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FORMAL AND COFORMAL SPACES

BY

JOSEPH NEISENDORFER AND TIMOTHY MILLER

1. Introduction

In this paper, we apply minimal algebras and minimal Lie algebras to the
study of rational homotopy theory. Sullivan has introduced the concept of a
formal space [2]. A space is formal if its rational homotopy type is a formal
consequence of its cohomology algebra. We give an equivalent definition in
terms of perturbations in the differential of a minimal Lie algebra model. These
perturbations are related to Massey products, but they have several advan-
tages. For example, perturbations are always defined and they are well defined
once we have chosen generators for our model. Take a minimal rational CW
complex. Roughly speaking, a perturbation is the deviation that the attaching
maps for cells have from being quadratic.
We also introduce a concept which is dual to formality. A space is coformal if

its rational homotopy type is a formal consequence of its homotopy Lie alge-
bra. Equivalently, a space is coformal if the k invariants in its rational Post-
nikov system are quadratic.
The main theorems in this paper are"

COROLLARY 5.2. Let k be a field ofcharacteristic zero. Two simply connected
finite complexes have the same rational homotopy type if there is a k homotopy
equivalence such that the induced cohomology isomorphism is rational.

PROPOSITION 4.4. Every n connected compact m-dimensional manifold with
cohomology of rank > 3 and m <_ 3n + 1, n >_ 1, is both formal and coformal.

PROPOSITION 4.6.
< 6 is formal.

Every simply connected compact manifold of dimension

As a corollary of 5.2, we get a result announced by Sullivan [14] and
Halperin-Stasheff [16]. A simply connected finite complex is formal over the
rationals if it is formal over an extension field. Deligne, Griffiths, Morgan, and
Sullivan [2] have shown that compact K/ihler manifolds are formal over the
reals. Hence, compact simply connected Kihler manifolds are formal over the
rationals. (The restriction to simply connected spaces is actually unnecessary
[16].)
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Section 2 of this paper is devoted to a description of minimal algebra, min-
imal coalgebra, and minimal Lie algebra models. Perturbations in minimal
algebras and minimal Lie algebras are defined there. Most of Section 2 is a
summary of results in [7], [2], and [10].

In Section 3, we give several equivalent definitions of formality and coforma-
lity. Section 4 contains applications of perturbations to show that various
spaces are or are not formal or coformal.
When we study a homotopy type over an arbitrary field of characteristic

zero, we are faced with whether or not we can descend down to the rationals.
Corollaries 5.3 and 5.7 show that a homotopy equivalence descends to the
rationals if the induced maps in homology or in homotopy descend to the
rationals.

2. Minimal models

Rational homotopy theory may be studied in several categories. Among
these are the categories of spaces, of commutative associative differential
graded algebras, of commutative associative differential graded coalgebras, and
of differential graded Lie algebras. For nilpotent spaces with rational homo-
logy of finite type, the possibility of using differential graded algebras to study
rational homotopy type was developed by Sullivan [2]. (See also Bousfield-
Gugenheim [1].) For simply connected spaces, the possibility of using differen-
tial graded coalgebras and differential graded Lie algebras was noticed by
Quillen [10]. In this section, we recall the relevant aspects of Sullivan’s and
Quillen’s work and show how to combine them to study the rational homotopy
type of any nilpotent space with finite type rational homology. Full details
appear in [7].

Let X be a connected space. Sullivan [2] has defined the PL de Rham forms
(X) whenever X is a simplicial complex. This definition extends to any simpli-
cial set [1], [15], and hence to all spaces by composition with the singular
functor. (X) defines a contravariant functor from the category of connected
spaces to the category of commutative associative differential graded algebras.
There is a natural isomorphism of graded algebras H*,C(X) H*(X; Q).

Sullivan goes on to define minimal algebras. A differential graded algebra A
defined over a field k of characteristic zero is called minimal if it is constructible
by a succession of decomposable elementary extensions starting from the
ground field [2]. A decomposable elementary extension of a differential graded
algebra B is a differential graded algebra A, denoted A B (R) a $[V], where" (1)
If we forget the differential, then A = B (R) S[V] where S[V] is a symmetric
algebra. (2) The differential d on A extends that on B and d(V) is contained in
B.B.

