# LACUNARY SPHERICAL MEANS 

BY<br>Calixto P. Calderón ${ }^{1}$

## 0. Introduction and statement of results

Professor E. M. Stein introduced in [4] (see also [6]) the maximal function

$$
\begin{equation*}
S(f)(x)=\sup _{\varepsilon>0}\left|\int_{\Sigma} f(x-\varepsilon \alpha) d \sigma\right| \tag{0.1}
\end{equation*}
$$

where $f$ is any Borel measurable function defined on $R^{n}, \alpha$ is a point on the unit sphere $\Sigma$ of $R^{n}$ and $d \sigma$ stands for its "area" element. In the above paper Professor Stein proves the following result: If $n \geq 3$ and $p>n /(n-1)$, then

$$
\begin{equation*}
\|S(f)\|_{p}<C_{p}\|f\|_{p} \tag{0.2}
\end{equation*}
$$

If $p \leq n /(n-1)$ and $n \geq 2$ the result is false; what happens for $n=2$ and $p>2$ remains an open problem. Throughout this paper, we shall be concerned with the lacunary version of Stein's theorem. Define

$$
\begin{equation*}
\sigma(f)(x)=\sup _{k>0}\left|\int_{\Sigma} f\left(x-2^{-k} \alpha\right) d \sigma\right| \tag{0.3}
\end{equation*}
$$

where $k$ takes all the natural values. We have the following result:
0.4. Theorem. If $n \geq 2, p>1$ and $f$ is Borel measurable in $R^{n}$ then

$$
\begin{equation*}
\|\sigma(f)\|_{p}<C_{p}\|f\|_{p}, \quad p>1 \tag{i}
\end{equation*}
$$

Moreover, we have the following inequality "near" $L^{1}$ : If $Q$ is a cube in $R^{n}$ and $\lambda>1 /|Q|$ then
(ii) $|Q \cap E(\sigma(f)>\lambda)|<\frac{C_{1}}{\lambda}|Q|$

$$
+C_{2} \frac{|\log \lambda|}{\lambda} \int_{\mathrm{R}^{n}}|f|\left[1+\left(\log ^{+}|f|\right) \log ^{+} \log ^{+}|f|\right] d x
$$

The constants $C_{1}$ and $C_{2}$ depend on $n$ and $Q$ but not on $\lambda$ or $f$.
In particular, (ii) implies differentiability a.e. by lacunary spherical means in the Orlicz Class $L\left(\log ^{+} L\right) \log ^{+} \log ^{+} L$. Professor S. Wainger communicated to me that part (i) of the above theorem has been obtained also by $R$. R. Coifman and G. Weiss.

[^0]I would like to express my gratitude to Professors A. Zygmund and Y. Sagher for helpful discussions concerning the matters of this paper.

## 1. Auxiliary lemmas

1.1. Lemma. Let $\hat{K}(x)$ be a radial function defined on $R^{n}$. Let

$$
w(s)=\sup _{0<r<s}|\hat{K}(r)-\hat{K}(0)| \quad \text { and } \quad v(s)=\sup _{r_{1}>s, r_{2}>s}\left|\hat{K}\left(r_{1}\right)-\hat{K}\left(r_{2}\right)\right|
$$

Assume that $w(s)$ and $v(s)$ satisfy
(a)

$$
\int_{1}^{\infty} \frac{v^{2}(s)}{s} d s<\infty, \quad \text { (aa) } \quad \int_{0}^{1} \frac{w^{2}(s)}{s} d s<\infty
$$

Then the operator

$$
\stackrel{*}{T}(f)=\sup _{k \geq 1}\left|\int_{\mathbf{R}^{n}} e^{i(x, y\rangle} \hat{K}\left[2^{-k}|y|\right] \hat{f}(y) d y\right|
$$

( $k$ takes natural values only) satisfies

$$
\begin{equation*}
\|T(f)\|_{2}<C_{0}\left(1+\int_{0}^{1} \frac{w^{2}(s)}{s} d s+\int_{1}^{\infty} \frac{v(s)}{s} d s\right)^{1 / 2}\|f\|_{2} \tag{i}
\end{equation*}
$$

$C_{0}$ is independent from $f$ and $K$ if $\hat{K}(0)=1$.
Proof. Let $\varphi(x)$ be a $C^{\infty}$ radial function such that $\hat{\varphi}$ is $C_{0}^{\infty}$ and $\hat{\varphi}(0)=$ $\hat{K}(0)$. Let

$$
\begin{equation*}
T_{k}(f)(x)=\int_{R^{n}} e^{i\langle x, y\rangle}\left(\hat{\varphi}\left[2^{-k}|y|\right]-\hat{K}\left[2^{-k}|y|\right]\right) \hat{f}(y) d y \tag{1}
\end{equation*}
$$

and

$$
M(f)=\sup _{k}\left|\int_{R^{n}} 2^{k n} \varphi\left[2^{k}(x-y)\right] f(y) d y\right|
$$

