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POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS
PART II: FINE POINTS OF THE STRUCTURE THEORY

BY

LouIs HALLE ROWEN

Introduction

In Part I we have given a general structure theory of nonassociative f-rings,
based on using central polynomials to obtain correspondence between ideals of
a ring and its center. In this part, we investigate several aspects of the theory in
detail, obtaining results which are of intrinsic interest but which would have
diverted attention from the program of Part I. Specifically, we are interested
here in the following questions: (1) What sentences pass formally from a f-ring
from R to central extensions ? (2) If Nil (R) 0, what can one say about R[2]?
(3) What is the nature of universal PI-rings (defined in [10, Section 1A])? (4)If
BM(R) 0, what can one say about Z(R)? Each of these questions arise na-
turally in the course of Part I, and will be considered in an individual section.
Although the results are not quoted for the most part, in the applications in
Part III, one can readily see how they apply to alternative and Jordan rings.
Notation and definitions are taken from Part I. In particular, R will always

denote a f-ring with center Z.

1. Sentences passing from f-rings to their central extensions

In [10, Section 10], R-stable identities (and central polynomials)were
defined, and were characterized as those identities which pass from R to R[2].
Two questions naturally arise: (1) When are all identities of R stable? (2)
Under what conditions do sentences in the first order logic pass from R to
g[2]?
The first question already received some treatment in [10, Section 10], where

it was observed that if f contains an infinite field then every identity of R is
R-stable. We give another example, based more intrinsically on the structure
of R.

THEOREM 1.1. Suppose R can be embedded in a semiprime f-ring R’ with
JR

_
g and AnnR, J 0, where J Jac (Z(R’)). Then every identity of g is

R-stable.

Proof. As shown in [10, Section 1C], it is enough to prove that every iden-
tity of R is a sum of completely homogeneous identities of R. Suppose an
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identity f(X1, Xm) of R is not homogeneous in X 1, and letf be the sum of
those monomials of degree in X 1. Clearlyf f; we prove that eachf is an
identity of R, and the theorem will follow by iteration of this procedure on each
indeterminate. Let d be the degree of XI in f.
Choose rl, rm in R arbitrarily, and let Yi =f(rl, rm), 0 < < d. For

any c in J, for any j, we have /a= o diyi =f(drl, r2,..., rm) 0. (Here we have
used the hypothesis that JR

_
R.) Thinking of y as variables, 0 <_ <_ d, one

can apply the associative Vandermonde argument on this system of (d + 1)
equations to get g(c)y 0 for all i, where g(c) is a product of terms of the form
cp c, p < q. Let g(c)= ctg(c), where g(c) is a polynomial in c having con-
stant term 1. Since c J, g:(c) is invertible, so dye= 0 for all i. Hence
(c(y))’ 0, where (y) is the ideal of R’ generated by y. Since R’ is semiprime,
c(y) 0 for all i, and for all c in J. Hence (y)_ Anna, J 0, for all i,
implying y 0. Hence, eachf is an identity of R, as claimed. Q.E.D.

THEOREM 1.2.
is R-stable.

IfR is prime, then either Z is afinitefield or every identity ofR

Proof. If Z is an infinite field, then every identity of R is R-stable, by [10,
Remark 1.8]. Suppose Z is not a field. Then there is a nonzero maximal ideal P;
passing to Re, which is equivalent to R by [10, Corollary 2.1], we may assume
that Jac (Z) 4= 0. (Anna Jac (Z))(R Jac (Z))= 0 is a product of ideals of R;
since Jac (Z)4= 0, we conclude that Anna Jac (Z)= 0, and apply Theorem
1.1. Q.E.D.

Theorem 1.2 is quite interesting, because it indicates that the situation is
nicer when Z is not a field. We will interpret this curiosity in Section 3.
An identity of an fgring can be viewed as an atomic universal sentence

(Vxl, x,)(f(xl, x,)= O)

in logic (with constant symbols taken from f). When we study universal sen-
tences in Section 3, we shall be interested in lifting sentences of the form

(w,, o)

from R to R[2]. Such sentences will be called conjunctive identities, and we shall
now generalize results of [10, Section 1C] to conjunctive identities.

Say R is identity-separated if, whenever

(w,, 0 v... vf,(,,,, 0)
holds in R, then somef is an identity ofR. Two ta-rings R and R2 are strongly
equivalent if they satisfy the same conjunctive identities. Of course, strongly
equivalent f-rings are equivalent.

THEOREM 1.3. IfZ contains an infinite domain Z’ and R is torsion-free over Z’
(i.e., every nonzero element of Z’ is regular), then R is identity-separated.
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Proof Assume that there is a counterexample; i.e., there exist polynomials
f(X,..., Xm),..., f,(X,..., Xm), not identities of R, such that

(w,,, m)(f,(,, ’m)= 0,,...,,f,(,,,, ’m)= o)
holds in R. Choose such a counterexample with t minimal. Given x , x,
there is some such thatf(x x, x 2, x.,) 0 for infinitely many values of in
Z’. The usual Vandermonde argument shows that, for each homogeneous com-
ponent f of f in Xx, f(x x, x.,)= 0. Applying this argument for each
m-tuple (xl, x,,) in R", we see that, for each possible homogeneous (in X 1)
component f, off/,

(w,, )(A,,(,, .)= 0 v... vf,,(,, )= 0).
On the other hand, for each i, some f,, is not an identity of R. Replacingfi by
f,, we may assume thatf is homogeneous in X x. Repeating this procedure for
each X,, we may assume that each polynomialf is completely homogeneous.

Since is minimal, for each there exist xx, x. such that

fi(xil,..., Xim 0 and f,(x,1, Xim)# 0 for all i’ # i.

Now, for some i, f(x + x2 :, x m + x2.,)= 0 for an infinite number of
values of in Z’. Let djbe the degree off in Xj, and let rk be the coefficient of 2k

in the expression
f(, + ,,, ,m + m) R[],

for 0<k_<dl+’"+d. But f(xll+ax21,..., xl+ax2)=0 implies. a’r, 0; since we have an infinite number of such a, the standard Vander-
monde argument yields r, 0, for all k. In particular,

0 ro =A(x,,, x,

implying 1. On the other hand, with d d + + d.,

0 f,(,, .),
implying i= 2. This contradiction shows that there cannot be a counterex-
ample to the assertion. Q.E.D.