It follows that any minimal algebra is a symmetric algebra when we forget
the differential and that the differential of a minimal algebra is decomposable,
that is, d(/i) is contained in .i /I. In fact, these properties may be used to define
minimal algebras in the simply connected case, A k, A k.
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If X is a connected space, there is a minimal algebra Mx, defined over the
rationals, which adnits a homomorphism Mx g(X) such that
H*Mx H*g(X) is an isomorphism. Mx is unique up to isomorphism and is
called the minimal algebra model for X.

Let A be a minimal algebra and let Q(A)= i/,,i A denote the module of
indecomposables. Pick a basis {x} for Q(A) and a splitting Q(A) A so that we
may regard {x} as a minimal set of algebra generators in A. Since the differen-
tial d in A is decomposable, we may write dx, W(x,) + P(x,) where W(x,)
E cxx and P(x,)is a sum of monomials in the generators of length 3 or
greater. P(x) is called the perturbation of the differential. It is not well defined.
P(x) depends on the choice of the basis and the splitting.

OeOSlTION 2.1. The quratic te W(x) cxx is well defined and
the composition

Xi E CkXjXk X Ck(XJ @ Xk + (-- 1)degx deg Xkk @
gives a well defined map W: Q(A Q(A @ Q(A ).

The reader should refer to [7] or [9] for an alternate definition of Wwhich is
clearly well defined and functorial.

Let X be a simply connected space. Via the Whitehead product

n(X) has the structure of a Whitehead algebra [9].

Remark. n.(X) n._ (flX) and, under this isomorphism, the Whitehead
pruct corresponds to the Samelson product in n(flX), n(flX)@Q is a
graded Lie algebra.

PROPOSITION 2.2 [2]. If X is a simply connected space with rational homo-
looy offinite type and Mx is its minimal aloebra model, then

Q(Mx) - Hom (n(X), Q)
and the map W in 2.1 is dual to the Whitehead product.

If X is nilpotent with rational homology of finite type, then the above iso-
morphism holds in dimensions > 1 and

Q’(Mx) - Hom (l(nt(X) (R) Q), Q)
where I(nt(X)(R) Q) is the Lie algebra of the Malcev completion [2], [10].

Let C be a connected differential graded coalgebra. C is called minimal if the
following three conditions are satisfied: (1) If we forget the differential, C is a
symmetric coalgebra. (2) The differential d of C is zero when restricted to the
module of primitives

PC kernel C C (R) C.
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(3) PC is nilpotently complete as a Whitehead algebra with bracket
PC (R) PC PC defined in a manner dual to 2.1 (see [7]).

If X is a nilpotent space with finite type rational homology, then its minimal
algebra model Mx is of finite type and the dual of Q(Mx) is a nilpotent
Whitehead algebra. Let Cx - the dual coalgebra to Mx. Then Cx is a minimal
coalgebra and PCx - Horn (Q(Mx), Q). Cx is unique up to isomorphism and is
called the minimal coalgebra model for X. Of course, HCx= H(X; Q)as
coalgebras and, if X is simply connected, PCx (X)(R) Q as Whitehead
algebras [7].

Let C be a commutative associative connected differential graded coalgebra
which is defined over a field k of characteristic zero. Quillen [10] has defined a
functor (C) which takes values in differential graded Lie algebras. If we forget
the differential, (C)= F[s-1C-] the free graded Lie algebra on the desus-
pended module s-1. Let s-c be a generator and suppose that

A(c) c (R) 1 + 1 (R) c + c, (R) cj + (- 1)deg ci deg CJC ( Ci"

Then d(s-c) -s- dc , (- 1)de’C’[S-xC,, S-lCj].
A differential graded Lie algebra L is called minimal if the following condi-

tions hold" (1) If we forget the differential, L is a free graded Lie algebra F[F].
(2) The differential d is decomposable, that is, d(L) is contained in [L, L] (see
[71).
Given a nilpotent space X with finite type rational homology, we can con-

sider (Cx) where Cx is the minimal coalgebra model for X. Suppose X is
simply connected. Up to isomorphism, there is a unique minimal Lie algebra
Lx which admits a homomorphism Lx (Cx) such that HLx ---, H(Cx) is
an isomorphism [7]. Lx is called the minimal Lie algebra model for X.

