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In [5], Julie Patrusky and the author proved that a codimension-one
homology class on a closed orientable connected piecewise linear manifold
can be represented by a closed connected orientable submanifold precisely
when the class is primitive. If M is a closed n-dimensional manifold, we
will call a class in H,_I(M,Z) primitive if the induced class in
H,_(M, Z)/torsion is the zero class or is not a nontrivial multiple of any
other class.
The representation theorem we prove here is for closed connected non-

orientable P.L. manifolds and its proof is much more involved than is the
proof of the orientable case. In dimension two our theorem implies that an
integer homology class on a connected closed nonorientable surface can be
represented by an embedded circle if and only if the class is primitive or
twice a primitive class.

Recall that the Universal Coefficient Theorem implies that if M is a
closed, connected, n-dimensional P.L. manifold, then H,_I(M, Z)= ZzF
where F is a free abelian group. After triangulation, an orientable k-
dimensional P.L. submanifold naturally represents a class in Hk(M, Z). (See
[8].) We will call a closed oriented (n- 1)-dimensional submanifold NcM
representing a class 6 e H,_a(M, Z) a minimal representative for 6 if there is
no other submanifold representative for iS having fewer components. Let IN[
denote the number of components of N.

I would like to thank Larry Larmore for discussions on Theorem 2 and
the referee who made very many comments on improving the paper.

THEOREM 1. Suppose M is a closed connected nonorientable n-
dimensional P.L. manifold. Let tr denote the order two class in H,_I(M, Z). If
N is a minimal representative for a nonzero H,_I(M, Z), then:

(1) If M-N is not connected, then each nonorientable component of
M-N has one end.

(2) Every component ofM-N with three ends comes from cuts along two
components of N.

(3) Each orientable component of M-N has at most four ends. If there is
a component ofM-N with four ends, then M-N is connected and [N] 2.
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(4) M-N has one nonorientable component if and only if for some /, a

primitive class of infinite order, is =(2r+1)% where r>-O, and then INI
r+l.

(5) M-N has two nonorientable components if and only if ]:or some % a
primitive class of infinite order, 8 2r% where r >_0, and then IN[ r.

(6) M-N is orientable if and only if for some % a primitive class of
infinite order, iS 2r3, + o’, and then INI r + 1.

Unless otherwise stated, M will denote a connected compact P.L. man-
ifold, possibly with boundary, and N will denote a codimension-one
oriented P.L. submanifold of M.
The main technique of proof of parts 1, 2 and 3 of Theorem 1 is to show

that we can take the internal connected sums of components of N when the
conditions on the various parts of the theorem are not met, thereby reducing
the number of path components of N.
One can take the interval oriented connected sum of codimension-one

closed oriented submanifolds N1 and N2 if there exists a P.L. path
a’[0, 1]-M with the following properties"

(1) a is an embedding.
(2) a Nl=a(0), a f3N2=a(1).
(3) After orienting the normal bundle to a, the intersection numbers of

a with N and N2 have opposite sign.
The intersection sign of a with N is defined to be positive if the

orientation of the normal bundle of a "agrees" with the orientation of N,
and is defined to be negative otherwise. This definition of intersection sign
makes perfect sense if everything is smooth, M is Riemannian and a(t) is
orthogonal to N1 and Na at the points a(0) and a(1) respectively. In
general, the normal bundle of a can be considered to be an oriented disk
bundle B over a embedded in M along a with the fiber disk Do above a (0)
contained in N and the fiber disk D above a(1) contained in N2. In this
more general situation we can again define the intersection sign of a with N
and N2 according to whether the orientation of D in the disk bundle agrees
or disagrees with orientation induced by N+.

Paths a with the above properties will be called special connecting paths.
If instead of opposite intersection signs, a has the same sign of intersection
with both N1 and N2, then we will call a a non-special connecting path.

If a is a special connecting path joining N1 to N2 and B c M is the
embedded normal disk bundle as given above, then one can form the
connected sum of N1 and N2 along a by joining (N-DI) and (N-D2)
along the associated boundary sphere bundle to B in M. It is straightforward
to verify that the resulting oriented P.L. submanifold represents the homol-
ogy class [N1] + [N2] H_(M, Z).