COROLLARY 1.4. IfZ contains an infinite field then R is identity-separated.

PROPOSITION 1.5. (i) For any f-rin# R, R[2] is identity-separated.
(ii) R and R[2] are strongly equivalent iff R is identity-separated and every

identity ofR is R-stable.

Proof (i) Use a simplified version of the proof of Theorem 1.3 (using
instead of an infinite number of a in Z’).

(ii) Suppose R and R[2] are strongly equivalent. Then R and R[2] are
equivalent, so every identity ofR is stable (of. [10, Proposition 1.3]). Also, by (i),
R[2] is identity-separated, implying R is identity-separated (because of the
strong equivalence of R and R[2]).
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Conversely, suppose that R is identity-separated, and every identity of R is
R-stable. If

e (Vx, )(A(, x)= 0 v... vf,(x, x)= 0)

holds in R then, by supposition, somef is an identity of R, hence of R[2], so
holds in R[2]. On the other hand, R

_
R[2], so every universal sentence of R[2]

holds in R. Therefore, R and R[2] are strongly equivalent. Q.E.D.

PROPOSITION 1.6. Let 2,..., 2u be associative, commutative indeerminates
over R. If R and R[2] are strongly equivalent, then R and R[2, 2HI are
stron#ly equivalent.

Proof. By [10, Theorem 1.6], R and R[2, 2] are equivalent. Suppose

(V* x, *m)(fx (Xx, Xm) 0 v’" vft(Xl, Xm) O)
holds in R. By Proposition 1.5 (ii), R is identity-separated, so some f is an
identity of R, hence of R[2x, 2u]; therefore holds in R[2,...,
2HI. Q.E.D.

We are now ready to present an interesting example of the above concepts.

THEOREM 1.7. If Z contains an infinite domain over which R is torsion free,
then R and R[2, 2] are stron#ly equivalent.

Proof. By [10, Remark 1.8], every identity of R is R-stable. Moreover, by
Theorem 1.3, R is identity-separated. Thus, by Proposition 1.5, R and R[2 ] are
strongly equivalent, so we are done by Proposition 1.6. Q.E.D.

2. The Jacobson-Smiley radical of R[2]
In [10, Section 3] we would very much have liked to show in general that

Nil (R)= 0 implies Jac (R[2])= 0, a well-known theorem of Amitsur in the
associative case. Incidentally, using [2], one can characterize Jac (R) as follows:
Say an element r ofR is left quasireoular if 1 r is not contained in a proper left
ideal of R; an ideal of R is (left) quasirefular if each element is (left) quasireg-
ular. The sum oftwo quasiregular ideals is quasiregular, as one can see without
difficulty. Hence there is a unique maximal quasiregular ideal, which turns out
to be Jac (R).

Using some of the ideas in the proof of Amitsur’s theorem given in [4], we
shall generalize Amitsur’s theorem to all power-associative rings, but shall use
a different generalization of the Jacobson radical. Call an element r in R left
(resp. ri#ht) quasiinvertible if (1 r) has a left (resp. right) inverse in R, and let
J(R) be the sum of all ideals of left quasiinvertible elements, called the
Jacobson-Smiley radical [9]. Clearly J(R) is a quasiregular ideal, so J(R)
Jac (R), and equality holds when R is associative (or alternative cf. Zhevlakov
[11], [12], [13]). Some interesting work on J(R) has been done by McCrimmon
[7].
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PROPOSITION 2.1. Suppose R is power-associative and B is an ideal of R[2].
For any nonzero p(2)= =o r2 in B such that the number of nonzero
coefficients (of2) is minimal, the ring A (with 1) generated by these r is commuta-
tive and associative.

Proof We shall prove that every multilinear identity of Z is a multilinear
identity of A. Since [Xx, X2] and [Xx, X2, X3] are multilinear identities of Z,
the assertion will follow immediately. Suppose h(X 1,..., Xm) is a multilinear
identity of Z. We must show, for all x in {to, r,} and for allf(X
that

h(A(Xll XlUl) ...,fm(ml, XmUm) O.

Viewing the f as a sum of completely homogeneous components, we may
assume without loss of generality that the f are completely homogeneous.
Moreover, supposefhas degree dk in the indeterminate Xk, for each k. Replac-
ing the dk occurrences of Xk in each monomial offby k distinct indeterminates,
we can construct a multilinear polynomialfi fromf; clearly A(fi)

_
A(f), so we

may assume that eachf is multilinear. Let r Xmm. The subring ofA generated
by 1 and r is associative and commutative, and thus satisfies every multilinear
identity of Z; in particular,

h(f (r, r), fm(r, r)) O.

Hence

h(f(p(2), r, r),f2(r, r), ...,fm(r, r))

is an element of B, with fewer nonzero coefficients than p(2), and thus must be
O. In particular, h(f(x, r,..., r), f2(r, r),...)= 0. Then

h(f(x, p(2), r, r),f2(r, r), ...)

is an element of B, with fewer nonzero coefficients than p(2), and is therefore 0;
hence

h(f(x , x,, r, r), f:(r, r), ...) O.

Continuing in this manner, we conclude that

h(f(x, X12 Xlul), ...,fm(Xml, Xmum)--- O,

proving the assertion. Q.E.D.

We now use an idea of Herstein [4].