Then we have

$$
\begin{equation*}
|T(f)(x)|^{2} \leq 4\left\{M^{2}(f)(x)+\sum_{1}^{\infty}\left|T_{k}(f)(x)\right|^{2}\right\} \tag{1.1.1}
\end{equation*}
$$

Integrating and using Plancherel's inequality and estimates (a) and (aa) we get the thesis.
1.2. Remark. The above lemma is a version of the tauberian condition in $L^{2}$ (see [4] and [6]).
1.3. Lemma. Let $K(x)$ be a $L^{1}$ function supported on the unit ball of $R^{n}$.

Let $w_{1}(t)$ denote its $L^{1}$-modulus of continuity. Suppose that $w_{1}(t)$ satisfies the Dini condition
(a)

$$
\int_{0}^{1} w_{1}(t) \frac{d t}{t}<\infty .
$$

Then the maximal operator

$$
\stackrel{*}{T}(f)(x)=\sup _{k>0}\left|2^{n k} \int_{R^{n}} K\left(2^{k}(x-y)\right) f(y) d y\right|
$$

satisfies

$$
\begin{equation*}
|E(\stackrel{*}{T}(f)>\lambda)|<C_{0}\left(1+\int_{0}^{1} \frac{w_{1}(t)}{t}\right) \frac{1}{\lambda}\|f\|_{1} \tag{i}
\end{equation*}
$$

where $C_{0}$ depends on the dimension only if $\|K\|_{1}=1$.
Proof. Consider the Calderón-Zygmund partition for $f, f \geq 0: f=f_{1}+f_{2}$ where $0 \leq f_{1} \leq 2^{n} \lambda$ a.e. and $f_{2}=\sum_{1}^{\infty}\left(f-\mu_{j}\right) \varphi_{j}(x)$. Here, $\varphi_{j}(x)$ stands for the characteristic function of $Q_{j}$ and the $\mu_{j}$ are the mean values:

$$
\begin{equation*}
\mu_{j}=\frac{1}{\left|Q_{j}\right|} \int_{Q_{i}} f(t) d t, \quad \lambda<\mu_{j} \leq 2^{n} \lambda, \quad j=1,2, \ldots \tag{1.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bigcup_{1}^{\infty} Q_{j}\right|<\frac{1}{\lambda} \int_{\mathbf{R}^{n}} f d t \tag{1.3.2}
\end{equation*}
$$

for details see [5, pp.17, 18].
Let $G_{\lambda}=\bigcup_{1}^{\infty} 5 Q_{j}$ where $5 Q_{j}$ stands as usual for the dialation of $Q_{j} 5$ times about its center. Let $x$ be a point in $R^{n}-G_{\lambda}$ and consider the convolutions

$$
\begin{equation*}
\left(K_{k} * f_{2}\right)(x) \quad \text { where } \quad K_{k}(y)=2^{n k} K\left[2^{k} y\right] \tag{1.3.3}
\end{equation*}
$$

Let $y_{j}$ be the center of $Q_{j}$. The above convolution can be written as

$$
\begin{equation*}
\left(K_{k} * f_{2}\right)(x)=\sum_{j=1}^{\infty} \int_{Q_{j}}\left\{K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right\} f_{2}(y) d y \tag{1.3.4}
\end{equation*}
$$

In the above summation we have made use of the fact that $f_{2}$ has mean value zero over $Q_{j}$. Notice also that

$$
\begin{equation*}
\int_{\mathrm{Q}_{1}}\left\{K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right\} f_{2}(y) d y=0 \tag{1.3.5}
\end{equation*}
$$

provided that $2^{k} \operatorname{diam}\left(Q_{j}\right) \geq 1$. Thus, if $x \in R^{n}-G_{\lambda}$ we have

$$
\begin{align*}
\mid \sum_{j=1}^{\infty} \int_{\mathrm{Q}_{i}}\left\{K_{k}(x-y)-\right. & \left.K_{k}\left(x-y_{j}\right)\right\} f_{2}(y) d y \mid  \tag{1.3.6}\\
& \leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \int_{\mathrm{Q}_{i}}\left|K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right|\left|f_{2}(y)\right| d y \\
& \leq \sum_{j=1}^{\infty} \sum_{2^{k}<d_{i}^{-1}} \int_{\mathrm{Q}_{i}}\left|K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right|\left|f_{2}(y)\right| d y
\end{align*}
$$

where $d_{j} \geq \operatorname{diam}\left(Q_{j}\right)$. Notice that the second and third members of the above inequality do not depend on $k$; consequently, they constitute a bound for $T^{*}\left(f_{2}\right)$ on $R^{n}-G_{\lambda}$. Integrating the third member of (1.3.6) over $R^{n}-G_{\lambda}$ we get