Let L be a minimal Lie algebra and let Q(L) L/[L, L] denote the abelian-
ization. What follows is formally identical to 2.1 for minimal algebras. Pick a
basis {x,} for Q(L) and a splitting Q(L)--, L so that we may regard {x} as a
minimal set of Lie algebra generators in L We may write dx l(x) + P(x)
where l(x,)= E Ck[X, Xk] and P(x,)is a sum of brackets in the generators of
length 3 or greater. P(x) is called the perturbation of the differential. It is not
well defined. It depends on the choice of basis and the splitting.

PROPOSITION 2.3. The quadratic term l(x) Ck[Xl, Xk] is well defined
and the composition

gives a well defined map D" Q(L) Q(L) (R) Q(L).

Refer to [7] for an alternate definition of D which is clearly well defined and
functorial.

PROPOSITION 2.4 [7]. IfX is simply connected withfinite type rational homo-
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logy and Lx is its minimal Lie algebra model, then Q(Lx) s-IFi(X; Q) and,
under this isomorphism,

/(s ’x) E (- 1 )deg xi’[S- 1X; S 1XI’
where

A(x) x (R) 1 + 1 (R) x + E (x’ (R) x’’ + (- 1)ae ’’ de ’"X;’ (R) X’).

PROPOSITION 2.5 [7]. If X is a simply connected space with finite type ra-
tional homology, then HLx - r(fX) (R) Q as Lie algebras.

2.5 is a consequence of the isomorphism Hff(Cx) s- tPCx. This does not
require simple connectivity. Hence, if X is nilpotent with finite type rational
homology and if we replace Lx by ff(Cx), the isomorphism in 2.5 is valid in
dimensions > 0 and Ho ff(Cx) is isomorphic to the Lie algebra of the Malcev
completion no(fX)(R) (see [7]).
Given nilpotent spaces X and Y with finite type rational homology, let

X (R) and Y (R) Q denote their respective rational homotopy types. The next
proposition extends a result of Sullivan [2].

PaOPOSITION 2.6 [7]. The following five conditions are equivalent:

(1) X (R) Q and Y (R) Q are the same rational homotopy type.
(2) The minimal algebras Mx and Mr are isomorphic.
(3) The minimal coal#ebras Cx and Cr are isomorphic.
(4) There is a map q’(Cx)-, Av(Cr)such that H.(Cx)--, Hq’(Cr)is an

isomorphism.
(5) IfX and Y are simply connected, the minimal Lie algebras Lx and Lr are

isomorphic.

Let k be an extension field of Q. 2.6 suggests that we say that X and Y have
the same k homotopy type if any of the following equivalent conditions hold:
(a) Mx (R) k Mr (R) k. (b) Cx (R) k Cr (R) k. (c) There is a homology isomor-
phism .,q’(Cx) (Cr). (d) If X and Y are simply connected, Lx (R) k Lr (R) k.

Quillen [10] has defined a functor cg from differential graded Lie algebras to
commutative associative differential graded coalgebras. Let L be a differential
graded Lie algebra. If we forget the differential, then Cg(L) S’[sL] is the sym-
metric coalgebra generated by the suspended module sL. Rather than describe
the differential in Cg(L), we will assume that L is of finite type and describe the
differential d* in the dual symmetric algebra *(L)= S[sL*].
Choose a basis {y} for L* and suppose that

Y,- E (Y (R) Y (- 1)a’y’YR (R) Y)
is the dual of the Lie bracket. Then

d*(sy,) -s a,y,- E (- 1)agYc(sY)(sY)
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The functor cg is adjoint to the functor and the adjunction maps
C cg(C) and g(L) L induce isomorphisms in homology [7] (or see [10]
for the simply connected case).

3. Formality and coformality

In this section we give several equivalent definitions of Sullivan’s concept [2]
of a rational homotopy type being a "formal consequence of its cohomology
algebra." Such a space is called formal or Q formal. We also introduce the
concept of a rational homotopy type being a "formal consequence of its homo-
topy Lie algebra." Such a space is called coformal or Q coformal.
Throughout this section all spaces will be nilpotent with finite type rational

homology. A weak equivalence between differential graded objects means a
homomorphism which induces an isomorphism in homology or cohomology.

DEFINITION 3.1. Over a field k of characteristic zero, a minimal algebra A
(free Lie algebra L) is called formal (respectively, coformal) if there is a weak
equivalence A H*A (respectively, L HL). A space X is called k formal (k
coformal) if its minimal algebra model Mx (R) k (respectively, Lie algebra model
(Cx) (R) k) is formal (respectively, coformal).