COROLLARY 2.2. With notation as in Proposition 3.1, assume 2p(2) is ri#ht
quasiinvertible, i.e., (1 2p(2))q(2)= 1 for some q(2). Then q(2) A[2], q(2)x
(1 2p(2))= 1, and A is a nilpotent rinl.
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Proof. Comparing coefficients of ;to in q(2)- 2p(2)q(2)= 1 shows q(2)=
1 + 2ql, for some q in R[2]. Write p for p(2). Then

2q- (2p)(1 + 2q)= 0,

so q p + 2pq. Hence q p + 2p2 + 22p(pq); continuing in this way, we
have

q Z 2i-Pi+ 2tp(P(P (Pq)""))"
i=1

Choosing t > deg q (as a polynomial in 2), we see that all the coefficients of q
2-p A[2]. Since A[2] is commuta-are coefficients of E A[2], so q(2)

tive, we see that q(2)(1 2p(2))= 1.
For any prime homomorphic image i of A, we have (I- 2_p__(.2))q(2)= I;

comparing degrees, since/i is an integral domain, we have 2p(2)= 0. Thus,
2p(2) (Nil (A))[2]; in particular, to, r, are all nilpotent. Suppose 0.
Then p(2)- has fewer nonzero coefficients than p,, so p(2)- 0; in partic-
ular, xx-= 0 for any x in A. Continuing in this way, we see that
x Xk 0 for all x in A; i.e., Ak 0. Q.E.D.

THEOREM 2.3. If R is power-associative and Nil (R)= 0, then R[2] has no
nonzero left or right quasiinvertible ideals. In particular, J(g[2])= 0.

Proof. Suppose there is a nonzero ideal J of right quasiinvertible elements,
and choose nonzero p(2)= --o r 2 in J, such that the number of nonzero
coefficients ri is minimal. (For convenience, assume that r Q.) Let

I r J lri-- 0 if r 0 and It r r I
i=0

Clearly It is an ideal of R, and every element of It is nilpotent, by Corollary 2.2.
Hence It 0, contrary to 0 rt It. Hence there are no nonzero right quasiin-
vertible ideals.
An analogous proof shows that there are no left quasiinvertible ideals, so

J(R[2]) 0. Q.E.D.

Additional results can be obtained by considering associative subrings of R.
Let N(R) {r R lit, R, R] [R, R, r] 0}, an associative subring of R. Let
us state a sample result without proof.

PROPOSITION 2.4. If Nil (N(R)) 0 and if every nonzero ideal ofR inter-
sects N(R) nontrivially, then Jac (R[2])=fi 0.

Obviously at this point we are interested in situations for which J(R)=
Jac (R) (and in particular when J(R[;t])= Jac (R[2])), especially since this is
clearly true when R is associative. Our results reduce this question to cases
when R is purely nonassociative.



POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS II 527

PROPOSITION 2.5. Suppose R is semiprime with R R/Ann U(R) and
R2 R/U(R), as in [10, Proposition 5.4]. Let A be an ideal ofR, and let Aibe the
canonical homomorphic image ofA in R. We have A

_
J(g) (resp. A

_
Jac (g))

iJJ A
_
J(R) (resp. A

_
Jac (g))Jbr i= 1, 2.

Proof. Clearly if A _J(R) (resp. A _Jae (R))then Ai_J(Ri)(resp.
Ai
_

Jae (R)), since the image of a left quasiinvertlble (resp. left quasiregular)
element is left quasiinvertible (resp. left quasiregular). Conversely, if each A is
left quasiinvertible then, for each a in A, we can find y in R such that
y(1-a)= 1 in R. Letting y’ be the preimage of y in A, we have
1 y’(1 a) Ann U(R) and 1 y(1 a) U(R), so

0 (1 yi(1 a))(1 yi(1 a))
1 y(1 a)- y(1 a) + (y(1 a))(y’(1 a))
1 (Yz + Y (y(1 a))y)(1 a)

since y(1 a) N(R). This proves a is left quasiinvertible, for all a in A, so
a

_
J(R). The proof that each A

_
Jac (R) implies A

_
Jac (R) is even more

immediate. Q.E.D.

Since R1 is associative, we know J(RI)= Jac (R1).

COROLLARY 2.6. Suppose R is semiprime, notation as in Proposition 2.5.
(i) J(R)= 0 iff J(gl)= 0 and J(g2)= 0.
(ii) Jac (R)= 0/ffJac (Rl)= 0 and Jac (R2)= 0.

Proof We work with J( ); the proof for Jac is the same. Suppose
J(R) 0; then by Proposition 2.5, the images of J(R) in R1 and R2 are left
quasiinvertible and obviously cannot both be 0. Thus, if J(R1)= 0 and
J(R2) 0, we have J(R) 0, by the contrapositive.

Conversely, suppose J(g 1) 0 or J(g 2) 4 0, and let J 1, J 2 be the respective
preimages (in R) of J(RI) and J(g2). Then either Ann u(g)cJ or
U(R) J2. Then J1 c U(R) or (respectively)J2 & Ann u(g)is anonzero left
quasiinvertible ideal of R. (Proof. If Ann U(R) J then

0 v J1U(R)_ J1 U(R),
and J1 c U(R)is left quasiinvertible, by Proposition 2.5; a similar proof holds
for J2 c Ann U(R)if U(R) J2 .) This proves J(n)v O. Q.E.D.

COROLLARY 2.7. Suppose J(R) O. We have Jac (R)= 0 iff
Jac (R/U(R))= O.

Proof. By Corollary 2.6, J(R 1)= 0. But R is associative, so Jac (R 1)= 0.
Hence the result follows immediately from Corollary 2.6 (ii). Q.E.D.

Thus, we have reduced the question of J(R)= Jac (R) in many cases to the
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situation where R is purely nonassociative. Actually, we should change J(R)as
follows.
Given a successor ordinal number #, define J(R) as the preimage of

J(g/J,_l(g)); define J0(g)=0, and for limit ordinals /, define J(R)=
<u J(g)" Then define J’(g) J,(R) where p is the ordinal of R (as a set).

For any R, J(R/J’(R))= 0. Often J(R)= J’(R); for example, this is immediate
when R is associative, and is easy when R is alternative (cf. Smiley [11]). If
J(R) 0 then J’(R)= 0, so, in particular, Theorem 2.3 says for power-
associative strongly semiprime rings R, J’(R[2])= 0. The correct question is:

Question 2.8. (a) For what f-tings does Jac (R[21)= J’(R[2])= 0?
(b) For what f-rings does Jac (R)= J’(R)?

PROI’OSITION 2.9. Jac (R[2])= 0 iff Jac (R/U(R))[2] O.

