REMARKS ON STRONGLY M-PROJECTIVE MODULES

BY
Paul E. Bland

In [11], Varadarajan introduced the notion of strongly M-projective modules. He showed that every $B \in \operatorname{Mod} R$ satisfying $B \mathscr{A}(M)=0$ possesses a strong M-projective cover if and only if $R / \mathscr{A}(M)$ is a right perfect ring where $\mathscr{A}(M)$ denotes the right annihilator of M in R. We show that if a certain class of modules in $\operatorname{Mod} R$ is closed under factors, then every $B \in \operatorname{Mod} R$ possesses a strong M-projective cover if and only if $R / \mathscr{A}(M)$ is right perfect, thereby conditionally extending Varadarajan's result to Mod R. We also show via a pullback diagram that $B \in \operatorname{Mod} R$ is strongly M-projective if and only if $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module. Varadarajan has shown this for the special case when $\mathscr{A}(M)=0$.

If M is injective and $(\mathscr{T}, \mathscr{F})$ is the hereditary torsion theory on $\operatorname{Mod} R$ cogenerated by M, then it is shown that $B \in \operatorname{Mod} R$ is codivisible with respect to (\mathscr{T}, \mathscr{F}) if and only if B is strongly M-projective. From this it follows that if B has a projective cover, then B is codivisible with respect to (\mathscr{T}, \mathscr{F}) if and only if B is M-projective in the sense of G. Azumaya [1].

Throughout this paper R will denote an associative ring with identity and our attention will be confined to the category $\operatorname{Mod} R$ of unital right R-modules. We will often abuse notation and write $B \in \operatorname{Mod} R$ for an object of Mod R. Furthermore all maps will be morphisms in $\operatorname{Mod} R$ while $s \mathcal{Q}(M)$ and M^{J} will denote the right annihilator of M in R and the direct product of the family $\left\{M_{a}=M\right\}(a \in J)$ respectively. In addition, M will denote a fixed right R-module which is not necessarily injective.

Following Varadarajan [11], we call $B \in \operatorname{Mod} R$ strongly M-projective if every row exact diagram of the form

where J is any indexing set can be completed commutatively. This is a natural generalization of M-projective modules first studied by G. Azumaya [1]. Azumaya called B M-projective if the diagram above can be completed commutatively when J is a singleton.

If K is a submodule of $B \in \operatorname{Mod} R$, then K is said to be M-independent in B if for each $0 \neq x \in K$ there is an $f \in \operatorname{Hom}_{R}(B, M)$ such that $f(x) \neq 0$.
$f \in \operatorname{Hom}_{R}(B, M)$ is said to be M-independent if ker f is M-independent in B while B is called M-independent if B is M-independent in itself.

A module $B \in \operatorname{Mod} R$ is said to have a strong M-projective cover if there exists a strongly M-projective module A and an M-independent epimorphism $\varphi: A \rightarrow B$ with small kernel. Recall that if K is a submodule of A, then K is a small submodule of A if whenever B is a submodule of A such that $K+B=A, B=A$.

The first of the following two lemmas shows that $\operatorname{Mod} R$ has enough strongly M-projective modules.

Lemma 1. For any $B \in \operatorname{Mod} R$, there is a strongly M-projective module A and an M-independent epimorphism $\varphi: A \rightarrow B$.

Proof. Let $g: F \rightarrow B$ be a free module on B and set
$K=\left\{x \in \operatorname{ker} g \mid f(x)=0\right.$ for all $f \in \operatorname{Hom}_{R}\left(F, M^{J}\right)$ and every indexing set $\left.J\right\}$. If given a row exact diagram

where η is the natural projection, then the projectivity of F yields a completing map $h: F \rightarrow M^{J}$ which makes the diagram commutative. But $h(K)=0$ and so there is an induced map $h^{*}: F / K \rightarrow M^{J}$ which makes the inner diagram commute. Thus F / K is strongly M-Projective. Next let $A=F / K$ and suppose that φ is the map induced by g. If $0 \neq x+K \in \operatorname{ker} \varphi$, then for some indexing set J there is an $f \in \operatorname{Hom}_{R}\left(F, M^{J}\right)$ such that $f(x) \neq 0$. Now $f(K)=0$ and so there is an $f^{*} \in \operatorname{Hom}_{R}\left(A, M^{J}\right)$ such that $f^{*}(x+K)=$ $f(x) \neq 0$. But since $0 \neq f(x) \in M^{J}$, one can certainly find a map $p: M^{J} \rightarrow M$ such that $p(f(x)) \neq 0$. Consequently, $p \circ f^{*} \in \operatorname{Hom}_{R}(A, M)$ is such that $p \circ f^{*}(x+K) \neq 0$. Thus φ is M-independent.