If X is simply connected, then X is k coformal if and only if Lx(R) k is
coformal.

Remark. If X is Q formal (Q coformal), then X is k formal (k coformal) for
any field k of characteristic zero. In this case, we say that X is formal
(coformal).

PROPOSITION 3.2.
are equivalent:

For a simply connected space X, the following conditions

(a) Mx (R) k is formal.
(b) There is a weak equivalence H(X; k)--, Cx (R) k where Cx is the minimal

coalgebra model.
(c) Lx (R) k is isomorphic to f’(H(X; k)).
(d) Lx (R) k is isomorphic to a minimal Lie algebra whose differential has zero

perturbation.

PROI’OSITION 3.3. For a space X, the following conditions are equivalent:

(a) .q’(Cx) (R) k is coformal.
(b) Cx (R) k is isomorphic to Cd(Hq(Cx) (R) k.
(c) Mx (R) k is isomorphic to cd*(Hq(Cx)) (R) k.
(d) Mx (R) k is isomorphic to a minimal algebra whose differential has zero

perturbation.
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Proofs of 3.2 and 3.3. The equivalence of 3.2(a)and 3.2(b)is simple dualiza-
tion. Assume 3.2(b). Then (H(X; k)) (Cx(R)k)= (Cx)(R)k is a weak
equivalence [10]. Since H(X; k) has zero differential, &a(H(X; k)) is a minimal
Lie algebra. By the uniqueness of minimal models, (H(X; k))= Lx(R)k.
Hence 3.2(b)implies 3.2(c).
Assume 3.2(c). Then there is a weak equivalence 5(H(X; k)) (Cx(R) k)

and hence a weak equivalence ffa(H(X; k)) c(Cx(R) k) (see [10]). Cx(R) k
is fibrant in the sense of [10] so that there is a splitting(Cx (R) k) Cx(R) k.
This splitting is also a weak equivalence. Composition gives a weak equiv-
alence H(X; k)--. Cx (R) k. Hence, 3.2(c)implies 3.2(b).
The differential in (H(X; k)) has zero perturbation; hence, 3.2(c) implies

3.2(d).
Assume 3.2(d). Then we can assume Lx (R) k to have a differential with zero

perturbation. By Proposition 2.4, Lx (R) k is isomorphic to &a(H(X; k)). There-
fore, 3.2(d)implies 3.2(c).

Proposition 3.3 is proved in the same way as Proposition 3.2 but with the
roles of and 5e interchanged. Instead of using Proposition 2.4, we use an
algebraic version of Proposition 2.2. It asserts that s-PCx - H&(Cx)as Lie
algebras. See [7, Proposition 6.3]. In any case, 2.2 is sufficient to prove that
3.3(d) implies 3.3(b) when X is simply connected. |

We cannot resist giving geometric interpretations of formality and coforma-
lity. A complete justification would take us off our path; therefore, we will be
brief and let the suspicious reader regard them as mere guides to his intuition.
Sullivan has shown that the differentials on generators for a minimal algebra
model can be regarded as cochain representatives for the k-invariants of the
rational Postnikov system [2]. By 3.3(d), a space X is Q coformal if and only if
X (R) Q can be constructed by a Postnikov system in which the k-invariants
have quadratic cochain representatives. In a dual fashion, the differentials on
generators for a minimal Lie algebra model can be regarded as chain represen-
tatives for attaching maps for cells in a minimal rational CW decomposition of
X (R) Q. By 3.2(d), a simply connected space X is Q formal if and only ifX (R) Q
has a minimal rational CW decomposition where the attaching maps of cells
have quadratic chain representatives.

In terms of the identifications r,(X) (R) Q P, Cx H,_ 1Lx, the Hurewicz
map has two descriptions [2], [10]:

(1)
(2)

PCx - Cx induces the Hurewicz map PCx HCx H(X; Q) and
Lx Q(Lx) induces the Hurewicz map HLx--, Q(Lx)= s-x/-/(X; Q).

As a trivial consequence of 3.2(c) and 3.3(b), we get:

PROPOSITION 3.4. Let X be a simply connected space. IfX isformal, then the
Hurewicz map, n(X) (R) Q PH(X; Q), is surjective onto the primitives. IfX is
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coformal, then the quotient of the Hurewicz map, Q(n(X) (R) Q) H(X; Q), is
injective.

