ has as summands precisely the projective and the simple End $(P_{\Gamma'})^{\text{op}}$ -modules. This follows trivially because Λ is a summand and that every simple End $(P_{\Gamma'})^{\text{op}}$ -module is $(P_{\Gamma'}, P_i)$ for a projective Γ' -module P_i without proper projective submodules.

Section 3

In this section we are going to specialize our result from Section 2 to the case where Λ is an Artin algebra with $\mathscr{L}(\Lambda) = 2$ and $M = \Lambda \amalg \Lambda/r_{\Lambda}$.

THEOREM 3.1. An Artin algebra Γ' is Morita equivalent to an Artin algebra Γ where $\Gamma = \text{End} (\Lambda \amalg \Lambda/r_{\Lambda})^{\text{op}}$ for an Artin algebra Λ with $\mathscr{L}(\Lambda) = 2$ if and only if Γ' satisfies the following conditions.

(a) Γ' is a pre unipro Artin algebra.

(b) $l(P) \leq 2$ for every projective Γ' -module without proper projective submodules.

(c) $r_{\Gamma'}P = \coprod P_i$ for every indecomposable projective Γ' -module P with proper projective submodule, where the P_i are projective Γ' -modules without proper projective submodules.

(d) Every projective Γ' -module P without proper projective submodule is relatively injective to P.

Proof. Suppose $\Gamma' = \text{End} (M)^{\text{op}}$ for an Artin algebra Λ with $\mathscr{L}(\Lambda) = 2$ and $M = \Lambda \amalg \Lambda/r_{\Lambda}$. Then one easily sees that Γ' has the property claimed when one observes that $r_{\Gamma'}(M, Q) = (M, r_{\Lambda}Q)$ for every indecomposable projective Λ -module Q.

For the converse we need a lemma. Observe that property (c) in Theorem 3.1 implies property (c) in Theorem 2.3.

LEMMA 3.2. Suppose Γ' satisfies conditions (a), (b), (c), and (d) in Theorem 3.1. Then Γ' is relatively injective to every projective Γ' -module P without proper projective submodules.

Proof. The uniqueness in the definition of pre unipro and property (c) in Theorem 3.1 forces every $f: r_{\Gamma}P \to \Gamma'$ for a projective Γ' -module P without proper projective submodules to factor through a sum of copies of this P. So we have the picture

$$r_{\Gamma} P \rightarrow P$$

$$\downarrow$$

$$\prod P$$

$$\downarrow$$

$$\Gamma'$$

and by assumption this diagram can be completed to a commutative diagram

$$r_{\Gamma} P \to P$$

$$\downarrow \checkmark$$

$$\prod P$$

$$\downarrow$$

$$\Gamma'$$

and therefore Γ' is relatively injective to every projective Γ' -module P without proper projective submodules.

We are now able to complete the proof of Theorem 3.1. From Lemma 3.2 and Lemma 2.5 it follows that $P_{\Gamma'}$ defined as in Lemma 2.4 is as minimal Wedderburn Γ' -module. From Theorem 2.3 it follows that Γ' is Morita equivalent to End ($\Lambda \amalg \Lambda/r_{\Lambda}$)^{op} where $\Lambda = \text{End} (P_{\Gamma'})^{\text{op}}$. It now remains to show that $r_{\Lambda}^2 = 0$. We have $r_{\Lambda} = (P_{\Gamma'}, r_{\Gamma'}P_{\Gamma'}) = (P_{\Gamma'}, \coprod P_i)$ where the P_i are projective Γ' -modules without proper projective submodules, i.e., r_{Λ} is semisimple and therefore $r_{\Lambda}^2 = 0$.

Section 4

In this section we are going to give the main result of this paper which gives a complete characterization of End $(M)^{op}$ where Λ is an Artin algebra with $\mathscr{L}(\Lambda) = n$ and $M = \Lambda \amalg \Lambda/r_{\Lambda}^{n-1} \amalg \cdots \amalg \Lambda/r_{\Lambda}$. This is thus a generalization of the result in Section 3.

Now let Γ be a pre unipro Artin ring. Then every projective Γ -module P without proper projective submodules will, in a unique way, define l(P) - 1 other indecomposable projective Γ -modules, namely the projective covers of the nonisomorphic composition factors. Since such a composition series is unique, it follows that these l(P) - 1 other indecomposable projective Γ -modules connected with P are the projective covers of the submodules of P. Now let P_i , $i = 1, \ldots, s$, be a basic set of projective Γ -modules without proper projective submodules. For every such P_i we get the following situation:

$$P_{i,l(P_i)-1} \qquad P_{i,2} \qquad P_{i,1}$$

$$\downarrow^{p_{i,l(P_i)-1}} \qquad \downarrow^{p_{i,2}} \qquad \downarrow^{p_{i,1}}$$

$$0 \subset r_{\Gamma}^{l(P_i)-1} P_i \subset \cdots \subset r_{\Gamma}^2 P_i \subset r_{\Gamma} P_i \subset P_i.$$