Proof
tion 2.6.

Obviously U(R[2])= U(R)[2], so the result follows from Proposi-
Q.E.D.

Thus to prove a central variety of f-rings is Kaplansky, we need check only
the purely nonassociative members.

3. Universal Pl-rings

One of the main features of the associative PI-theory is the "ring of genetic
matrices," which is the universal PI-ring with respect to the identities ofM,(Z).
This ring is absolutely prime, and its ring of central quotients is a division ring
(of dimension n2 over its center), which is an example of utmost importance in
the theory of division rings (cf. [1]). This fact is motivation enough for a
detailed study of universal O-rings, defined in [10, Section 1A]; also, one can
often learn more about an f-ring R by studying its universal O-ring. (This
happens in particular in the study of alternative tings). Thus, we shall spend
this section examining universal f-rings.

Recall that if is the set of identities of R, then we can form the ring
f{X}/ffe, which has the following universal property. Let X be the canonical
image ofX in f{X}/. Given any elements r x, r2 in R, there is a homomor-
phism f{X}/ R so that X-- r for all i. We call f{X}/ffe the universal
f-ring of R, written q/(R). A f-ring of the form q/(R) (for suitable R) is called
universal.
Some examples of universal f-rings are the "free" associative ring, the "free"

commutative, associative ring, the"free" Jordan b-algebra, the "free" alternative
b-algebra, and Amitsur’s ring of generic n x n matrices (cf. [1]). We shall
encounter other examples in Part III.
An obvious question is: Which homomorphic images of f{X} are universal

(with respect to a suitable f-ring)? The answer is given in [10, Section 1A]: IfA
is an ideal of f{X}, then f{X}/A is universal iff, for every endomorphism b of
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t2{X}, b(A)_ A. Accordingly, call an ideal A of a f-ring R a T-ideal if
b(A)

_
A for every endomorphism b of R.

Remark 3.1. If W is a universal f-ring and A is a T-ideal of W, then W/A is
a universal f-ring. (Proof. Write W f{X}/B, for B a suitable T-ideal of f{X},
and write A A’/B. For any endomorphism th of f{X}, b induces an endomor-
phism b of W f{X}/B and thus /(A)_ A; it follows that b(A’)_ A’, so
W/A , f{X}/A’ is universal.

Motivated by Remark 3.1, we shall look at more ways of obtaining T-ideals
of universal f-rings. In general, W will be a universal f-ring, and, under the
canonical surjection f{X} W, the images of X1 will be written as Xi; we shall
still, talk of the elements of W as polynomials in the X, by a slight abuse of
language.

LEMMA 3.2. Suppose W is a universal ring and fl,..., ft W. If dp is an
endomorphism of W then there is an epimorphism " W-, W such that (fi)
dp(fi), 1 < < t, and (T)= Tfor every T-ideal T of W.

Proof. Suppose the indeterminates X1, "m Occur infl, ...,ft. Define
by ff(.i)= b(. i), 1 <i < m, and (Xi)= Xi-m for i> m. Clearly (fi)
dp(fi), 1 < < t. For anyf(X1, ...,-k) in T, we have

f(Y, ,, XR) (f(X,,,+ ,
so (T)= T. Q.E.D.

One point of Lemma 3.2 is that to check that an ideal A of W is a T-ideal, it
suffices to check that @(A)_ A for every onto endomorphism @ of W. But, in
this case, (A) is an ideal. So, heuristically, if A is the "largest" ideal having a
certain property which can be expressed in terms of the ring operations, @(A)
will have this property, and we will conclude @(A)_ A. For example, if
A Nil (W) then every element of A is nilpotent, so every element of @(A) is
nilpotent, and we conclude that @(A) __. A. Let us formalize this argument.
An atomic formula in x 1,..., xm has the form f(x 1, xm) 0 wheref is a

polynomial, and we write formally x instead of X i. We are interested in an
expression of the form (Q2x2)"’(Qmx,)(Fl^’"^ Fk), where each Q1 is a
quantifier, n is a permutation of (2, m), and each F1 is a formula in x 1,

xm. (Note that all occurrences of x are free, and all occurrences of all other x1
are bounded.) Such an expression we call an atomic condition, written as L(x 1).

DEFINITION 3.3. An ideal B is atomically defined by a set ’ of atomic
conditions if, for each b in B, we can find some atomic condition L in such
that L(b) holds, and if B contains all ideals having this property.

THEOREM 3.4.
B is a T-ideal.

IfB is an atomically defined ideal in a universal f-ring W, then
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Proof. For every onto endomorphism of W, and for every atomic condi-
tion L of a, clearly L(b)implies L($(b)). Moreover $(B)is an ideal; so, by
definition, $(B)

_
B. By Lemma 3.2, B is a T-ideal. Q.E.D.

To apply Theorem 3.4, we need only show certain ideals are atomically
defined.

Remark 3.5. Nil (R) is atomically defined. Just take

e (, 0; , 0; ,(, ,) 0; (,), 0; ...).

Remark 3.6. U(R) is atomically defined. Just take

.z {(w:)(v,)([,,,, , ,,] o ^ [,,, ,,,, ,,] o ^ [::,, ,,, ,,,] o)}.

Remark 3.7. Iffis a polynomial (in f/{X})then (W(f)), the ideal generated
by W(f), is atomically defined. (This is because, for any w in W, every element
of (w) can be written as a sum of products each of which contain w.) In
particular, D(R) is atomically defined (takingf= [X, X2, X3]).

Remark 3.8. J(R) is atomically defined. Take,, {(:::]X2)((1 X2)(1 .X:l)"- 1)}.

Remark 3.9. Jac (R) is atomically defined, seen by using the characteriza-
tion of Jac (R) as the largest left quasiregular ideal of R, stated in Section 2.

Remark 3.10. In [3], Brown and McCoy define BM(R) as the largest "F-
regular" ideal of R (and later show BM(R) 0 {maximal ideals of R}). Using
the Brown-McCoy definition, one sees easily that BM(R) is atomically defined.