The first part of 3.4 is proved by another method in [9]. If X is both formal
and coformal, then Q(n(X)(R) Q)= PH(X; Q). Hence:

COROLLARY 3.5. IfX is aformal, coformal, and simply connected space, then
there is an epimorphism of Lie algebras F[s-1PH(X; Q)]- n(X)(R) Q.

3.5 may be thought of as a weak upper bound on the rational homotopy.

4. Examples

In this section, we give some examples of spaces which are or are not formal
or coformal.

LEMMA 4.1. IfX and Y are simply connected spaces with finite type rational
homology, then X v Y and X x Y are formal (coformal) ifX and Y are formal
(coformal).

Proof By [7, Lemma 8.5], the minimal coalgebra model for X Y is
Cx (R) Cy. If X and Y are formal, there are weak equivalences H(X; Q) Cx
and H(Y, Q)- Cy by 3.2. Tensoring gives a weak equivalence

H(X x Y;Q)Cx(R)Cr.

Thus X x Y is formal. If X and Y are coformal, then

Cx c(r(DX) (R) Q) and C c(r(flY)(R) Q)
by 3.2. Hence,

Cx (R) C - ((n(X)(R) Q x n(flY)(R) Q) ((n((x x Y))(R) Q).
Hence, X x Y is coformal.
By [7, Lemma 8.6], the minimal Lie algebra model for X v Y is Lx v Lv

(= free product). If X and Y are formal, then

Lx v Lv ’(H(X; Q))v .q(H(r; Q)) L(H(X v Y; Q)).

Hence, X v Y is formal. If X and Y are coformal, then there is a weak
equivalence

Lx v Lr - rr(nX) (R) Q v n(fr) (R) Q - n((X v Y)) (R) Q.

Hence, X v Y is coformal. 1

Let I be an ideal in a graded symmetric algebra S Six , Xk]. I is called a
Borel ideal if it has a set of ideal generators y , y decomposable in S such
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that H*(A, d) - S/I where

A S[xl,..., Xk, S-lyx,..., S-Xy]

and d is a derivation such that dx 0 and ds-ay y (see [13]).
Let J be an ideal in a free graded Lie algebra F F[z ,..., Zk]. J is called a

Borel ideal if it has a set of ideal generators w, w decomposable in F such
that H(B, d) F/J where

B F[zx,..., Zk, S- IWx,..., S- Wk]
and d is a derivation such that dzt 0 and ds-Xw wi.

LEMMA 4.2. IfX is a nilpotent space such that H*(X; Q) S/I where S is a
9raded symmetric aloebra and I is a Borel ideal, then X isformal. If the 9enera-
tors for I can be chosen to be quadratic, then X is also coformal.

LEMMA 4.3. If X is a simply connected space such that (X) (R) Q - F/J
where F is afree 9faded Lie algebra and J is a Borel ideal, then X is coformal. If
the 9enerators for J can be chosen to be quadratic, then X is also formal.

We will prove 4.3 and leave 4.2 as an exercise.

Proof Let B be the graded Lie algebra in the definition of a Borel ideal.
There is a weak equivalence B - F/J given by zt t, s- wt 0. On the other
hand, there is a weak equivalence B
is a cycle representative for z and dbt is the image of w.

Since B is a minimal Lie algebra, B - Lx and there is a weak equivalence
Lx - F/J n(tX)(R) Q. Hence, X is coformal. The second statement in 4.3
follows from 3.2(d).

From 4.2 and 4.3, it follows that a wedge of spheres /, S"’, n, _> 2, and a
product of’Eilenberg-MacLane spaces X, K(n,, n,), n, _> 1, are both formal
and eoformal. In the first case,

n (f S") (R) Q ’ F[x]

where degree x n 1. In the second case,

where g* Horn (, Q) is concentrated in dimension n. Since any connected
Lie group G has the rational homotopy type of a product ofodd spheres {these
are rational Eilenberg-MacLane spaces), it follows that G is both formal and
coformal.
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PROPOSITION 4.4. Let M be a compact n-connected m-dimensional manifold
with m <_ 3n + 1, n > 1. Then M is formal and, if rank PH(M; Q) > 2, M is

coformal.