Since the $P_{i,j}$ are projective and the $p_{i,j-1}$ are epic, there exist Γ -homomorphisms $f_{i,j-1}^{(0)}$ such that the diagram

$$\begin{array}{c} P_{i,j} \xrightarrow{f_{j,j-1}(i)} P_{i,j-1} \\ \downarrow^{p_{i,j}} \qquad \downarrow^{p_{i,j-1}} \\ r_{\Gamma}^{j} P_{i} \xrightarrow{r_{\Gamma}^{j-1} P_{i}} \end{array}$$

commutes. Now let $f_{j,k} = f_{k+1,k}^{(i)} \circ \cdots \circ f_{j,j-1}^{(i)}$ for j > k and $f_{j,j}^{(i)} = \text{id } P_{i,j}$. We now give a useful definition concerning these homomorphisms.

DEFINITION. Let Γ be an pre unipro Artin ring and let $P_{\Gamma} = P_0(\text{Soc }\Gamma)$ (the projective cover of Soc Γ). If there exist $f_{j,k}^{(i)}$ as described above such that

(1) $l_{P_{\Gamma}}(P_{i,j}) - l_{P_{\Gamma}}(\operatorname{Ker} f_{j,k}^{(i)}) = l_{P_{\Gamma}}(P_{i,k})$

(2) Ker $f_{j,j-1}^{(i)}$ is maximal in Ker $f_{j,j-2}^{(i)}$ of the form $\coprod P_i$ where P_i are as above and such that none of the composed homomorphisms

$$P_i \rightarrow \operatorname{Ker} f_{j,j-1}^{(i)} \rightarrow \operatorname{Ker} f_{j,j-2}^{(i)}$$

split, Γ will be called a *unipro* Artin ring.

We are now in a situation where we can state and prove the main result of this paper.

THEOREM 4.1. An Artin algebra Γ' is Morita equivalent to an Artin algebra Γ where $\Gamma = \text{End} (\Lambda \amalg \Lambda/r_{\Lambda}^{n-1} \amalg \cdots \amalg \Lambda/r_{\Lambda})^{\text{op}}$ for an Artin algebra Λ with $\mathscr{L}(\Lambda) = n$ if and only if the following conditions are satisfied.

(a) Γ' is unipro,

(b) max $\{l(P) | P \text{ a projective } \Gamma'\text{-module without proper projective submodules}\} = n$

(c) Every simple summand S in Soc $(E_0(\Gamma') \amalg E_1(\Gamma'))$ is isomorphic to Soc P for a projective Γ' -module P without proper projective submodules.

Proof. Let Λ be an Artin algebra with $\mathscr{L}(\Lambda) = n$,

$$M = \Lambda \amalg \Lambda / r_{\Lambda}^{n-1} \amalg \cdots \amalg \Lambda / r_{\Lambda}$$

and $\Gamma = \text{End} (M)^{\text{op}}$. From Proposition 2.1 it follows that Γ is pre unipro and that (b) is satisfied. Since (M, Λ) is a Wedderburn Γ -module

Soc
$$(E_0(\Gamma) \amalg E_1(\Gamma))$$

will contain only simple summands of the form $(M, Q)/r_{\Gamma}(M, Q)$ for an indecomposable projective Λ -module Q. From the construction of the unique composition series of $(M, Q/r_{\Lambda}Q)$ for an indecomposable projective Λ -module Q in the proof of Proposition 2.1, it then follows that Γ satisfies condition (c). So it remains only to show that Γ is unipro. Consider therefore the commutative diagram

for an indecomposable projective Λ -module Q. We are now in the situation described before the definition of a unipro Artin ring. We claim that the homomorphisms $(M, p_{i,k})$, where

$$P_{j,k}: Q/r_{\Lambda}^{j+2}Q \to Q/r_{\Lambda}^{k+1}Q$$

are the natural epimorphisms, $j \ge k$, have the properties in the definition of a unipro Artin ring. Now as before let $P_{\Gamma} = P_0(\text{Soc } \Gamma)$. We then have

$$\begin{split} l_{P_{\Gamma}}(M, \ Q/r_{\Lambda}^{i+1}Q) &= l_{P_{\Gamma}} \operatorname{Ker} (M, \ P_{i,j}) \\ &= l_{(M,\Lambda)}(M, \ Q/r_{\Lambda}^{i+1}Q) - l_{(M,\Lambda)} \operatorname{Ker} (M, \ P_{i,j}) \\ &= l((M, \ \Lambda), \ (M, \ Q/r_{\Lambda}^{i+1}Q)) - l((M, \ \Lambda), \ (M, \ r_{\Lambda}^{j+1}/r_{\Lambda}^{i+1}Q)) \\ &= l(Q/r_{\Lambda}^{i+1}Q) - l(r_{\Lambda}^{j+1}Q/r_{\Lambda}^{i+1}Q) \\ &= l(Q/r_{\Lambda}^{j+1}Q) \\ &= l_{(M,\Lambda)}(M, \ Q/r_{\Lambda}^{j+1}Q) = l_{P_{\Gamma}}(M, \ Q/r_{\Lambda}^{j+1}Q) \end{split}$$

from the general Wedderburn correspondence and Lemma 2.2.

