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Introduction

For a ring A and a finitely generated A-module M we have from [2], [3] a
correspondence between Mod A (the category of left A-modules)and
Mod End (M)p (the category of left End (M)P-modules ). This correspon-
dence is especially interesting when M is a finitely generated generator or a
special type of finitely generated projective A-module.

In these cases we look at a pair (A, M) (resp. (1", P)) where A is any ring and
M a finitely generated generator (resp. F is any ring and P a Wedderburn
projective). (For definition of Wedderburn projective, see the text.) Given
(A, M) we construct the pair (End (M)p, (M, A)). (M, A)is then a Wedder-
burn projective End (M)P-module. (Given (F,P)we construct the pair
(End (p)op, (p, F)). (P, F) is then a finitely generated generator.) If we now use
this map between pairs as above twice, we have the identity.
By using this corresPondence on Artin algebras A with the Loewy length of

A, (A)= n and the finitely generated generator

M A H A/rnA- H"" H A/rA,
M. Auslander has proved that the global dimension of End (M)v is less than or
equal to n. This shows that any Artin algebra is isomorphic to End (P)V for a
finitely generated projective F-module where F is an Artin algebra of finite
global dimension. In [5] we give examples which show that the inequality in
this result of M. Auslander is optimal. In [3], M. Auslander asked for an
abstract characterization of the Artin algebras we get as End (M) where M is
as in the theorem referred to. This is partially done in [2] and the main purpose
of this paper is to give a complete such characterization. We also give a com-
plete characterization of the End (M)v when M A H A/rA for an Artin
algebra A. We then see that if Ae(A) 2 we get End (M)v as a special case of
both these cases.

Section 1

Here we give some general results from ring theory and some results from
[2], [3] which we shall need in the following sections and give some conventions
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about notation. See [1] and [4] for general background in ring theory and
homological algebra.

DEFINITION. Let A be a ring and A and B A-modules. Then A is relatively
injective to B if for every A-module X, homomorphism f: X -} A and mono-
morphism i" X -} B there exists a g" B A such that the diagram

XB

A

commutes.

For the proof of the following result we refer to [1, p. 186].

PROPOSITION 1.1. IfA and B are A-modulesfor a ring A where A A’ II A"
(direct sum) then A is relatively injective to B if and only if both A’ and A" are
relatively injective to B.

Now let A be a ring, Mod A the category of left A-modules, M a finitely
generated A-module and F End (M)p. Then M has a natural structure as an
End (M)-module by f. m f(m) for f End (M) and m M. This structure
will in a natural way induce a F-module structure on (M, X) for every X in
Mod A given by f" g g f for f F and g (M, X).
We are now going to give some results about the functor (M, -). Let A be

the full subcategory of Mod A consisting of the A-modules X such that there
exists a presentation LI M ---} LI M ---} X ---} 0 with the property that

(M, LI M)--, (M, LI M)- X 0

is exact. Let B be the full subcategory of Mod F consisting of the (M, X) for
some X in Mod. A. From [2, p. 3] and results of [3, Sections 2, 3, 4] we then
have the following result.

PROPOSITION 1.2. (M, -): A -} B
_
Mod F is a full and faithful functor,

where (M, -) also denotes (M, -) restricted to A
_
Mod A.

DEFINITION. Let add M denote the full subcategory of Mod A consisting
of the A-modules which are summands of finite sums of copies of M and let
Add M denote the full subcategory of Mod A consisting of the A-modules
which are summands of arbitrary sums of copies of M.

PROPOSITION 1.3. (M, -) induces an equivalence between Add M and the
full subcategory of Mod F consisting of the projective F-modules and between
add M and the full subcategory offinitely generated projective F-modules.

See [2, p. 5] and [3, Sections 2, 3, 4].
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PROPOSITION 1.4. If M is a finitely generated generator then A described
above is all of Mod A.

See [2, p. 5] and [3, p. 247].