LEMA 1. If M is a compact connected nonorientable P.L. manifold with
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oriented boundary components N1, Nz,..., Nk, then there exist special and
non-special connecting paths joining any p N to any q N when ].

Proof. Case 1. The dimension of M is greater than two. Let a be an
embedded loop in the interior of M with nonorientable normal bundle. Let
/1 be an embedded path disjoint from a joining p to q, and let /z be an
internal connected sum of /1 and a. By construction, either /1 or /2 is a
special connecting path and the other path is a non-special connecting path.

Case 2. The dimension of M is two. By the classification theorem for
surfaces with boundary, M is a punctured sphere with cross caps. Let a be a
circle embedded in a cross cap with a MiSbius strip neighborhood. By our
choice of , it is clear that there is a path /1 disjoint from a joining p to q.
Let 2 be the connected sum of a and "]/1. As above, either /1 or "]/2 is
special and the other one is non-special.

LEMMA 2. Suppose M is a connected compact P.L. manifold with oriented
boundary components N1, N2, Nk. If there are no special connecting paths
joining N to N. and no special connecting paths from N to Ns, then there is a
special connecting path joining N to Ns.

Proof. Let ’/1 be a non-special connecting path joining p N to q N
and let /2 be a non-special connecting path joining q to n e N with
/ ffl/2 ={q}. If /3 is the composite path // pushed off on N, then it is
straightforward to verify that /3 is a special connecting path.

LEMMA 3. Let M be a closed connected nonorientable P.L. manifold. If
NcM is connected, then [N]eH,_(M, Z) is a primitive or twice a primitive
homology class.

Proof. If [N] r or [N] 0, then we are finished. Hence, from now on
assume that [N] has infinite order.

Let H*oa(M, Q) denote the rational P.L. De Rham cohomology algebra
as defined by D. Sullivan in [2], and let Ho(M, Z)=
{[w]eHo(M, Q)]IoeZ for all integer cycles c on M}. Note that
H,n(M, Z) is the image of

ning(M Z) c ning(M I)LHR(M Q)

where is the P.L. De Rham isomorphism. If M is smooth, then one can use
the usual De Rham cohomology algebra arising from smooth differential
forms.

Let p"//--M denote the oriented two sheeted cover of M and g’//--//
be the order two deck transformation.

Case 1. M-N is not connected. Suppose [N]= k[O] or k[Q]+r where
is a P.L. integer chain representing a primitive class of infinite order.
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Note that we may assume that both components of M-N are nonorientable
since otherwise [N]- 0.

Since N disconnects M, the normal bundle to N is trivial and a neighbor-
hood of N in M is orientable. Therefore the inclusion.map i" N--M lifts to
//giving two oriented submanifolds N1 and N2 of M which disconnect//
into two components C1 and C2. The components Ca and C2 are the inverse
image under p of the two components of M-N. Elementary covering space
theory shows that C1 and C2 are invariant under the deck transformation g
and g [Na" Nx -- N2 is orientation preserving. Since g is orientation reversing
on Cx, it is straightforward to verify that, after picking a proper orientation
on Ca, the closure of Ca in//gives a homology between Na and N2. Hence,
we have [NI] [N2].
By Theorem 1 in [5], [Na] is primitive. Therefore, there is an

[w]6H,-RI(I,Z) with fN W=I=IN TM.

Since ,1 w + g*w is g-invariant, ,1 p*(a) for some [a] HT:,-a(M, Z).
Now, k o a a n p*(a) n 2. Hence k 1 or k 2. If IN]
2[Q]+r or if IN] is primitive, then 0 #[N]6 H,_I(M, Z2). Since N discon-
nects M, these cases cannot occur. Therefore, [N]= 2[Q].

Case 2. The normal bundle of N is nontrivial and M-N is connected.
In this case, p-l(N)= Nx //is connected. As above, we may assume there
is a g-invariant closed (n-1)-form 1 =p*(a) on //, where a is a closed
integral (n-1)-form on M, and n 1- 2. This implies nct 1, and hence
IN] is primitive.