COROLLARY 3.11. If W is universal then Nil (W), U(W), D(W), J(W),
Jac (W), and BM(W) are T-ideals of W.

Recall that for additive subgroups A, B of R, (B:A) is defined as the largest
ideal of R such that (B:A)A

_
B.

PROPOSITION 3.12. IfA, B are T-ideals ofa universal f-ring W, then (B:A) is
also a T-ideal of W.

Proof. By Lemma 3.2, we need (B:A)
_

(B:A) for every epimorphism ff
of W such that if(A) A and k(B) B. Since (B:A)is an ideal, we need only
show that ,(f) 6 (B: A) for every element f of (B: A). But

O(f)B q,(f)ql(B)= O(fB)
_
O(A)= A,

so O(f)e (B: A), as desired. Q.E.D.

Having a wide range of T-ideals at our disposal, we are ready to prove some
facts about universal f/-rings. Our motivation is from [8]. The first step is to
pass information from R to q/(R).
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THEOREM 3.13. Suppose B is a nonzero ideal of(R), atomically defined by a
set &’ ofatomic conditions (cf. Definition 3.3). Then there is a nonzero ideal ofR
which is atomically defined by ’.

Proof. Take some nonzero f(X1, Xm) in B. By Theorem 3.4, B is a
T-ideal of q/(R). Hence there exist elements rl,..., r,, in R such thatf(r ,...,
rm) :/: 0. It is easy to see f(r, rm) is in the ideal of R atomically defined by, which is therefore nonzero. Q.E.D.

COROLLARY 3.14. If U(R), D(R), Nil (R), J(R), Jac (R), or BM(R) is O, then
(respectively) U((R)), D(ql(g)), J(I(R)), Jac (’(g)), or BM(ql(R)) is O.

Proof. Use Corollary 3.13 and Remarks 3.5-3.10. Q.E.D.

At this stage we can piece together information using the obvious fact that if
g and R2 are equivalent then q/(g)= q/(g2).

PROPOSITION 3.15. If R is power-associative and every identity of R is R-
stable and if Nil (g)= 0, then J(ql(g))= O.

Proofi Let W q/(R). By Theorem 2.3, J(R[2])= 0. But R[2] is equivalent
to R, so W q/(R[2]), implying J(W)= 0, by Corollary 3.14. Q.E.D.

In a Kaplansky class, we can strengthen Proposition 3.15 quite a bit, as we
see after an easy lemma.

LEMMA 3.16. IfR is semiprime and is a clas ofprime ideals ofintersection
O, then for every ideal B of R, Anna B {P 6 [B P}.

Proofi For any prime ideal P B, we have (Anna B)B 0
_

P, implying
Anna B

_
P. Thus, for A {P 9IB g; P}, we conclude Anna B

_
A.

Conversely,

AB_A c B_ {P }=O. Q.E.D.

THEOREM 3.17. For every universal f-ring W in a Kaplansky class,
Nil (W)= BM(W).

Proof. Clearly Nil (W)
_
BM(W). Passing to the universal f-ring

W/Nil (W), we may assume W is strongly semiprime and need prove
BM(W) 0. Since BM(W)= Jac (W), by [10, Proposition 3.22], we need only
prove J1 0, where J Jac (W).
So suppose J :/: 0. Let {PIY F} be a set of strongly prime ideals of W with

zero intersection, such that W/P is in our Kaplansky class for each in 1" (cf.
[10, Definition 3.18]). Let Fx {yrlJx Pr}. For each y in F, let
W W/Pr; (Jx + P)/Pr is a nonzero left quasiregular ideai of Wr, implying
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Jac (W)=/= 0, so

0 # Z Jac (W) Jac Z(W).
Hence, by Theorem 1.1, every identity of W is W-stable. But

Ann J, {PvI? r,},
by Lemma 3.16; it follows immediately that every identity of W/Ann J is
W/Ann Jx-stable. Let W W/Ann J; we conclude that W is equivalent to

But W is universal, so W is the universal f-ring of W[2], implying
Jac W 0, by Corollary 3.14. (Recall that Jac W[2] 0, by [10, Definition
3.18].) Hence J

_
Ann J, implying Jx 0. Q.E.D.

The point of the complicated argument of Theorem 3.17 is to bypass using
W-stable identities. Our next goal is to show that q/(R) is prime if R is prime.
For this result, we need to assume stability ofthe defining identities, even in the
presence of central polynomials, as shown in the following example.

Example 3.18. If R has an identity which is not R-stable and if R satisfies a
central polynomial, then q/(R) is not prime. (Indeed, q/(R) has an infinite
center; if q/(R) were prime then all identities of q/(R) would be ’(R)-stable, by
Theorem 1.2, contrary to the assumption on R). In particular, if F is a finite
field, q/(F) is not prime, for, if n is the order of F, then X" X is an identity ofF
which is not F-stable. (Incidentally, in q/(F), 0 X(X-- 1) yielding an
explicit way of seeing that (F) is not an integral domain.)

THEOREM 3.19. Suppose R is a f-ring in which every identity is R-stable. IfR
is prime then ql(R is prime.

Proof. Suppose R is prime and q/(R) is not prime. Then there exist nonzero
ideals A, B of q/(R), such that AB 0. Then A and B have respective nonzero
elements f(X1, Xm) and g(.’ 1, X,); adding dummy indeterminates (if

in R, suchnecessary) tofor g, we may assume m n. Pick rl, rm, r 1, rm
that f(rl, rm) 0 and g(r, r,) 0.

Passing to R[2], where 2 is a commuting, associating indeterminate over R,
we have

f(rl 2 + r(1 2),..., r2 + r,(1 2)) =/= 0
and

o(r, 2 + r](1 2), r.2 + r,(1 2)) @ 0,
seen by respectively specializing 2 1 and 20. However, q(R)= q/(R[2])
since R is equivalent to R[;] by hypothesis, whereas

<f(rx 2 + r](1 2), r,2 + r,(1 2))>
x <if(r12 + r(1 2), r.2 + r,(1 2))> =/= 0
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since R[2] is prime. But clearly, for any nonzero element x of

(f(rt 2 + r(1 2), ...))(o(rt 2 + r(1 2), ...)),

there is a homomorphism q/(R)R[2] sending X to rs2+r’(1-2),
1 < j < m, whose range contains x; this says that x 4 0 is in the image of
AB 0, a contradiction. Thus we conclude AB 0 implies A 0 or B 0, so
R is prime. Q.E.D.