In the following let F be a ring, P a finitely generated projective F-module
and A End (p)op. We then have the following results taken from [2, p. 15]
and [3, p. 218].

PROPOSITION 1.5. The full subcateoory B of Mod A consistino of the A-
modules B (P, X) for a F-module x is equivalent to Mod (A).

COROLLARY 1.6. (P,-): Mod F- Mod A will induce an equivalence be-
tween the full subcategory Cp of Mod F consistin9 of the F-modules Y with
presentation LI P El P - Y o, and Mod A.

DEFINITION. Let Ker (P, be the full subcategory ofMod F consisting of
the F-modules A such that (P, -)A (e, A)= 0.

We now give some results about Ker (P,-) taken from [2, p. 17] and [3,
p. 222].

PROPOSITION 1.6. (a) If 0 A’ A - A" 0 is exact in Mod F then A
lies in Ker (P, -) if and only if A’ and A" lie in Ker (P, -).

(b) Ker (P, -)is closed under direct limits.
(c) For every F-module B there exists a unique maximal submodule B’

_
B

such that B’ is in Ker (P, -).
(d) if

OK, A, -Z-- A KO

is exact in Mod F, then (P, f) is an isomorphism if and only if K’ and K lie in
Ker (P, -).

We now give some useful definitions.

DFNmON. The unique maximal submodule B’ of B in Ker (P,-) is
called the (P, -)-torsion of B.

DEFINITION. A F-module A is said to be (P, -)-torsionfree if the (P, -)-
torsion of A is zero.

As before, let F be a ring, P a finitely generated projective F-module and
A End (p)op. We will now describe a full subcategory ofMod F which also is
equivalent to Mod (A) via the functor (P, -). But first we will describe a
functor G: Mod F--* Mod F [2, p. 23], [3, p. 221].

Let X be a F-module and X’ X/(P, )-torsion X. Now consider the exact
sequence

0--, X’ --, o(X’) V--, 0,
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where Eo(X’) is the injective envelope of X’. Let G(X)=
tk- [(P, )-torsion V] and let X G(X) be the composition
X X/(P, )-torsion X G(X). Observe that if X is (P, )-torsionfree then
X G(X) is a monomorphism. The operation of G on morphisms is natural
and done in [2], [3].

PROPOSITION 1.7. Let F be a ring and P a finitely generated projective
F-module. For an A in Mod F the following are equivalent.

(a) (P, -): (F, A) ((P, F), (P, A))is an isomorphism.
(b) (P, -): (X, A) ((P, X), (P, A)) is an isomorphismfor all X in Mod F.
(c) A G(A) is an isomorphism.
(d) Ext (K, A)= 0 i= 0, 1 and K in Ker (P, -).
(e) IfO A Eo(A) El(A)is a minimal injective copresentation ofA then

E,(A is (P, -)-torsionfree for i= O, 1.
See [2, p. 24] and [3, pp. 221-223].

DEFINITION. The full subcategory of F-modules consisting of the F-
modules A which satisfy the equivalent properties in Proposition 1.7 will be
denoted by De

PROPOSITION 1.8. De is equivalent to Mod A via the functor (P, -).

Further, De has that following property.

PROPOSITION 1.9. The inclusion of De in Mod F is left exact.

Now let A be an Artin algebra and M a finitely generated generator. Then of
course A is in add M, so (M, A) is a finitely generated projective F-module
where F End (M)p.

PROPOSITION 1.10. Let A be an Artin algebra, M afinitely generated genera-
tor and F End (M). Then the followino hold.

(a) The natural ring homomorphism fl:AEndr(M,A)p is an
isomorphism.

(b) ((M, A), -)o (M, -) ((M, A), (M, -))= idModA.
(C) For every F-module X, ((M, A), X)is a finitely generated A-module if

and only if T(t,A)(X) (the submodule of X generated by all Imf where
f: (M, A)- X)is a finitely generated U-module.