The following lemma seems to be known. Since we have been unable to find a proof in the literature, we include a proof for the sake of completeness.

Lemma 2. Let

be a row exact commutative diagram such that the right hand square is a pullback diagram. Then the splitting of the top row follows from the splitting of the bottom row.

Proof. Suppose that the bottom row splits and let

$$
0 \longrightarrow C^{\prime} \xrightarrow{\mathrm{g}^{\prime}} B^{\prime} \xrightarrow{k^{\prime}} A^{\prime} \longrightarrow 0
$$

be the splitting maps. Since A and A^{\prime} are isomorphic we can assume, without loss of generality, that $A=A^{\prime}$. Let

$$
p_{1}: A \oplus C \rightarrow A \quad \text { and } \quad p_{2}: A \oplus C \rightarrow C
$$

be the canonical projections and define $\varphi: A \oplus C \rightarrow B^{\prime}$ by

$$
\varphi(a, c)=k(a)+g^{\prime}(\beta(c))
$$

Then $g \circ \varphi=\beta \circ p_{2}$ and so since the right hand square is a pullback diagram there is a unique mapping $\phi: A \oplus C \rightarrow B$ such that $f \circ \phi=\varphi$ and $\alpha \circ \phi=p_{2}$. Notice next that $k^{\prime} \circ \varphi=p_{1}$ and so since $A \oplus C$ is a product there is a unique mapping $\phi^{*}: B \rightarrow A \oplus C$ such that $p_{1} \circ \phi^{*}=k^{\prime} \circ f$ and $p_{2} \circ \phi^{*}=\alpha$. Hence it follows that $\alpha^{\circ} \phi^{\circ} \phi^{*}=f \circ 1_{B}$. Thus by the uniqueness of factorization through products we see that $\phi^{\circ} \phi^{*}=1_{B}$. Similarly by the uniqueness of factorization through pullbacks $\phi^{*}{ }^{\circ} \phi=1_{\mathrm{A} \oplus \mathrm{C}}$. Thus φ is an isomorphism and if $i_{2}: C \rightarrow A \oplus C$ is the canonical injection, then $\phi \circ i_{2}$ is a splitting map for the top row of the diagram.

Proposition 3. $B \in \operatorname{Mod} R$ is strongly M-projective if and only if $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module.

Proof. Let B be a strongly M-projective and consider the row exact diagram

of $R / \mathscr{A}(M)$-modules and $R / \mathscr{A}(M)$-maps. (Note M^{J} is an $R / \mathscr{A}(M)$-module since $M^{J} \mathscr{A}(M)=0$ for any indexing set J.) If we view these as R-modules and R-maps in the natural fashion, then we have a commutative diagram

where h is the completing map given by the strong M-projectivity of B. But $h\left(B \mathscr{A}(M) \subseteq M^{J} \mathscr{A}(M)=0\right.$ and so there is an induced map $h^{*}: B / B \mathscr{A}(M) \rightarrow$ M^{J} which makes the original diagram commute. Hence $B / B \mathscr{A}(M)$ is a strongly M-projective $R / \mathscr{A}(M)$-module. Now Varadarajan has shown [11, Proposition 3.6] that when M is faithful, any strongly M-projective module is projective. Thus $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module since M is a faithful $R / \mathscr{A}(M)$-module.