COROLLARY 3.20. IfR is stronoly prime and every identity ofR is R-stable,
then ql(R) is strongly prime.

Proof. By Theorem 3.19, q/(R) is prime, and Nil (q/(R)) 0 by Corollary
3.14. Q.E.D.

COROLLARY 3.21. IfR is strongly prime and every identity ofR is R-stable,
then ql(g) is strongly prime and J(l(g))= O.

At this point, we may wish to see what other properties would pass from R to
q/(R). This seems to be quite an interesting area, and we only treat a small part
of it, namely those logically elementary sentences passing from R to q/(R). In
other words, we are going in a different direction from Corollary 3.14. This is
inspired by the fact that sentences of this sort are used by Amitrsur [1] in
proving that the universal PI-ring of an associative central division Q-algebra
is an order in an associative central division algebra (of the same dimension)
which often fails to have a maximal subfield which is Galois over the center.
We proceed in a formal manner (cf. [6]). The language will be a "first-order"

language, whose atomic formulas have the form ’f= " where f, 0 6 fl{X}.
(Thus, our list of "constants" includes the elements offL)All formulas are built
inductively from atomic formulas, via the unary operation and the binary
operations ^, v, and -*. Using the laws of associativity of ^ and v, we can
often remove parentheses, without ambiguity, and we also use other set-
theoretic properties, without giving justifications. (In particular, the formula
P P2 can be replaced by P2 v (’ P1).) Quantification is done in the usual
way, with V or .

Given a f-ring R, with universal f-ring W q/(R), let ,g denote the canon-
ical image of Xz in W. We shall also use the X in our language, when analyzing
sentences in W, and shall call them "indeterminates" (with slight abuse of
language). A sentence without indeterminates is "indeterminate-free." A sen-
tence without any quantifiers (resp. without V, without -q), will be called
"quantifier-free" (resp. existential-free, universal-free). Now the fact that
f(X, Xm) is an identity of R can be written as

(VN1, Xm)(f(gl, Xm)= 0).
On the other hand, the fact that f(Xt, Xm) is an identity of I/V can be
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written as either

(Vx,, x.)(f(x,, Xm)= 0), (Vx2, Xm)(f(X,, X., X.)= 0),
or f0, ,.)= 0. This suggests a procedure to transform an elementary
sentence of W to a quantifier-free sentence. The method is as follows:
Given (x,)C(x), replace x, in (x) by some , not occurring in .
Given (]x,)’(x,), take some element f(,, ),)in W for which

holds, and replace x by f(,,
Clearly, after a finite number of steps, any given sentence . holding in W

can be replaced by a quantifier-free sentence ’ which holds in W. The posi-
tions of the unary and binary operations are still the same, only the atomic
formulas have been modified.
We now apply this algorithm to a well-known class of sentences. Say a

formula has type n if it has the form P v... v P. v P.+ v... v Pt, each P
atomic. A Horn sentence is a sentence of the form

(Qlxl)
where the Q are quantifiers and each ’ has type 0 or type 1. Horn sentences
are interesting because they are preserved in filtered products. (See [6, p. 145
and Theorem 1, p. 169].)

THEOREM 3.22. Any universal Horn sentence holding in R, also holds in W.

Proof. Suppose (Vx 1, Xm)(l ^’"^ v) is a Horn sentence hold-
ing in R, and assume that Aa (x 3x.)(~ v...v ’) holds in
W. Applying the preceding algorithm, ( )’= ’v’"v z"o holds in
W, where each ’ is quantifier-free, of type 0 or type 1; hence z" holds in W,
for some i. Now has the form

PI^’"^Pt or PI^P2^’"^P.
Without loss of generality, we can read P as ’f(, :, ).) 0." Then ’means (respectively) ’3r(X , X.) is an identity of W, for 1 < j < t," or
’f(X:, X,) is not an identity of W, andf(X ,..., X.) is an identity of W,
for 2 < j < t." In the first case,

(w:,,
holds in R. In the second case, we can choose rl, r, such that fl(rl,...,
r.) 4:0 (sincefl is not an identity of W); sincef#is an identity ofR,2 < j < t, we
see that

holds in R. In both cases, (9xl :qXm)(’ d2i) holds in R, contrary to the fact
that holds in R. Hence holds in W. Q.E.D.
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For example, if R has no nilpotent elements then W has no nilpotent ele-
ments, for we can express this property by (Vx t)(x 0 v x] 4 0). On the other
hand, for f Q, the following Horn sentences hold for C, the field of complex
numbers, but not for the free associative, commutative ring:

(i)
(ii)
(iii)

(Vx, x2)(x x2 x, x,)(i.e., von Neumann regular),
(3x,)(x2 2),
(3xt)((xa 1)^ (x 4: 1)).

We can salvage some other Horn sentences, however. Call a Horn sentence

(Q1x1)’" (Qtnxm)(d:l A’"A dtt)
special if each has type 0.

THEOREM 3.23. Any special Horn sentence holdin9 in R also holds in W.

Proof Suppose ’ (Q, x,)... (Q.x.)(cx ^"" ^) is a special Hom
sentence holding in R, and assume a holds in W. Using the algorithm
preceding Theorem 3.22,

x v"’v

holds in W, where each ’ is quantifier-free, of type 0; hence some holds
in W. Now ’ has the form P ...P 0. Reading P as

x.)= o,
we see that, for 1 j t,(X, X.) is an identity of W, hence of R. But this
implies ((Qa x)... (Q.x.)) holds in R, contrary to the fact that holds
in R. Hence holds in W. Q.E.D.

Theorem 3.23 can be used to impart negative information to W; for example,

is a special Horn sentence. We return to the universal Horn sentences. Of
course, identities are Horn sentences. A generalization of the identity is the
sentence,

(w,, 0 ^...