(d) The natural ring homomorphism (F, F)- ((M, A), F), ((M, A), F))is an
isomorphism.
See [2, p. 31] and [3, p. 221].
We are now going to give the definition of a Wedderbum module (see [2,

p. 23] and [3, pp. 244-246].
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DEFINITION. Let F be an Artin algebra. If P is a finitely generated projective
F-module with the property that (P, ): (F, F) --, ((P, r), (P, r))is an isomor-
phism, then P is called a Wedderburn F-module.

We now see that if A is an Artin algebra and M is a finitely generated
generator, then (M, A) is a Wedderburn End (M)P-module.

PROPOSITION 1.11. Let F be an Artin aloebra, P a Wedderburn F-module and
A End (p)ov. Then the followino hold.

(a)
(b)

(P, F) is a finitely generated generator over A.
(P, -): Fp --, EndA (P, F)is an isomorphism.
The natural homomorphism P ((P, F), A) is an isomorphism.

Now consider the map V between pairs given by V(R,A)=
(End (A)P, (A, R)) for a ring R and an R-module A. Ifwe now let (R, A) be the
pair (A, M) ((F, P)) when A(F) is an Artin algebra and M a finitely generated
generator (P a Wedderburn F-module), we see that V applied twice gives the
identity and that (M, A) is a Wedderburn End (M)P-module ((P, F) a finitely
generated End (P)P-generator).

DEFINITION. Let A be a ring and A a A-module. Then the socle of A is
defined by Soc A M where M is the maximal semisimple submodule in A.

DEFINITION. A Wedderburn F-module P is a minimal Wedderburn
F-module if the only indecomposable summands in P are the projective covers
of the simple modules in Soc (Eo(F)H El(F)(see [2, p. 33] and [3, pp. 255-
256]).

PROPOSITION 1.12. Let A be an Artin algebra and M a finitely generated
generator over Mod A. Then (M, A) is a minimal Wedderburn F-module where
F End (M)p ifand only ifevery indecomposable injective A-module occurs as a
summand of Eo(M) LI El (M).

In the rest of this paper let rA be the radical of the ring A. By the Loewy
length e(A) of an Artin ring A we mean the least integer n such that r"A 0.

Section 2

In this section we are going to give a complete characterization of End (M)
for an Artin algebra A and M A H A/rA, where there is no restriction on the
Loewy length of A.

DEFINITION. Let R be a ring and A an R-module. A submodule B of A is
characteristic if wheneverfe (A, A), f(B)

_
B.

The following proposition is a generalization of a result stated in [2, p. 43]
without proof.
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PROPOSITION 2.1. Let A be an Artin algebra, {Q, ..,, Qs} a complete set of
nonisomorphic projective A-modules and for each of these let Qi Ao,i
A ,i "" Am,,i 0 be a proper chain ofsubmodules of Qi with each AR, a charac-
teristic submodule of Qi and Ao, rA Qi. Let

M LI (Qi H Qi/Am,_ 1,i H"" H Qi/Ao,i) and 1" End(M)p.

Then F has the followin0 properties:
(1) Every projective F-module P without proper projective submodules has a

unique composition series with nonisomorphic composition factors.
(2) Let {P1, Pn} be a complete set ofnonisomorphic projective F-modules

without proper projective submodules and let P’ be an arbitrary indecomposable
projective F-module. Then there exists a unique {1, 2,..., n} such that P’/rr P’
occurs as a composition factor in the composition series of P.

Proof. We first observe that since every simple A-module is in add M, the
projective F-modules without proper projective submodules are exactly the
projective F-modules of form (M, Mi) for a simple A-module Mi.

If we now look at one particular of these, we have the following exact
sequences in mod A"

0 "- Ao -* Q - M - O

0 -- Ao,i/Am,_ 1,i -- Qi/Am, 1,i Mi 0

0 Ao,/A 1, /A1, M --* 0

0 --* 0 Qi/Ao, M 0.