Case 3. The normal bundle of N is trivial and M-N is connected and
orientable. In this case, the cycle 2N is an oriented boundary. Since [N] has
infinite order, this case does not occur.

DEFINITION. The end closure T of a path component U of M-N is
obtained by attaching a compact codimension-one submanifold on each
topological end of U. The topological ends of U arise from cutting M along
certain components of N. If an end of U arises from cutting along a
component N’ of N with trivial normal bundle, then the attached boundary
submanifold on T is diffeomorphic to N’. However, if the normal bundle of
N’ is nontrivial, then the boundary component of T attached at this end of
U will correspond to some two sheeted cover of N’. The boundary compo-
nents of T have fixed orientations induced from the orientation on the
associated components of N. Therefore T is a compact P.L. manifold with
fixed orientations on each boundary component.

Case 4. The normal bundle to N is trivial, and M-N is connected and
nonorientable. Let T be the end closure of M-N and suppose that P1 and
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Pz are two distinct points on the boundary of T which correspond to the
same point on N. By Lemma 1, there is a non-special connecting path
joining Pa to P. Let a be the associated loop in M which has a trivial
normal bundle.
By choice of a, a tubular neighborhood of a is homeomorphic to

D"-a S 1. Now apply the Thom construction in [7] (especially pages 47 and
48) to get a mapping T: M S"-1. Clearly, (T).([N]) generates
H,_I(S"-, Z)= Z. Hence, IN] is a primitive non-torsion class in M.

Since one of the above four cases must occur, the lemma is proved.

Proof of Theorem 1. (1) Let T be the end closure of a nonorientable path
component of M-N with more than one end. Since M-N is not connected
by assumption, two boundary components of T, say E1 and E2, come from
cuts along distinct path components N and N of N. By Lemma 1, there is a
special connecting path joining E1 to E2. Hence, we can take the oriented
connected sum of N and N to reduce the number of path components of N.
However, this construction contradicts the minimality of N, proving (1).

(2) Suppose T is the end closure of a path component of M-N with
three ends. Recall that the boundary of T is given the orientation induced
by N, not by an orientation of T. By Lemma 2, there is a special connecting
path joining two boundary components of T. If these boundary components
come from cuts along distinct path components N and N2 of N, then we can
take the oriented connected sum of N and N2 to reduce the number of path
components of N. Since this construction contradicts the minimality of N,
two boundary components of T must come from a cut along the same path
component of N, proving (2).

(3) Suppose T is the end closure of an orientable path component of
M-N with more than four ends. In this case, at least three of the boundary
components of T, say E, E2, U3, arise from cuts along distinct path
components of N. By Lemma 2, there is a special connecting path joining
two of these ends. As above, the existence of such a special connecting path
contradicts the minimality of N, proving the first part of (3). If T has exactly
four boundary components, the above argument shows the ends come from
cuts along two distinct path components of N. The second part of (3) follows
immediately from this observation.
Suppose that T is the end closure of an orientable path component of

M-N. Before finishing the proof of the theorem, we remark on the
relationship between the number of boundary components of T and the
homology classes associated to these boundary components.

Case 1. T has four boundary components. By (3) we know that the four
boundary components E, E2, E3, E4 of T arise from cuts along path
components N1 and N2 of N. Suppose that the ends Ex, E2 of T come from
a cut along N and the ends E3, E4 come from a cut along N2. Since N is
minimal, there are no special connecting paths joining either Ex, E2 to
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either of E3, E4. This implies T induces a homology between 2N and 2N2
in M. Therefore 2[N] 2[N2].
Let [N]a and [N212 denote the associated classes in H,_x(M, Z2). It is easy

to construct an embedded circle a:S---M which intersects N1 U N2 trans-
versely in one point of N. If f3 :H(M, Z2)x H,_(M, Z2)---Z2 denotes the
intersection pairing on homology (see [8]), then

where [O]2 is the class in Hi(M, Z2) associated to the loop a. This implies
[N1]=[NE]+tr. Since N is minimal there is no special connecting curve
joining E1 to U3 or joining E3 to U2. Therefore, Lemma 2 implies that there
is a special connecting path/3 joining E1 and E2 with end points correspond-
ing to the same point on Na. The path /3 induces a loop a:Sa-->M which
intersects N1 in one point. By the choice of a, the tubular neighborhood of a
is homeomorphic to Dn- S1. As in the proof of Lemma 3, the Thom
construction applied to a shows that [N] is a primitive class of infinite
order. Hence, [N] 2/+ o-.