^f(x,, x,,,)= O)-.f(x,,..., x,,,)= 0),
called a quasiidentity by Mal’cev and studied in depth in [6, Chapter V].
Clearly, Theorem 2.1 implies that all quasiidentities of R are quasiidentities
of W.
With minor modifications, all of the above results could be done in a general

theory of varieties of arbitrary algebraic structures, not necessarily for rings
only. On the other hand, some very important sentences cannot be analyzed in
such general ways; for example, (Vx, y)(x 0v y 0v xy 4: 0) is not Horn
(since the direct product ofdomains need not be a domain), but the crucial step
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in much of the theory of (associative) universal PI-algebras is that the universal
PI-algebra of a Q-division algebra is a domain. Recall that a universal sentence
(in logic) is a sentence of the form

(V.X:!)’’" (V.X:m)(,.. A’’" A ,Sl/’v)
where each i has some type ni.

THEOREM 3.25. Suppose every identity of R is R-stable. If q’ is a universal
sentence holdin# in R, then holds in W under either one of the additional
hypotheses: (1) holds in the polynomial rin# R[21, 2,], for every n; (2) R
and R[2] are stron[tly equivalent (as defined in Section 1).

Proof. We start as in the proof of Theorem 3.22. Suppose, (V., 1, .Xm)(d;l’l A"" A ,.)
is a sentence holding in R, and assume that holds in W. Then, for some i,

’ holds in W, where ’ is quantifier-free, of type n. Let n n. We can
write ’ as follows" "For 1 < j < n, f(X1, X,) are not identities of W;
for n < j < t, Jj(X1, X,) are identities of W." Since R is equivalent to W, we
can find x 1 <j < n, 1 < k < u, such that f(x,..., x) 0 for all j,
1 < j < n; note thatf(xl, x,) 0 for allj > n. Let 21, 2, be associative
indeterminates over R, and let Xk =1 Xk2, elements of R[21, 2n].
Clearly, f(x , x) 0 for 1 < j < n. Thus, letting

,Z, (W:,, .)(f,(:,, :.)= 0 v... vf.(,, .)= 0),
we see that -’1 holds in R[21, 2,].
At this point, under the additional hypothesis (1) we reach an immediate

contradiction since fn+ 1, f are also identities of R[21, 2,] (since R and
R[2, 2] are equivalent). On the other hand, assume hypothesis (2). Then,
by Proposition 1.6, Aal holds in R, and, of course,fn / 1, ,ft are identities of
R, so we would conclude holds in R, a contradiction. Thus must hold
in W, after all. Q.E.D.

COROLLARY 3.26. If Z contains an infinite domain over which R is torsion
free, then every universal sentence ofR also holds for ql(R).

Proof. Apply Theorem 1.7 to Theorem 3.25. Q.E.D.

Theorem 3.25 raises the following very interesting question" "What types of
sentences lift from R to R[2] ?" Another issue worth raising is that much of the
proof of Theorem 3.25 is applicable to lltm)(R), the universal f-ring built only
from the identities of R in X1,..., Xm.
THEOREM 3.27. Suppose every identity ofR is R-stable. If

.z (w,, ^... ^



POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS II 537

is a sentence ofR and v <_ t, then holds in ll")(R), under either hypothesis (1) or
hypothesis (2) of Theorem 3.25.

In particular, if R is a domain then tlt(R) is a domain for each >_ 2.

4. f-rings without 1, with applications to the radicals

There are a number of interesting relationships among the various radicals of
R, and of Z, which we recall again now. Nil (g)

_
J(g)

_
Jac (g)

_
BM(R);

Jac (R)= BM(R) when g is in a Kaplansky class, by [10, Proposition 3.22];
Z BM(R)

_
Jac (Z), so BM(R) 0 whenever Jac (Z) 0; in a prime -ring

with regular central polynomial Jac (Z) 0 whenever BM(R) 0 (cf. [10, Cor-
ollary 3.15]). Thus the question arises in general: When does Jac (R) 0 imply
Jac (Z)= 07 The answer turns out to be "in almost every Kaplansky class,"
but, to see this fact, we need to prove some facts about -rings without 1.
Henceforth, Ro denotes a fl-ring without 1, defined in the obvious way.

Let fl{X}o be the fl-subring without 1 of {X}, consisting of polynomials
with constant term 0; identities ofR0 are defined to be those polynomials in the
kernel of all homomorphisms from fl{X}o to Ro. In case 1 6 Ro, this gives all
the identities of Ro (as ring with 1) having constant term 0, which, as we saw in
[10, Section 1B] is sufficient to yield the entire PI-theory.
Ring theoretic terms are now given in the category of-rings without 1. For

a multiplicative set S of Z(Ro), we can define (Ro)s, which, by the proof of [10,
Corollary 2.1], satisfies all identities of Ro. But clearly I 6 (Ro)s iff S 0, so we
have a very useful way of passing to -rings with 1; the major goal of this
section is to exploit this passage between categories.
A more formal passage from the category of fl-rings without 1 to the

category of -rings (with 1) is theformal adjunction of 1, which can be done as
follows if we assume that is a ring and Ro is a fl-algie (cf. [1, Section 1B]).
Define R’= f Ro as an additive group, and view R’ as an D-ring with the
following operations:

(w, r)(w2, r2)= (w w2, w r2 + r w2 + rx r2);
w(wx, rx)= (ww, wry) and (w, r)w (w w, r w).

Clearly R’ is a f-algie with multiplicative unit (1, 0). There is a canonical
injection r-- (0, r), under which every ideal of Ro is identified with an ideal of
R’, and we shall use this identification implicitly. Also, there is a f-ring homo-
morphism of R’ to f, given by (w, r)--, w.

For convenience, assume f is a commutative, associative ring p and R o is a
ok-algebra (without 1). Write Zo for Z(Ro)and Z’ for Z(R’); clearly Z’ is isomor-
phic to the b-algebra obtained (by adjoining) formally 1 to Zo. Let denote the
canonical homomorphism from R’ to R’/Anng, Ro, and let R R’, Z Z(R).
Call R the reduced ok-algebra with 1 ofRo. We give two straightforward obser-
vations of the flavor of [9], without proof.
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LEMMA 4.1. Suppose AnnRo Ro 0. Then Ro is canonically embedded in R
(by r-(O, r)), and AnnR Ro 0. If 1 Ro already then this map is an
isomorphism.