Here Q is the projective cover of the simple A-module M and the maps are the
natural ones. These sequences now give rise to the following exact sequences in
mod F:

0 (M, Ao,,) (M, Q,) - (M, Mi)
0 (M, Ao,i/A,.,_ 1,,) (M, Q,/Am,_ 1,,) (M,

0 (M, Ao,i/A
0

Now let

Bk, Im (m, Pk,i)

(M, Q,/A 1.,) (M, M,)
(M, Q,/Ao,i) (M, M,).

{f: M --} M[ there exists g" M --} Q/Ak,i such that f= Pk, g}.
It now follows easily that

0 Bmi,i Bmi_ ,i "’ B2,i Bl,i (M, Mi)-- Pi
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is a proper chain of submodules ofP since (M, Q/Ak,), k 0, 1, ms, is a set
of nonisomorphic indecomposable projective F-modules. Now an easy exercise
using that each A, is a characteristic submodule ofthe projective A-module Q
gives that Im (M, 0)= B, for every nonzero A-homomorphism
g’. Qi /Ak,i -’* Mi.

To prove (1) it now only remains to show that P does not have other
submodules than the ones constructed. This follows since (M, is a full and
faithful functor and since projective covers exist in Mod A when A is an Artin
algebra.

Property (2) now follows by the construction above, from the fact that every
indecomposable projective F-module is of the form (M, Qi/Ak,i). Observe that
’(Pi) mi + 1 if Pi is as in the proof of Proposition 2.1.

DEFINITION. An Artin algebra F is called a pre unipro Artin algebra if it
satisfies conditions 1 and 2 in Proposition 2.1.

We now give a definition concerning the length of an End (P)P-module B in
terms of a certain length of B as a F-module, where P is a projective F-module.

DEFINITION. Let F be an Artin ring, P a finitely generated projective
F-module and B any finitely generated F-module. Then we define lB)= n
where n is the number of composition factors in a composition series of B
isomorphic to a simple summand in P/rr P.

We now have the following lemma.

LEMMA 2.2. Let F be an Artin algebra, P a finitely generated projective
V-module and B any finitely generated F-module. Then l(P, B)= l(B) where
l(P, B)is the length of (P, B)as an End (P)P-module.

Proof. Suppose first l,(B)= 0. Then (P, B)= 0 and vice versa. We claim
that (P, S) is simple as an End (P)V-module for every simple summand S in
P/rAP. Let f: P S be a nonzero homomorphism and g: P S any other
homomorphism. Then there exists an h" P P such that the diagram

P

commutes. In other words, f generates (P, S) as an End (P)P-module. f was
arbitrary so (P, S) is simple as an End (P)P-module. Now the rest follows by
induction.

We now give a complete characterization of the Artin algebras we get as
End (M)v for an Artin algebra A and M A H A/ra with no restriction on the
Loewy length of A.
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THEOREM 2.3. An Artin aloebra F’ is Morita equivalent to an Artin aloebra
F where F End (ALI A/rA)pfor an Artin algebra A if and only if:

(a) F’ is pre unipro.
(b) l(P)<_ 2 for every projective F’-module P without proper projective

submodules.
(c) P/rr, P F’ for every nonsimple projective ["-module P without proper

projective submodules.
(d) F’ is relatively injective to every projective ["-module P without proper

projective submodules.

Proof. Suppose first that F’= End (M)p for an Artin algebra A and
M A II AirA. Then F’ is Monita equivalent to the ring F"= End (N)p
where N I..[ M for a complete set {M} of nonisomorphic indecomposable
summands in M by [1, p. 268]. Now from Proposition 2.1, 1"" is pre unipro.