Proof. It follows from Poincare duality that

H(M; Q) Q ) PH(M; Q) Hm(M; Q)

where Hm(M; Q) is generated by the fundamental class #. Consider the
minimal Lie algebra model Lt. By 2.4, Lu is isomorphic to the free graded Lie
algebra generated by s-1/-/(M; Q). For dimension reasons, the differential on
s-lrl(M; Q) can have no perturbation. Hence, M is formal by 3.2.

Therefore, LM a(H(M; Q))and d is zero on s-PH(M; Q). By [8],

7r() x Q f/J

where F F[s-tPH(M; Q)] and J is the ideal generated.by ds-tlau. Since
HLt F/J, J is a Borel ideal. Hence, M is coformal by 4.3.

In order to study more subtle examples of formal spaces, it is helpful to know
a basis for a free graded Lie algebra defined over Q. In the ungraded ease, a
basis is given by a Hall family. We refer the reader to [Serre, 12] for the
definition of the nonassoeiative monomials which make up a Hall family.

PROPOSITION 4.5. IfF is a rational 9faded Lie aloebra which isfree on oraded
oenerators x , Xk, then F has a 9faded basis A w B where A is a Hallfamily
and B {[x, x]: x A and degree x is odd}.

Since we use this proposition only for simply connected spaces, we shall
assume that degree x > 1 for all generators x. There is a longer algebraic
proof which does not require this assumption.

Proof. Let A {x} be a Hall family and let degree x= n. Let
X k/k_: S"’+ . By the Hilton-Milnor theorem [3], [6] there is a homotopy
equivalence fY fX where Y X s" + 1. Hence,

F rt(X) (R) Q n(Y) (R) Q I-I rt(S"’+ ’) (R) Q I-I F[x=].

If degree x, is even, then F[x,] has a basis of one element x,. If degree x, is odd,
then F[x] has a basis of two elements x and [x, x]. |

Using 4.5, we can prove"

PROPOSITION 4.6.
m < 6 is formal.

Every compact simply connected manifold M ofdimension

Proof It follows from 4.4 that M is formal if m < 4. The cases m 5 and
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m 6 are very similar. We will treat the case m 6 and leave m 5 to the
reader.
By aoincar6 duality, /:/*(M; Q) has a graded basis x, x(degree 2);

z’, z’, w, w]’(degree 3); y, y(degree 4); and/*(degree 6)such
that x.*, y*. z.*, w t*.dij#*, Let x, z, w, y, / be the dual basis for
H(M; Q).
By 2.4, the minimal Lie algebra model LM is generated by s- x zi S i S- wi

s-y, s-p and, on these generators, the quadratic term of the differential is
given by the comultiplication. The only possible perturbation of the differential
is P(s- #). If we look at the basis in 4.5, we can write P(s- p) Is- x,, a]
where degree ai 3. Define an isomorphism f: LM Za(H(M; Q)) by

f(s- ’y,) s- ’y, a,(i 1,..., k)

and f equals the identity on all other generators. By 3.2, M is formal. |

The rest of this section is devoted to giving examples of spaces which are not
formal or not coformal.

Example 4.7. Consider complex projective space CP". Since

H*(CP"; Q) Q[u]/un+ O,

4.2 implies that CP is formal but it is not coformal if n > 2 because un / is not
quadratic.

Example 4.8. Consider the CW complex

X S2 v S2 U e5

where a: S4 $2/S2 is the triple Whitehead product [x, [x, y]] and x, y is a
basis of n4($2 v S2) (R) Q. The minimal Lie algebra model for X is

F[s- Ix, s- y, s-]

where degree/ 5 and d(s- ’p) [s- ’x, Is- ’x, s- ’y]], d(s- ’x) d(s- ’y) O.
Since there is a (nonremovable) perturbation into cubic terms, X is not formal.

As Example 4.8 hints, perturbations of the Lie algebra differential are related
to nontrivial Massey products. In fact, perturbations are better than Massey
products because perturbations are always defined and well defined once gen-
erators are chosen.

Example 4.9. Let L be a differential graded Lie algebra. Suppose that , fl, 7
are homology classes in HL (of degrees r, s, t) such that [fl, 7] [7, a]
[a, fl] 0. There is a higher order Lie product [a, fl, 7] which is well defined in
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Q(HL) HL/[HL, HL]. Let a, b, c be representative cycles and let dx bc,
dy ca, dz ab. Then [a, fl, 7] is represented by the cycle

(-1)’[x, a] + (-1)2[y, bl + (-1)[z, c]

where el tr- t, ,2 ls r, e3 ts- s.
If X is a coformal space, all higher order Lie products must be zero in Q(Lx).