LEMMA 4.2. Suppose Ro is semiprime. Then AnnR, Ro
_

Z’, R is semiprime,
and Z Z’. If Ro is prime (resp. strongly semiprime) then R is prime (resp.
strongly semiprime).

PROPOSITION 4.3. If Ro is semiprime and S is a nonempty multiplicative
subset ofZo containing only regular elements ofRo, then all the elements ofS are
regular in R and (Ro)s Rs. In this case, R and Ro are equivalent.

Proof. $

_
Z, by Proposition 4.2. Next, suppose r)(0, s) 0, for (w, r)in

R’ and s in $. Since (0, s) 6 Z’, we have (w, r )(0, s)= 0 for all (wt, r) in
((w, r)). But then, for all r’ in Ro,

0 ((w,, r,)(0, s))(0, r’)
((w,, ,’))(o,

-(0, (w, r’+ r, r’)s);
r’ r’= 0. Thus ((w, r)>Ro 0, implyingsince s is regular in Ro, we have w + r

(w, r) 0. This proves s is regular in R.
Clearly (Ro) is an ideal of Rs. But 1 6 (Ro)s, so (Ro)s Rs. Finally, R is

equivalent to Rs (Ro)s, which satisfies all the identities of Ro, so R and Ro
are equivalent. Q.E.D.

COROLLARY 4.4. Suppose is a class of c-algebras with 1, L t/, L is
semiprime, and c Z(L). If R is the reduced c-algebra with 1 of cL then R is
equivalent to cL If is a variety then R t/.

Proof. Since L is semiprime, c is regular in the b-algebra cL. Thus, by
Proposition 4.3, with Ro cL and S {c’l >_ 1}, we see that R is equivalent to
cL. In particular R satisfies all identities of L. Hence, if is a variety then
R e /. Q.E.D.

COROLLARY 4.5. IfZ(Ro) # 0 and ifR, the reduced alp-algebra with 1 ofRo, is
absolutely prime, then Ro is absolutely prime, having the same c-algebra of
central quotients as R; in this case R and Ro are equivalent.

Proof. Apply Proposition 4.3, with S Zo -{0}. Q.E.D.

To apply Proposition 4.3 optimally, we need a decomposition result.

PROPOSITION 4.6. Let Ro be a subdirect product of the class of ok-algebras
(without 1) {Ro Ro/Bv [2

_
F}, and, for each % let R be the reduced algebra

with 1 of Rov. Then R is a subdirect product of {RI F}.
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Proof Given r in Ro, let r denote the image of r in Ro. Then define

b" R’ Rr by qr(w, r)= (w, rr);
ker br {(w, r) R’l((w, r))Ro

_
Br},

so ker br {(w, r) R’l((w, r_r__Ro
_

Br 0} AnnR, Ro. Thus each
br induces a homomorphism br" R R’/Ann Ro R, and ker br
0. Q.E.D.

COROLLARY 4.7. If Ro is a subdirect product ofprime rin#s havin# nontrivial
centers, then Ro is equivalent to its reduced algebra with 1.

DEFINITION 4.8. A Kaplansky class is sufficient if for every semisimple
member L and for each c in L, the reduced algebra with 1 of cL is in % (Recall
"semisimple" means "BM( 0.")

Remark 4.9.
sufficient.

By Corollary 4.4, every Kaplansky variety of algebras is

We are now ready for the theorem promised at the beginning of this section.

THEOREM 4.10. Suppose ( is a sufficient Kaplansky class ofalp-algebras,for d?
some commutative, associative ring, and let {gkl 1 < k < u} be a given finite set of
regular polynomials. Say a semisimple algebra L ofc satisfies (*) if there is a set

ofmaximal ideals {Pr 7 F} ofL with intersection O, such thatfor every F’
_

F, a
suitable gk is L/ {Pr I7 r’}-central. For every semisimple L in satisfying (*),
we have Jac Z(L)= O.

Proof. Order the semisimple members of satisfying (*) by defining
L < L2 if every gk which is an identity of L 2 is an identity of L 1 < k < u. If
the theorem were false we could select a semisimple counterexample L (satisfy-
ing (*)), which was minimal with respect to the ordering. Jac Z(L)has a non-
zero element c; let Ro cL and F1 { r lc P}. Now

0-- 0 {PIY r} _= (h {PI r,) Ro 0 (Pr RolY r,).

Letting Rr L/Pr for each V F1, we see that

Rr (Ro + Pr)/Pr , Ro/(Ro c Pr),
so Ro is a subdirect product of{Rr[ F 1}. Let R be the reduced algebra with 1
of Ro. By Lemma 4.1, each Rr is its own reduced algebra with 1; hence, by
Proposition 4.6, R is the subdirect product of {Rrl F}. Thus R is semisimple
and obviously satisfies (*). Since is sufficient, R . On the other hand, one
sees easily that Z(Ro) is a quasiregular ideal of Z(R). (Indeed, for any element
cz in Z(Ro), one can show that z Z(L) (since L is semiprime), so cz has a
quasiinverse y. Then y czy cz cZ(L)

_
Z(Ro).) Thus R is a counterex-

ample to the theorem. But, by Corollary 4.4, R < L Moreover, by assumption,
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some gk is L-central and, by [10, Corollary 3.14], L(gk)C 0. Thus Ro(gk)C O,
implying Ro(g)= 0, so gk is an identity of R, by Corollary 4.4. Therefore
R < L, contrary to the minimality of our counterexample; thus the theorem is
true, after all. Q.E.D.

Property (*) arises very naturally; in fact, all the classes studied in part III
satisfy (*) and thus Theorem 4.10. Incidentally, this theorem is very interesting
in that its statement and proof seem to necessitate passing back and forth
between categories (of algebras with 1 and algebras without 1 ). Note that the
same proof would work for "algies."
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