Let the equivalence from Mod F’ to Mod F" be given by F and the inverse
by G. Let P be a projective F’-module without proper projective submodules.
Then F(P)has the same property as F"-module since equivalence preserves the
lattice of submodules and projective modules [1, pp. 257-258]. So F(P) has a
unique composition series with nonisomorphic composition factors. Now since
G is exact, takes nonisomorphic modules to nonisomorphic modules, and pre-
serves the lattice of submodules P -GF(P) has the same property, i.e., F’
satisfies (1)in the definition of pre unipro Artin algebra.
Now let Pt, P be a complete set of nonisomorphic projective r"-modules

without proper projective submodules. Then F(P),..., F(P) is a complete set
of nonisomorphic F’-modules without proper projective submodules. Now if
P is any indecomposable projective F’-module there exists a unique such that
F(P)/rr,, F/(P) is a composition factor in F(P). Then GF(P)/rr, GF(P) is a com-
position factor in GF(P) and this is unique. So we have that pre unipro is
preserved by equivalence and therefore F’ is pre unipro. Now suppose that
P/rr, P - F’ for a nonsimple projective F’-module P without proper projective
submodules. Then P (M, M) for a simple nonprojective A-module M and
since tM, is a full functor there exists a nonzero homomorphismf: Mi M
such that Im (M,f)= P/rr, P - F’. Since M is simpler must be mono; there-
fore also (M,f): (M, Mi)--. (M, M)is mono. This is a contradiction, since
Im (M,f) was supposed to be P/rr P.
To prove (d) consider the diagram

OX-P

F’

for every X such that X
_

P, where P is a projective F’-module without proper
projective submodules. From (b) it follows that X P or X rr, P which is
simple. If X P, X P must be an isomorphism since P is of finite length, so
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the diagram can trivially be completed to a commutative diagram. Now sup-
pose l(P)= 2 and that X S rr, P. From the proof of Proposition 2.1 we
have that P (M, M)for a simple A-module M and that X Im (M, p)
where p: Q M is a projective cover. We have then the diagram

(M,
\

S --, P (M, M,)

r (M, M).
But now (M, -) is an equivalence between add M and p(F’), the category of
finitely generated projective F’-modules, so we get the diagram

Qi M

M M

in mod A. Then since M is simple and Q has a unique maximal submodule,
there exists an h" M---, M such that the diagram

Q --,M

MiM
commutes. Then the diagram

(M, 2,)

S -, (M, M,)= P

/M, M,)

(M,M)
also commutes, i.e., F’ is relatively injective to P.

To prove the converse we first need a couple of lemmas.

LEMMA 2.4. Suppose that F’ satisfies conditions (a), (b), and (c)in Theorem
2.3 and let Pr’ Po(Soc F’) be the projective cover ofSoc F’. Then an indecom-
posable F’-module K is in Ker (Pr,, -)and onlyK P/rr,Pfor a nonsimple
projective F’-module P without proper projective submodules.
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Proof. Suppose K P/rr, P for a nonsimple projective F-module P without
proper projective submodules. Then (Pr’, K)= 0 by Lemma 2.2.

Now suppose.K is an indecomposable F-module in Ker (Pr,, -). Then the
projective cover of K, f: El Pi K, is such that all the P are indecomposable
nonsimple projective F-modules without proper projective submodules. Be-
cause every simple summand in the socle of LI P is a summand in Pr,/rr, Pr, it
follows that Soc LI P, H Soc P,

_
Ker f, but LI Soc P, LI rr, P,, so K is

semisimple. Therefore K is simple and isomorphic to P/rr, P for a nonsimple
projective F’-module without proper projective submodules.

LEMMA 2.5. Let F’ satisfy conditions (a), (b), (c), and (d)in Theorem 2.3 and
let Pr, be as in Lemma 2.4. Then Pr’ is a minimal Wedderburn F’-module.

Proof. If we are able to prove that Pr, is a Wedderburn F’-module it is clear
from the way we select Pr, that it is minimal. Now let K be an indecomposable
F’-module in Ker (Pr,, ). Then from Lemma 2.4 we have the exact sequence
0 rr, P P K 0 for a projective F’-module P without proper projective
submodules. From this sequence we get the long exact sequence

0--, (K, F’) (P, F’) (rr, P, F’)--, Ext’ (K, F’)--, Ext’ (P, F’)= 0.