Conversely, suppose that $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module. Now by Lemma 1 there is an exact sequence

$$
0 \longrightarrow K \xrightarrow{k} A \xrightarrow{\varphi} B \longrightarrow 0
$$

such that A is strongly M-projective and K is M-independent in A. This yields a row exact diagram

where k^{*} and φ^{*} are the maps induced by k and φ respectively and η_{1}, η_{2} and η_{3} are the natural projections. Since $K \cap A \mathscr{A}(M)=0$,

$$
\frac{K+A \mathscr{A}(M)}{A \mathscr{A}(M)} \cong K
$$

and so Lemma 2 will apply if we can show that the right hand square is a pullback. Toward this end let $P=\{(x+A \mathscr{A}(M), y) \in A / A \mathscr{A}(M) \oplus B \mid$ $\left.\varphi^{*}(x+A \mathscr{A}(M))=\eta_{3}(y)\right\}$. Then

where p_{1} and p_{2} are the obvious maps is well known to be a pullback diagram. Hence there is a unique map $\phi: A \rightarrow P$ such that $p_{1}{ }^{\circ} \phi=\eta_{2}$ and $p_{2}{ }^{\circ} \phi=\varphi$ and so it must be the case that

$$
\phi(a)=(a+A \mathscr{A}(M), \varphi(a))
$$

We claim that ϕ is an isomorphism. If $\phi(a)=0$, then $a \in A \mathscr{A}(M)$ and $a \in \operatorname{ker} \varphi=K$. Hence $a \in K \cap A \mathscr{A}(M)=0$. Also if

$$
(x+A \mathscr{A}(M), y) \in P
$$

then there is an $a \in A$ such that $\varphi(a)=y$. But then

$$
\phi(a)=(a+A \mathscr{A}(M), y) \in P
$$

and so $\varphi^{*}(a+A \mathscr{A}(M))=\varphi^{*}(x+A \mathscr{A}(M))$. Therefore

$$
(x-a)+A \mathscr{A}(M) \in \operatorname{ker} \varphi^{*} .
$$

Let $z \in K$ be such that $(x-a)+A \mathscr{A}(M)=z+A \mathscr{A}(M)$ and set $a^{\prime}=a+z$. Then $\varphi\left(a^{\prime}\right)=y$ and $x+A \mathscr{A}(M)=(a+z)+A \mathscr{A}(M)$. Therefore $\phi\left(a^{\prime}\right)=$ $(x+A \mathscr{A}(M), y)$ and so ϕ is an isomorphism as was asserted. That B is strongly M-projective now follows from the assumption that $B / B \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module, Lemma 2 and the fact that a direct summand of a strongly M-projective module is strongly M-projective.

Corollary 4. If $B \mathscr{A}(M)=B$, then B is strongly M-projective.
Now let $C(M)$ denote the class of all modules in $\operatorname{Mod} R$ which are M-independent in some over-module. We will say that $C(M)$ is closed under factors if whenever K is M-independent in $B, K / K^{\prime}$ is M-independent in B / K^{\prime} for each submodule K^{\prime} of K.

Proposition 5. If $B \in \operatorname{Mod} R$ has a strong M-projective cover, then $B / B \mathscr{A}(M)$ has a projective cover as an $R / \mathscr{A}(M)$-module. Conversely, if $C(M)$ is closed under factors and $B / B \mathscr{A}(M)$ has a projective cover as an $R / \mathscr{A}(M)$ module, then B has a strong M-projective cover.

Proof. Our proof follows closely that given for Theorem 10 in [8]. First suppose that $B \in \operatorname{Mod} R$ has a strong projective cover, then we have an exact sequence $0 \rightarrow K \rightarrow A \rightarrow B \rightarrow 0$ where A is strongly M-projective and K is small and M-independent in A. But this yields an exact sequence

$$
0 \rightarrow \frac{K+A \mathscr{A}(M)}{A \mathscr{A}(M)} \rightarrow A / A \mathscr{A}(M) \rightarrow B / B \mathscr{A}(M) \rightarrow 0
$$

where by Proposition 3, $A / A \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module. Now it is known that if $f: X \rightarrow Y$ is R-linear and K is small in X, then $f(K)$ is small in Y [7, Hilfssatz 3.1]. Hence $(K+A \mathscr{A}(M)) / A \mathscr{A}(M)$ is small in $A / A \mathscr{A}(M)$ and so $B / B \mathscr{A}(M)$ has a projective cover as an $R / \mathscr{A}(M)$-module.