Case 2. T has one boundary component. Since T is orientable, we may
assume that the single boundary component of T arises from a cut along a
component of N with nontrivial normal bundle. This shows [NI- 1 and
M-N is connected. Since the cycle 2N bounds the cycle T, IN] has order
two in H._I(M, Z) and hence [N]

Case 3. T has two boundary components. If these boundary components
arise from a single cut, then INI 1 and [N]= tr. If the boundary compo-
nents of T come from cuts along path components N1 and N2 with trivial
normal bundle, then clearly [N1]=+/-[N2]. But by minimality of N,
[N1] -IN2] and so [N] [N2]. If N1 has trivial normal bundle and N2 has
nontrivial normal bundle, then the minimality of N similarly implies 2[N2]-
[N]. If N and N2 both have nontrivial normal bundle, then M-N is path
connected and 2[N]= 2[Nz]. In this last case, there is a loop a in a
neighborhood of N2 and a intersects N1 tO N2 transversally in a single point
on Na. Therefore,

This implies [Na]=[Nz]+r in the case where both normal bundles are
nontrivial.

Case 4 T has three boundary components. Suppose two of the boundary
components, say E1 and E2, of T come from cuts along Nx and N2
respectively. The argument given in the proof of (3) shows that the third
boundary component of T arises from a cut along either Nx or Nz, say Na. If
M-N is connected, then the normal bundle to N2 is nontrivial. In this case,
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2[N] 2[Nz]. Since there is a loop c with

[a]z N ([N1]z + [N2]z) 1 Z2,

we must have IN1] [Nz]+ r. By minimality of N, IN2] r and so N and

N2 must have infinite order. By Case 2 of Lemma 3, IN2] is primitive, which
implies IN] 2[N2]+ r 2/+ r for the primitive class /= IN2] of infinite
order. If M-N is not path connected then T gives a homology between 2N1
and N2. Hence, 2[N1] IN2] when M-N is not connected.

We will now prove the forward implications of (4), (5) and (6). It is a
direct consequence of the ordering process described below that there are
never more than two nonorientable path components in M-N. Since the
forward implications of (4), (5) and (6) are mutually exclusive and are
inclusive, the converse implications are also true.

(4) Suppose M-N is connected with one nonorientable component. By
the proof of part (1) of the Theorem and Case 2 and Case 4 of Lemma 3, N
is connected and represents a primitive class. Since the mod two reduction
of r is the Poincare dual to the first Stiefel-Whitney class of M, the duality
theorem implies that [N]2 O’2 Hx(M, Z:) and hence [N] or. This shows
N=/ where / is a primitive class of infinite order.

If M-N is not connected, then order the path components U1,
U2, U+I of M-N and the components N1, N2,..., N of N as follows:
Let Ux be the one nonorientable path component of M-N. By part (1), Ua
has one end arising from a cut along a component N1 of N with trivial
normal bundle. Since M-N is not path connected, Na arises as the end to
some other component U2 of M-N. We have one of the following cases.

(i) If U2 has three ends or if U2 has two ends and the second end of U2
arises from a cut along a component N2 of N with nontrivial normal bundle,
then U2 is the last component of M-N and INI 2.

(ii) If U2 has two ends and the second end arises from a cut along a
component N2 of N with trivial normal bundle, then N2 arises as the end of
another component U3 of M-N.

Either situation (i) or (ii) as above holds for U3. If (i) holds then U3 is the
last component of M-N and label the remaining component of N by N3. If
(ii) holds then the other end of U3 arises from a cut along a component N3
of N with trivial normal bundle. Now N3 arises as the end of another
component U4 of M-N.