Now it follows from (c) that (K, F’) 0 and from (d) that (P, F’) (rr, P, F’)is
epic, so Ext (K, F’)= 0, i.e., Pr, is a Wedderburn F’-module.

We are now able to give the rest of the proof ofTheorem 2.3. It follows from
the general Wedderburn correspondence that F’ End (Pr,, F’)p so it re-
mains to show that (Pr,, F’) has as summands precisely the projective and the
simple End (Pr,)P-modules. This follows trivially because A is a summand and
that every simple End (Pr,)P-module is (er,, P) for a projective F’-module P
without proper projective submodules.

Section 3

In this section we are going to specialize our result from Section 2 to the case
where A is an Artin algebra with &(A)= 2 and M A LI A/rA.

THEOREM 3.1. An Artin al#ebra F’ is Morita equivalent to an Artin algebra
F where F End (A H A/rA)Pfor an Artin algebra A with .e(A)= 2 ifand only
if F’ satisfies the followint conditions.

(a) F’ is a pre unipro Artin al#ebra.
(b} l(P)< 2 for every projective F’-module without proper projective

submodules.
(c) rr, P lIP for every indecomposable projective F’-module P with

proper projective submodule, where the P are projective F’-modules without
proper projective submodules.
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(d) Every projective F’-module P without proper projective submodule is rela-
tively injective to P.

Proof Suppose F’= End (M)p for an Artin algebra A with (A) 2 and
M A H AirA. Then one easily sees that 1" has the property claimed when one
observes that rr,(M, Q) (M, rA Q) for every indecomposable projective
A-module Q.

For the converse we need a lemma. Observe that property (c) in Theorem 3.1
implies property (c) in Theorem 2.3.

LEMMA 3.2. Suppose F’ satisfies conditions (a), (b), (c), and (d)in Theorem
3.1. Then F’ is relatively injective to every projective F’-module P without proper
projective submodules.

Proof. The uniqueness in the definition of pre unipro and property (c)in
Theorem 3.1 forces every f: rrP 1" for a projective F’-module P without
proper projective submodules to factor through a sum of copies of this P. So we
have the picture

rrPP

LIP

F’

and by assumption this diagram can be completed to a commutative diagram

rrP P

HP

F’

and therefore F’ is relatively injcctivc to every projective F’-modulc P without
proper projective submodulcs.

We are now able to complete the proof of Theorem 3.1. From Lemma 3.2
and Lemma 2.5 it follows that Pr, defined as in Lemma 2.4 is as minimal
Wedderburn F’-module. From Theorem 2.3 it follows that 17" is Morita equiv-
alent to End (A LI A/rA)p where A End (Pr,)p. It now remains to show that
r2A 0. We have rA (Pr’, rr, Pr,)= (Pr,, LI P,) where the P, are projective
F’-modules without proper projective .submodules, i.e., rA is semisimple and
therefore r2A 0.
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Section 4

In this section we are going to give the main result of this paper which gives a
complete characterization of End (M)p where A is an Artin algebra with
(A) n and M A H A/rA H’" LI A/rA. This is thus a generalization of
the result in Section 3.
Now let F be a pre unipro Artin ring. Then every projective F-module P

without proper projective submodules will, in a unique way, define l(P)- 1
other indecomposable projective F-modules, namely the projective covers of
the nonisomorphic composition factors. Since such a composition series is
unique, it follows that these l(P)- 1 other indecomposable projective F-
modules connected with P are the projective covers of the submodules of P.
Now let Pi, 1, s, be a basic set of projective F-modules without proper
projective submodules. For every such Pi we get the following situation:

Pi,t(eo- el,2 Pi,1

0 rPO- P "" r-Pi rr Pi c Pi.
Since the Pi,j are projective and the Pi,j-t are epic, there exist l"-
homomorphisms rt:. such that the diagramj,j-

Pi,j f}J’- 1.(i), pi,j

rP ;r- tE
commutes. Now let fj, =ti). ft./), for j > k and j,jJk+ 1,k j,j-1

c(i) id Pi,j. We
now give a useful definition concerning these homomorphisms.