For example, if Y S2 x S2 x S2 the top cell, then [a, fl, 7] :/: 0 where , fl, 7
generate H1 Lr. Hence, Y is not coformal.

5. Descent

Throughout this section, let k be a field of characteristic zero.
If X and Y are nilpotent spaces with finite type rational homology, then X

and Y may have the same k homotopy type but different rational homotopy
types. For example, let X and Y be two compact (2n- 1)-connected 4n-
dimensional manifolds such that rank H2n(X; Q)= rank H2n(Y; Q). Then X
and Y have the same complex homotopy type but will have different rational
homotopy types if the quadratic forms on H2 are not rationally isomorphic. In
this section, we give sufficient criteria for a k equivalence to descend to a
rational equivalence. As a corollary, we get that k formal (respectively, k cofor-
mal) is equivalent to Q formal (respectively, Q coformal).

Let V and V’ be graded vector spaces defined over Q. A k linear map

f: V’ (R)k-. V(R)k

is said to be defined over Q if there is a Q linear map g" v’ v such that
f=g(R)l.

PROPOSITION 5.1. Let I2 and L be minimal Lie algebras defined over Q such
that Q(E) and Q(L) arefinite dimensional and Eo Lo O. Suppose that there is
an isomorphism f: (R) k L (R) k such that

Q(f): Q(E) (R) L --, Q(L) (R) k

is defined over Q. Then there exists an isomorphism g: E--, L such that
Q(g) (R) 1 Q(f ).

If we apply 5.1 to minimal Lie algebra models, we get the following result.

COROLLARY 5.2. If X and Y are simply connected spaces with finite dimen-
sional rational homology, then X and Y have the same rational homotopy type if
and only if any of the following equivalent conditions hold:

(a) There exists an isomorphism f: Lx(R)k--. Lr(R)k such that Q(f) is

defined over Q.
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(b) There exists an isomorphism g: Cx (R) k Cr (R) k such that

H(g): H(X; k)- H(Y; k)
is defined ov.er Q.

(c) There exists an isomorphism h: Mx (R) k - Mr (R) k such that

H*(h): H*(Y; k)- H*(X; k)
is defined over Q.

COROLLARY 5.3. If X and Y are simply connected spaces with finite dimen-
sional rational homology, then an isomorphism ofrational cohomology algebras is
induced by a map X (R) Q-Y (R) Q if and only if it is induced by a map
Mr(R)kMx(R)k.

COROLLARY 5.4. If X is a simply connected space with finite dimensional
rational homology, then X is k formal if and only if X is Q formal.

Given 5.1, only Corollary 5.4 is not trivial.

Proof of 5.4. Suppose X is k formal. By 3.2, there is an isomorphism

f: Lx (R) k - ’(H(X; k)).

By 2.4, Q(f)corresponds to an automorphism of the coalgebra H(X; k). If# is
any automorphism of H(X; k), then ()is an automorphism of (H(X; k))
and QZ’(#) corresponds to /under the isomorphism

Q((H(X; k))) s-ta(X; k).

Hence, there exists an automorphism h of 5(H(X; k)) such that Q(hf) is
defined over Q. By 5.1 applied to hf, there exists an, isomorphism
Lx ’(H(X; Q)). Hence, X is Q formal. I
As a corollary of the proof of 5.4, we get:

COROLLARY 5.5 [14]. IfX is simply connected withfinite type rational homo-
logy and X is formal, then any automorphism of H*(X; Q) is induced by a self
map of X.

In the proofs of 5.1 to 5.5, we can replace minimal Lie algebras by minimal
algebras. If we do so, we get the following result.

PROPOSITION 5.6. IfX and Y are simply connected spaces with finite dimen-
sional rational homotopy, then X and Y have the same rational homotopy type if
and only if any of the following conditions hold:
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(a) There exists an isomorphism f: Mr (R) k - Mx (R) k such that Q(f) is

defined over Q.
(b) There exists an isomorphism g: Cx (R) k - Cy (R) k such that P(g) is

defined over Q.
(c) There exists an isomorphism h: Lx (R) k Lr (R) k such that

H(h): g(aX)(R) k --+ g(flY) (R) k

is defined over Q.