Conversely, let

$$
P \xrightarrow{u} B / B \mathscr{A}(M)
$$

be a projective cover of $B / B \mathscr{A}(M)$ as an $R / \mathscr{A}(M)$-module and suppose that $C(M)$ is closed under factors. By Lemma 1 there is an exact sequence

$$
0 \longrightarrow K \longrightarrow A \xrightarrow{\varphi} B \longrightarrow 0
$$

where A is strongly M-projective and φ is M-independent. Hence we have a row exact diagram

$$
0 \longrightarrow \frac{K+A \mathscr{A}(M)}{A \mathscr{A}(M)} \longrightarrow A / A \mathscr{A}(M) \xrightarrow{\varphi^{*}} B / \stackrel{L^{\prime}}{A}(M) \longrightarrow 0
$$

with φ^{*} being the map induced by φ. Now by Proposition $3, A / A \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module and so there is a map $f: A / A \mathscr{A}(M) \rightarrow P$ such that $\mu \circ f=\varphi^{*}$. But φ^{*} is an epimorphism and so it follows that $P=$ $\operatorname{Im} f+\operatorname{ker} \mu$. Therefore f is an epimorphism since $\operatorname{ker} \mu$ is small in P. Now P is projective and so f splits. Hence we have submodules X and Y of A such that

$$
A / A \mathscr{A}(M)=X / A \mathscr{A}(M) \oplus Y / A \mathscr{A}(M)
$$

with $X / A \mathscr{A}(M)=\operatorname{ker} f$ and $Y / A \mathscr{A}(M) \cong P$. Also since $\operatorname{ker} f \subseteq \operatorname{ker} \varphi^{*}$, it follows that

$$
\frac{K+A \mathscr{A}(M)}{A \mathscr{A}(M)}=X / A \mathscr{A}(M) \oplus Z / A \mathscr{A}(M)
$$

where $Z / A \mathscr{A}(M) \subseteq Y / A \mathscr{A}(M)$ is small in $Y / A \mathscr{A}(M)$ and consequently in $A / A \mathscr{A}(M)$. Notice next that since $K \cap A \mathscr{A}(M)=0, \quad K+A \mathscr{A}(M)=$ $K \oplus A \mathscr{A}(M)$ and so

$$
X=X^{\prime} \oplus A \mathscr{A}(M) \quad \text { and } \quad Z=Z^{\prime} \oplus A \mathscr{A}(M)
$$

where $X^{\prime}=X \cap K$ and $Z^{\prime}=Z \cap K$. Also $K \oplus A \mathscr{A}(M)=X+Z$ yields $K=$ $X^{\prime} \oplus Z^{\prime}$. Now let $A^{*}=A / X^{\prime}$ and $K^{*}=K / X^{\prime}$; then

$$
A^{*} \mathscr{A}(M)=\frac{X^{\prime}+A \mathscr{A}(M)}{X^{\prime}}=X / X^{\prime}
$$

and so

$$
\left.A^{*} / A^{*} \mathscr{A}(M) \cong A / X \cong(A / A \mathscr{A}(M)) / X / A \mathscr{A}(M)\right) \cong Y / A \mathscr{A}(M) \cong P
$$

Hence $A^{*} / A^{*} \mathscr{A}(M)$ is a projective $R / \mathscr{A}(M)$-module and so, by Proposition $3, A^{*}$ is a strongly M-projective R-module. Note also that

$$
A^{*} / K^{*}=\left(A / X^{\prime}\right) /\left(K / X^{\prime}\right) \cong A / K \cong B
$$

Next we claim that K^{*} is small in A^{*}. Suppose $A^{*}=K^{*}+W^{*}$ where $W^{*}=W / X^{\prime}$ for some $W \subseteq A$. Since $K^{*}=K / X^{\prime} \cong Z^{\prime}$ and Z^{\prime} is M independent in A, it follows that $Z^{\prime} \mathscr{A}(M)=0$ and consequently that $K^{*} \mathscr{A}(M)=0$. Hence $A^{*} \mathscr{A}(M)=K^{*} \mathscr{A}(M)+W^{*} \mathscr{A}(M)=W^{*} \mathscr{A}(M) \subseteq W^{*}$. But $A^{*} \mathscr{A}(M)=X / X^{\prime}$ and so

$$
\begin{aligned}
A / A \mathscr{A}(M) & =\frac{K+A \mathscr{A}(M)}{A \mathscr{A}(M)}+W / A \mathscr{A}(M) \\
& =Z / A \mathscr{A}(M)+X / A \mathscr{A}(M)+W / A \mathscr{A}(M) \\
& =Z / A \mathscr{A}(M)+W / A \mathscr{A}(M)=W / A \mathscr{A}(M)
\end{aligned}
$$

because $Z / A \mathscr{A}(M)$ is small in $A / A \mathscr{A}(M)$. Therefore $A=W$ and so $A^{*}=$ W^{*}.