Part (b) in the definition of unipro is satisfied since none of the composed homomorphisms $M_i \subseteq r_{\Lambda}^j Q/r_{\Lambda}^{j+1}Q \to r_{\Lambda}^{j-1}Q/r_{\Lambda}^{j+1}Q$ where M_i is a simple Λ -module splits and $r_{\Lambda}^j Q/r_{\Lambda}^{j+1}Q$ is maximal with this property.

Before we continue we need some lemmas.

LEMMA 4.2. Let Γ be an unipro Artin ring and let the notation be as in the definition of unipro. Then

$$l_{P_{\Gamma}}(\operatorname{Ker} f_{j,j-1}^{(i)}) = l_{P_{\Gamma}}(\operatorname{Ker} f_{j+1,j-1}^{(i)}) - l_{P_{\Gamma}}(\operatorname{Ker} f_{j+1,j}^{(i)})$$

Proof. Trivial from (a) in the definition of unipro Artin algebras.

LEMMA 4.3. Let Γ be an unipro Artin algebra such that for every simple summand S in Soc $(E_0(\Gamma) \amalg E_1(\Gamma))$ there exists a projective Γ -module P without proper projective submodules with $S \cong \text{Soc } P$. If we now use the notation in the definition of unipro Artin ring we have

 $(P_{\Gamma}, \operatorname{Ker} f_{j,j-1}^{(i)}) = r_{\Lambda}(P_{\Gamma}, \operatorname{Ker} f_{j,j-2}^{(i)}) \text{ where } \Lambda = \operatorname{End} (P_{\Gamma})^{\operatorname{op}}.$

Proof. Observe that P_{Γ} now is a minimal Wedderburn Γ -module. In the rest of the proof, for simplicity, let $K_{j,k}^{(i)}$ denote Ker $f_{j,k}^{(i)}$, $j \ge k$. From Lemma 4.2 it follows that

$$l_{P_{\Gamma}}(K_{j-1,j-2}^{(i)}) = l_{P_{\Gamma}}(K_{j,j-2}^{(i)}) - l_{P_{\Gamma}}(K_{j,j-1}^{(i)}).$$

From Lemma 2.2 it then follows that

$$l(P_{\Gamma}, K_{j,j-2}^{(i)}/K_{j,j-1}) = l(P_{\Gamma}, K_{j-1,j-2}^{(i)})$$

Now $K_{j,j-2}^{(i)}/K_{j,j-1}^{(i)} \subseteq K_{j-1,j-2}^{(i)}$ and since $(P_{\Gamma}, -)$ is exact we have

$$(P_{\Gamma}, K_{j,j-2}^{(i)}/K_{j,j-1}^{(i)}) = (P_{\Gamma}, K_{j,j-2}^{(i)})/(P_{\Gamma}, K_{j,j-1}^{(i)}) = (P_{\Gamma}, K_{j-1,j-2}^{(i)}).$$

By assumption $K_{j-1,j-2}^{(i)} \cong \prod P_n$, where the P_i are projective Γ -modules without proper projective submodules. It then follows that $(P_{\Gamma}, K_{j-1,j-2}^{(i)})$ is semisimple, i.e., $r_{\Lambda}(P_{\Gamma}, K_{j,j-2}^{(i)}) \subseteq (P_{\Gamma}, K_{j,j-1}^{(i)})$. Suppose now that this inclusion is proper. Then there exists a Λ -module B such that B is a maximal submodule of $(P_{\Gamma}, K_{j,j-2}^{(i)})$ and $(P_{\Gamma}, K_{j,j-1}^{(i)}) \notin B$. Since $(P_{\Gamma}, K_{j,j-1}^{(i)})$ is semisimple there exists a simple summand $S = (P_{\Gamma}, P_n)$ in $(P_{\Gamma}, K_{j,j-1}^{(i)})$ such that $S \amalg B = (P_{\Gamma}, K_{j,j-2}^{(i)})$. So the composed homomorphism

$$S \subset (P_{\Gamma}, K_{j,j-1}^{(i)}) \subset (P_{\Gamma}, K_{j,j-2}^{(i)})$$