COROLLARY 5.7. If X and Y are simply connected spaces with finite dimen-
sional rational homotopy, then an isomorphism of homotopy Lie algebras

t(X) (R) Q -+ rc(Y) (R) Q

is induced by a map X (R) Q- Y (R) Q if and only if it is induced by a map

Lx(R) k- Lr(R)k.

COROLLARY 5.8. If X is a nilpotent space with finite dimensional rational
homotopy, then X is k coformal ifand only ifX is Q coformal. IfX is Q coformal,
then any automorphism of the rational homotopy Lie algebra is induced by a self
map ofX (R) Q.

The remainder of this paper is devoted to the proof of 5.1.
The first part of the proof is devoted to showing that we can assume that k is

a Galois extension of Q. In fact, we can assume that k Q, the field of alge-
braic numbers.

Let f: E (R) k - L (R) k be an isomorphism of minimal Lie algebras satisfying
the hypotheses of 5.1. Consider the map

fx: EE(R)k-L(R)k.

Since Q(E) is finite dimensional, the image off is contained in L (R) A where A
is a subring of k which is finitely generated as an algebra over Q. By [Lang, 4, p.
256, Corollary 2], there exists a homomorphism b: A Q of algebras over Q.
The composition (1 (R) b)f: E L (R) A --. L (R) Q extends to a map f2: E (R)
Q L (R) Q which is an isomorphism because Q(f2) is an isomorphism and L
and E are free graded Lie algebras. Note that Q(f2) is an extension of the
original rational map Q(E)- Q(L). Therefore, we can assume that k Q.
From now on, k is a Galois extension of Q. Suppose L is a minimal Lie

algebra defined over k. A differential graded automorphism a: L L is called a
restricted automorphism if Q(a): Q(L) Q(L) is the identity map. The group of
restricted automorphisms will be denoted by A(L). It is easy to see that A(L)is
a unipotent algebraic group defined over k.
A degree 0 derivation r: L - L is called a restricted derivation if fl commutes

with the differential and Q(fl): Q(L) Q(L)is the zero map. Defining [fl, fl’]
fi fl’fl for all fl and fl’ makes the vector space of restricted derivations into a
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Lie algebra. This Lie algebra will be denoted by D(L). It is easy to see that D(L)
is a nilpotent Lie algebra defined over k.
The exponential map maps D(L) bijectively onto A(L). That is, if fl is a

restricted derivation, then exp (fl)= =o (1/k!)flk is a restricted automor-
phism which is well defined because fl is nilpotent. If a is a restricted automor-
phism, write a 1 + where is nilpotent. Then

log (a)= log (1 + )= (-1)k-a(1/k)k

k=l

defines the inverse of the exponential map.
A(L) is a connected unipotent algebraic group because A(L) - D(L) as alge-

braic varieties.
Letf:/2 (R) k L (R) k be an isomorphism satisfying the hypotheses of 5.1 with

k a Galois extension of Q. Let G be the Galois group of automorphisms of k
over Q. Then G acts on the group A(L(R) k)of restricted automorphisms of
L (R) k by the left action

9a (1 (R) g)a(1 (R) 9-a)
for all 9 in G and in A(L(R) k).

Recall the definition of the Galois cohomology Ha(G; A(L (R) k)) (see [11]). A
cocycle is a continuous function ok: G A(L(R)k)such that dp(oh)= b(O) x
(9dp(h)) for all 9, h in G. Two cocycles b and are cohomologous if there exists
an element in A(L(R)k)with tk(9)= o-d/(9)(9o0. HX(G; A(L(R)k))is the
quotient of the set of cocycles under the equivalence relation of cohomology.
The isomorphism f:/2 (R) k L (R) k defines a cocycle tks by

(s(9) =f(1 (R) 9)f- a(1 @0-a)
for all 9 in G. The coefficient group is the group of restricted automorphisms
because Q(f) is defined over Q and commutes with the action of G.

Because A(L (R) k)is a connected unipotent algebraic group, [Serre, 11, Chap-
ter III, Proposition 6] implies that Ha(G; A(L (R) k) 0. Therefore, byis equiv-
alent to the trivial element; that is, there exists in A(L(R)k)such that
f(1 (R)g)f-a(1 (R)g-a)= -a(ga) for all g in G. This is equivalent to (af)x
(1 (R)g)= (1 (R)g)(af). Because af commutes with the action of the Galois
group, it follows that 0f is defined over Q. This proves 5.1. |
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