Since it follows easily from the fact that $C(M)$ is closed under factors that K^{*} is M-independent in A^{*}, our proof is complete.

The following proposition is now obvious. See [2] for several characterizations of right perfect rings.

Proposition 6. If $C(M)$ is closed under factors, then every $B \in \operatorname{Mod} R$ has a strong M-projective cover if and only if $R / \mathscr{A}(M)$ is a right perfect ring.

We conclude with the following observations concerning strongly M projective modules and torsion theories. The reader can consult [4], [6], [9] for the general results and terminology on torsion theories. If (\mathscr{T}, \mathscr{F}) is a hereditary torsion theory on $\operatorname{Mod} R$, then it is well known that $(\mathscr{T}, \mathscr{F})$ is cogenerated by an injective module [5, Theorem 1.1] and that uniquely associated with $(\mathscr{T}, \mathscr{F})$ there is a left exact idempotent radical

$$
T: \operatorname{Mod} R \rightarrow \operatorname{Mod} R
$$

such that $\mathscr{T}=\{B \mid T(B)=B\}$ and $\mathscr{F}=\{B \mid T(B)=0\}[9$, Corollary 2.7]. In fact, if M is the injective module cogenerating (\mathcal{T}, \mathscr{F}), then $T(B)=\cap \operatorname{ker} f$ where $f \in \operatorname{Hom}_{R}(B, M)$. Hence \mathscr{F} coincides with the class of M-independent modules. Also since every map from R to M is a multiplication map determined by the action of f on the identity of $R, T(R)=\mathscr{A}(M)$.

A module $B \in \operatorname{Mod} R$ is said to be codivisible with respect to a torsion theory $(\mathscr{T}, \mathscr{F})$ on Mod R if every row exact diagram

where $\operatorname{ker} f \in \mathscr{F}$ can be completed commutatively. The interested reader can consult [3], [8], [10] for some recent results on codivisible modules.

Proposition 7. If (\mathcal{T}, \mathscr{F}) is a hereditary torsion theory on Mod R cogenerated by an injective module M, then the following are equivalent for $B \in$ $\operatorname{Mod} R$:
(1) B is codivisible with respect to (\mathcal{T}, \mathscr{F}).
(2) B is strongly M-projective.

Furthermore if B has a projective cover, then (1) and (2) are equivalent to:
(3) B is M-projective.

Proof. Rangaswamy has shown [8, Theorem 8] that if (\mathscr{F}, \mathscr{F}) is hereditary (in fact (\mathscr{T}, \mathscr{F}) need only be pseudo-hereditary [10]), then $B \in \operatorname{Mod} R$ is codivisible if and only if $B / B T(R)$ is a projective $R / T(R)$-module where T is as described above. But since $T(R)=\mathscr{A}(M)$, the equivalence of (1) and (2) follows from our above observations and Proposition 3. Next suppose that B
has a projective cover, then if B is M-projective, B is strongly M-projective [11, Lemma 2.2]. Therefore, in this case, (3) is equivalent to (1) and (2).

References

1. G. Azumaya, M-projective and M-injective modules (Unpublished).
2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., vol 95 (1960), pp. 466-488.
3. P. E. Bland, Perfect torsion theories, Proc. Amer. Math. Soc., vol 41 (1973), pp. 348-355.
4. S. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., vol 121 (1966), pp. 223-235.
5. J. P. Jans, Some aspects of torsion, Pacific J. Math., vol 15 (1965), pp. 1249-1259.
6. J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture notes in mathematics, no. 177, Springer-Verlag, Berlin and New York, 1971.
7. B. Pareigis, Radikale und kleine moduln, Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1966, Abt. 11, pp. 185-199.
8. K. M. Rangaswamy, Codivisible modules, Communications in Algebra, vol 2 (1974), pp. 475-489.
9. B. Stenstrom, Rings and modules of quotients, Lecture notes in mathematics, no. 237, Springer-Verlag, Berlin, 1971.
10. M. L. Teply, Codivisible and projective covers, Communications in Algebra, vol 1 (1974), pp. 23-38.
11. K. Varadarajan, M-projective and strongly M-projective modules, Illinois J. Math., vol 20 (1976), pp. 507-515.

Eastern Kentucky University
Richmond, Kentucky