Continue labeling the components of M-N and N sequentially, as in the
last paragraph, until all of the components of M-N and of N are num-
bered. See the figure on p. 206.

It follows from the above labeling process that INI k + 1 and that
[N1]=[N2] [N]. By the earlier Cases 2 and 4, we have [N]=
2[Nk+l]. Hence

[N] (2k + 1)[Nk+] (2k + 1)/
for the primitive class /= [Nk+] of infinite order.
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OK

U+

(5) Suppose M-N has two non-orientable path components. A similar
ordering argument as in the proof of (4) shows that all the components of N
are homologous. By Case 1 of Lemma 3, each component of N represents
twice a primitive class. Hence, [N] 2k3, with INI k.

(6) Suppose M-N is orientable. If there is a component of M-N with
three ends or with an end arising from a cut along a component of N with
nontrivial normal bundle, then call this component U. Let Na be the
associated component of N with nontrivial normal bundle or the component
of N which gives rise to two ends of U. If U has one end, then [N] r
and INI 1. Suppose U has another end N2. Continue the ordering process
of components of M-N and of N as in the proof of (4). In this case, we
have [Nz] [N3] [N+a] and 2[N] [Nz] [N+a] 2[N+z] where
N+2 is the last component of N. Hence

[N]= 2(k + 1)[N] or [N]= 2(k + 1)[Nx]+
where k-> 0. Since there is a loop a intersecting N transversally at one point
on N, we have [N]=2(k+l)/+cr where 3,=[N]. Since 2[N]=
2[N+z], "V is a primitive class of infinite order.

If there is a component of M-N with four ends, then by earlier remarks
M-N is path connected, INI 2 and [N] 27 + r.

If every component of M-N has two ends and if the normal bundle to N
is trivial and N is. a component of N, then 2[N]=0. Hence, [N]=r and

The above three cases are inclusive which completes the proof of (6) and
by the remark before the proof of (4) completes the proof of the Theorem.
We now prove that every element of H,,_I(M, Z) can be represented by a

closed embedded orientable submanifold.

Theorem 2. Suppose M is a closed nonorientable P.L. n-dimensional
manifold. Then every element of Hn_I(M,Z) can be represented by an
orientable P.L. submanifold.
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Proof. Let x H,_a(M, Z) and let x* Hi(M, Z[wa] be the image under
the Poincare duality isomorphism. Here Z[wa] denotes the integer sheaf
twisted by the first Stiefel Whitney class wa HI(M, Z2). Since Ha(M, Z2)
has as a classifying space the (n + 1)-dimensional projective space p,/a, we
can consider w to be represented by a P.L. map or" M-P"/a.

In [3] (see pages 171-176), it is shown that Ha(M, Z[wa]) has a "classify-
ing space". In fact, the elements of Ha(M, Z[wa]) are in natural one to one
correspondence with the fiber homotopy classes of liftings of tr: M--P"/I to
the twisted circle bundle 0" K---P"+a. Here K is the generalized Klein bottle
formed by Srt+lx SlIT where r(x, y)= (-x, p) and denotes complex con-
jugation on S1. Thus an element / Ha(M, Z[wa]) can be "represented" by
a lifting r, of r"

K

M p,+l.

Since complex conjugation on S has two fixed points +1, there are two
cross sections c_a, ca" P"+a--K of the bundle O" K--P+a.

Claim. If r is transverse regular to ca(p+l), then ra((ca(P"+a))) is an
orientable P.L. submanifold which represents the Poincare dual of /.

Recall that H(M,Z[wa]) can be computed from a certain cochain
complex as follows. After picking a P.L. triangulation of M, we can lift this

trian.gulation to a triangulation of the oriented two. sheeted, covering space
a"MM of M with covering transformation T:MM. Given an oriented
k-simplex in M, it will lift to two oriented k-simplices a and of
with T(x)= 2. This implies for the dual cochains and , we have
T*(B) =-. This is because T is orientation reversing as a map on .
The map T has a + 1 and a -1 eigen space on both the k-chain and a k-co

chain complexes of . Now H(M,Z[wa]) is defined to be the k-th
cohomology group of skew cochain complex associated to the -1 eigen
spaces of T in the cochain complex of M.
We now consider the following commutative diagram

" ,=S"+xS ,S

where &x is the lift of . It is straightforward to check that

o,.S
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is a Z2 equivariant map where Z2 acts by T on M, and by complex
conjugation on S 1.