splits. Now let G: Mod $\Gamma \to \mathbf{D}_P$ be the functor described in the preliminaries. $K_{j,j-2}^{(i)}$ is $(P_{\Gamma}, -)$ -torsionfree because it is a submodule of a projective Γ -module. So

$$K_{j,j-2}^{(i)} \subseteq G(K_{j,j-2}^{(i)}).$$

Further, we have $(P_{\Gamma}, K_{j,j-2}) = (P_{\Gamma}, G(K_{j,j-2}^{(i)}))$. From [2], [3], $\mathbf{D}_{P_{\Gamma}}$ is equivalent to Mod (A) where the equivalence is given by $(P_{\Gamma}, -)$. We now have that the composed homomorphism

$$(P_{\Gamma}, P_n) \subset (P_{\Gamma}, K_{j,j-1}^{(i)}) \subset (P_{\Gamma}, K_{j,j-2}^{(i)}) = (P_{\Gamma}, G(K_{j,j-2}^{(i)}))$$

splits with P_i and $G(K_{j,j-2}^{(i)})$ both in $\mathbf{D}_{P_{\Gamma}}$. Therefore the composed Γ -homomorphism

$$P_n \subset K_{j,j-1}^{(i)} \subset K_{j,j-2}^{(i)} \subset G(K_{j,j-2}^{(i)})$$

also splits, so $P_n \subset K_{j,j-1}^{(i)} \subset K_{j,j-2}^{(i)}$ splits, a contradiction.

LEMMA 4.4. Let Λ be an Artin ring and $0 \to C' \to C \to C'' \to 0$ an exact sequence of Λ -modules. If $C' \subseteq r_{\Lambda}C$ then $f^{-1}(r_{\Lambda}C'') = r_{\Lambda}C$.

Proof. Trivial.

We are now able to prove the rest of Theorem 4.1. Let P_i be a projective Γ' -module without proper projective submodules and $P_{\Gamma'} = P_0(\text{Soc } \Gamma')$. We are now in the following situation:

$$\begin{array}{cccc} P_{i,l(P_i)-1} \to \cdots \to P_{i,2} & \xrightarrow{f_{\Sigma_i}^{(0)}} P_{i,1} \\ \downarrow & \downarrow & \downarrow \\ r_{\Gamma'}^{l(P_i)-1} P_i \subset \cdots \subset r_{\Gamma'}^2 P_i & \subset & r_{\Gamma'} P_i \subset P_i. \end{array}$$

Since

$$l_{P_{\Gamma'}}(P_{i,j}) = l_{P_{\Gamma'}}(P_{i,k}) - l_{P_{\Gamma'}}(\operatorname{Ker} f_{k,j}^{(i)}), k \ge j,$$

it follows that

$$(P_{\Gamma}, P_{i,l(P_i)-1}) \rightarrow (P_{\Gamma'}, P_{i,l(P_i)-2}) \rightarrow \cdots \rightarrow (P_{\Gamma'}, P_{i,2}) \rightarrow (P_{\Gamma'}, P_{i,1}) \rightarrow (P_{\Gamma'}, P_i)$$

is a proper chain of epimorphisms with $(P_{\Gamma'}, P_i)$ simple. Furthermore we have

$$(P_{\Gamma'} \operatorname{Ker} f_{i,1}) = r_{\Lambda}(P_{\Gamma}, P_{i,2}).$$

By induction we get $(P_{\Gamma'}, \operatorname{Ker} f_{j,k}^{(i)}) = r_{\Lambda}^{j-k}(P_{\Gamma'}, P_{i,j})$. From the general Wedderburn correspondence $\Gamma' \leftrightarrow \operatorname{End} (P_{\Gamma'}, \Gamma')^{\operatorname{op}}$ it now follows that Γ' is of the type claimed since $Q/r_{\Lambda}^{j}Q$ is a summand of $(P_{\Gamma'}, \Gamma')$ for every indecomposable projective Λ -module Q for $1 \leq j \leq \mathscr{L}(Q)$ and these are the only ones. This finishes the proof of our main result.

References

- 1. F. W. ANDERSON AND K. R. FULLER, *Rings and categories of modules*, Graduate Texts in Mathematics 13, Springer-Verlag, N.Y., 1974.
- 2. M. AUSLANDER, Notes on representation theory of Artin algebras, Notes by I. Reiten, Brandeis Univ., 1972.
- Representation theory of Artin algebras, Communications in Algebra, vol. 1 (1974), pp. 177-268.
- 4. J. J. ROTMAN, Notes on homological algebra, Van Nostrand Reinhold, Mathematical studies 2b, 1970.
- 5. S. O. SMALØ, Global dimension of special endomorphism rings over Artin algebras, Illinois J. Math., vol. 22 (1978), pp. 414-427 (this issue).
 - THE UNIVERSITY OF TRONDHEIM TRONDHEIM, NORWAY

442