DEFINITION. Let F be an pre unipro Artin ring and let Pr Po(Soc F) (the
projective cover of Soc F). If there exist ct0j,k as described above such that

(1) ler(Pi,j) Ipr(Ker "ti)Jj,,, ler(Pi,k)
(2) Ker ft.0. is maximal in Ker fti) of the form LI Pi where Pi are as,- j,j- 2

above and such that none of the composed homomorphisms

Pi Ker ftg. Kerj,j- 2

split, 1" will be called a unipro Artin ring.

We are now in a situation where we can state and prove the main result of
this paper.

THEOREM 4.1. An Artin al#ebra F’ is Morita equivalent to an Artin aloebra
F where F End (A H A/A-t H H A/rA)p for an Artin algebra A with
.W(A) n if and only if the followin0 conditions are satisfied.
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(a) F’ is unipro,
(b) max{l(P)[P a projective r’-module without proper projective

submodules} n
(c) Every simple summand S in Soc (Eo(l"’) LI E 1(1"))is isomorphic to Soc P

for a projective r-module P without proper projective submodules.

Proof. Let A be an Artin algebra with .(A)= n,

M A H A/-1 H... H AirA
and F End (M). From Proposition 2.1 it follows that F is pre unipro and
that (b) is satisfied. Since (M, A) is a Wedderburn F-module

Soe (Eo(r) u E,(r))
will contain only simple summands of the form (M, Q)/rr(M, Q) for an
indecomposable projective A-module Q. From the construction of the unique
composition series of (M, Q/rA Q) for an indecomposable projective A-module
Q in the proof of Proposition 2.1, it then follows that F satisfies condition (c).
So it remains only to show that F is unipro. Consider therefore the commuta-
tive diagram

(M, Q) (M, Q/r3A Q) - (M, Q/rA Q)

o (’-’(M, /A)"’ (M,/ )(M,/) (M, /)
for an indecomposable projective A-module Q. We are now in the situation
described before the definition of a unipro Artin ring. We claim that the homo-
morphisms (M, P,k), where

p, Q/r+ Q -, Q/+ Q

are the natural epimorphisms, j > k, have the properties in the definition of a
unipro Artin ring. Now as before let Pr Po(Soc F). We then have

l,r(M Q/r+ 1Q)_ l,r Ker (M, P,.)
I(M,A)(M Q/riA+ 1Q)_/(M,A) Ker (M, Pi,j)

I((M, A), (M, Q/rk+ 1Q)) I((M, A), (M, rJA+ ’/rk+ ’Q))
I(Q//A+ 1Q) l(r+ ,Q/r+ IQ)
l(Q/rA+ 1Q)
I(,A)(M, Q/rJA+1Q) let(M, Q/r+ 1Q)

from the general Wedderburn correspondence and Lemma 2.2.
Part (b) in the definition of unipro is satisfied since none of the composed

homomorphisms Mi
_

rA Q/rA+ 1Q r- 1Q/+ 1Q where Mi is a simple
A-module splits and rA Q//Q is maximal with this property.
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Before we continue we need some lemmas.

LEMMA 4.2. Let F be an unipro Artin ring and let the notation be as in the
definition of unipro. Then

Ipr(Kerft’),-x) Ipr(Ker r")j+ :,- )-/pr(Kerf+ x,)

Proof Trivial from (a) in the definition of unipro Artin algebras.