Let 1- {ei S -0 -< /<- 0} and let

s1-

where denotes interior and an overbar denotes closure in S 1. Define the
subsets K0, K+, K_ of the Klein bottle K, by

Ko (S"+ x {e, e-*})/r, K+ (S"+a x I-g)/’r and K_ (S"+ x I-)/’r.

Then it is straightforward to check that

Hi(K, K_, Z[u])- HI(K+, K0, Z[u])= Z

where u is the pull back of the generator of HI(pn+, Z2) to the appropriate
subsets of the Klein bottle K. Hence Hi(K, K_, Z[u]) is free and generated
by a class we will denote by . We will denote the pullback of to the Klein
bottle by the same letter Hi(K, Z[u]). Now given any lift h of r

K c (K, K+)

there is an element h*()H(M, Z[w]) which only depends on the fiber
homotopy equivalence class of h with respect to r. This is the correspon-
dence between HI(M, Z[wl]) and fiber homotopy classes of liftings of r.

Since we may assume that is transverse regular to cI(P"+1), we may pick 0
small enough so that r-l(K+)= V is a regular neighborhood of N in M.
From the diagram

(M,M-) /K,K+)
K

M

it is clear that the class 3’ o-*() comes from a class /* in

HX(M, M- , Z[g*u]).

By excision this gives a class /* in Hi(V, OV, Z[g*u]).
Now let (z=a-a(V) and N=a-(N). Since raov : 9--.S is a Zz

equivariant map and S is a K(Z, 1), we may consider rov to represent an
element in HI(z, Z) or the first cohomology of arising from the skew
complex (the -1 eigen space for T).
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We also have the following commutative diagram

nn_l(W,Z .-nn_l(M,Z

H(V, OV, Z[g*u]) a*; H(M, Z[wx])

where J* is induced by excision to Hi(M, M-, Zig*u]) and inclusion to
Hi(M, Z[wl]). Of course i* is just the map induced by inclusion. The
vertical isomorphisms are Poincare duality and the diagram commutes by
naturality.

There is another commutative diagram where the rows arise from part of
the Gysin sequence for the Z2 bundle a" N----N. Here the vertical
isomorphisms are given by Poincare duality.

H.(V, Z) H._(V, Z) Hr_l(r, Z) .Hn_l(V,Z)

Hi(V, OV, Zig*u]) * Hi(Q, OQ, Z) H(V, OV, Zig*u]).H(V, aV, Zig*u]) ug*"

One can compute that on the chain, cochain level the above diagram is
commutative. Since H(V, aV, Z[g*u])=H,(V,Z)=O, the maps 0 and a*
are injective.
Now recall that originally we picked an element H(M, Z[wx]) and

have shown that was in the image of an element * e HI(V, aV, Z[g*u]).
By usual Poincare duality, we know that the Poincare dual of the class
a*(*) can be represented by the submanifold c Q. The manifold N is
oriented and by definition of 0, O[N] []. Since 0 and a are injective and
the diagram commutes, IN] must be the Poincare dual to *. From the
previous commutative diagram, it now follows that the Poincare dual of is
the class [N]H,_(M, Z) which proves the claim.
Given a class 8 H,_(M, Z) we can clearly represent 8 by a submanifold

by considering the Poincare dual of 8 as a lift P(8)"MK of so that P()
is transverse to c(P"+1) and then take the submanifold representative
(P(8))-X(c(P"+)) for 8. Note that N has a well defined orientation. To see
this first note that has a well defined orientation and T : is
orientation preserving. Hence the orientation induced on N is the orienta-
tion induced as the quotient space /(TI). This completes the proof of
Theorem 2.
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