LEMMA 4.3. Let F be an unipro Artin al#ebra such that for every simple
summand S in Soc (Eo(F) II Et (F)) there exists a projective F-module P without
proper projective submodules with S - Soc P. If we now use the notation in the
definition of unipro Artin tin# we have

(Pr, Ker ,j-t) rA(Pr, Ker ft’’,,- 2) where A End (Pr).
Proof. Observe that Pr now is a minimal Wedderburn F-module. In the

rest of the proof, for simplicity, let r,-t0 denote Kerj,k .I j.k, J > k. From Lemma 4.2
it follows that

ll’r(lkj-1,j- 2)= Ipr(KSi.j- 2)-"Pr,’j,j ).
From Lemma 2.2 it then follows that

l(Pr, K(!). /Kj,j_ )= l(Pr, Ki"’3,J- 2 1,j- 2)"
Now K(i). /Ki, 1- 1,j-2"’j,J-2 Ki and since (Pr, -) is exact we have

(Pr Kq)" /K<i)"’,-2 j,j ,) (Pr Kq). )/(pr Kq). (Pr, Ki"’J,J "’J,J .j- 2 )"
By assumption K t,j_ 2 Pn, where the P are projective F-modules with-
out proper projective submodules. It then follows that (Pr, K t,j_ 2)is semi-
simple, i.e., rA(Pr, K(i) (Pr Kq)"

j,j 2) ). Suppose now that this inclusion isJ,J-

proper. Then there exists a A-mule B such that B is a maximal submule of
(Pr, --Kq’,- 2) and (Pr, K’_" t) B. Since (Pr, K_ t) is semisimple there exists
a simple summand S (Pr, P,) in (Pr, K_ l) such that S H B (Pr, --j,j-2)"
So the composed homomorphism

S(Pr, K(9. )(pr Kq’. 2)*-J,J- *-J,1-

splits. Now let G" Mod F De be the functor described in the preliminaries.
j-2 is (Pr,-)-torsionfree because it is a submodule of a projective
F-module. So

(0K"),_ , _= (K,_,).
Further, we have (Pr, K,-2)= (Pr, (r._)). rom [2], [3], Dr is quiv-
alent to Mod (A) where the equivalence is ven by (Pr, ). We now have that
the composed homomorphism

(P, P,) = (P, z(). (P-,.-, = --.-) (P, e(ri’.-,))
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splits with Pi and ")G(Kj.j_2) both in Dpr. Therefore the composed
F-homomorphism

Pn Kq). Kq). (i)
""J.J- C G(Kj.j_"-j,j- 2 2

also splits, so P. K(!). K(!).
--j.j-t --j,j- 2 splits, a contradiction.

LEMMA 4.4. Let A be an Artin ring and 0 C’ C C" 0 an exact se-
quence of A-modules. If C’ c__ rAC then f- t(rA C") rA C.

Proof. Trivial.

We are now able to prove the rest of Theorem 4.1. Let P be a projective
F’-module without proper projective submodules and ,or, Po(Soc F’). We
are now in the following situation"

Pi,I(PD- -") - Pi.2
.fll

Pi.l

Since
r..Pi)-lP c c r2r ,Pi c rr, Pi Pi.

Ker f(.oIpr,(Pi,j) Ipr,(Pi,k)- Ipr, _g,j,, k >_ j,

it follows that

(er, Pi.l(Pi)-l) "-) (er’, Pi.l(pi)-2) -’) "" (PI"., Pi.2) -’) (er’, Pi.1) "-) (elF,, el)
is a proper chain of epimorphisms with (Pr,, P)simple. Furthermore we have

(Pr, Ker f,t) rA(Pr, P,,2).
By induction we get (Pr,, Kerc()Jj,k dA-k(Pr ’, P,j). From the general Wedder-
burn correspondence F’,--, End (Pr,, F’)p it now follows that F’ is of the type
claimed since Q/rJA Q is a summand of (Pr,, F’) for every indecomposable
projective A-module Q for 1 < j < (Q) and these are the only ones. This
finishes the proof of our main result.
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