$$
\begin{align*}
\int_{R^{n}-G_{\lambda}} \sum_{j=1}^{\infty} \sum_{2^{k}<d_{i}^{-1}} \int_{Q_{i}}\left|K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right|\left|f_{2}(y)\right| d y  \tag{1.3.7}\\
\quad \leq \sum_{j=1}^{\infty} \int_{Q_{i}}\left|f_{2}(y)\right| \sum_{2^{k}<d_{i}^{-1}} \int_{R^{n}-5 Q_{i}}\left|K_{k}(x-y)-K_{k}\left(x-y_{j}\right)\right| d x \\
\quad \leq C\left(\int_{0}^{1} w_{1}(t) \frac{d t}{t}\right) \sum_{1}^{\infty} \int_{Q_{i}}\left|f_{2}(y)\right| d y
\end{align*}
$$

Inequalities (1.3.5), (1.3.6) and (1.3.7) show that

$$
\begin{equation*}
\int_{R^{n}-G_{\lambda}} \stackrel{*}{T}\left(f_{2}\right) d x \leq C\left(\int_{0}^{1} w_{1}(t) \frac{d t}{t}\right)\|f\|_{1} \tag{1.3.8}
\end{equation*}
$$

Assuming that $\int_{R^{n}}|K| d x=1$ and using the fact that $0 \leq f_{1} \leq 2^{n} \lambda$ we get

$$
\begin{equation*}
E\left\{\underset{T}{*}\left(f_{1}\right)>2^{n} \lambda\right\}=\emptyset . \tag{1.3.9}
\end{equation*}
$$

We get the thesis by using (1.3.8), (1.3.9), and the fact that

$$
\left|G_{\lambda}\right| \leq \frac{5^{n}}{\lambda}\|f\|_{1} .
$$

The following lemma is related to a one dimensional result due to $R$. Fefferman (see [1]).
1.4. Lemma. Let $K(x)$ be a non-negative monotonic radial function supported on the unit ball. Then, there exists $F \geq K$ such that

$$
\begin{equation*}
\|F\|_{1}+\int_{0}^{1} w_{1}(F, t) \frac{d t}{t}<C_{1}+C_{2} \int_{|x| \leq 1} K \log ^{+} K d x \tag{i}
\end{equation*}
$$

Here, $w_{1}(F, t)$ denotes $L^{1}$-modulus of continuity of $F$.
Proof. If $K(r)$ is non-decreasing, it is possible to find a domination of the
form

$$
\begin{equation*}
K(r) \leq \sum_{1}^{\infty} 2^{i} \phi_{j}(x)=F(x) \tag{1.4.1}
\end{equation*}
$$

where the $\phi_{j}(x)$ are characteristic functions of annuli $E_{j}$ of the form

$$
\left\{x ; 0<r_{j} \leq|x|<1\right\}, \quad j=1,2, \ldots .
$$

If $K(r)$ is non-increasing, it is possible to find a domination of the form

$$
\begin{equation*}
K(r) \leq \sum_{1}^{\infty} 2^{j} \varphi_{j}(x)=F(x) \tag{1.4.2}
\end{equation*}
$$

where the $\varphi_{j}(x)$ are characteristic functions of balls

$$
B_{j}=\left\{x ; 0<|x| \leq r_{j}<1\right\}, \quad j=1,2, \ldots .
$$

We are going to assume that we are in the first case since the second one can be dealt with in a similar manner.

The dominant function $F(x)$ can be constructed so that the following two inequalities hold:

$$
\begin{align*}
& \sum_{1}^{\infty} 2^{k}\left|E_{k}\right| \leq 4\left(\int_{|x| \leq 1} K(x) d x+\left|B_{0}\right|\right)  \tag{1.4.3}\\
& \sum_{1}^{\infty} 2^{k} k\left|E_{k}\right| \leq C\left(\int_{|x| \leq 1} K \log ^{+} K d x+\left|B_{0}\right|\right)
\end{align*}
$$

Here, $B_{0}$ stands for the unit ball in $R^{n}$ and $\left|B_{0}\right|$ for its measure. Assume without loss of generality that $2^{k}\left|E_{k}\right|<1$ and $r_{k}>\frac{1}{2}$. Our first task will be to estimate $w_{1}(F, s)$. We have the trivial inequality

$$
\begin{equation*}
w_{1}(F, s) \leq \sum_{1}^{\infty} 2^{k} w_{1}\left(\phi_{k}, s\right) \tag{1.4.4}
\end{equation*}
$$

thus

$$
\begin{equation*}
\int_{0}^{1} w_{1}(F, s) \frac{d s}{s} \leq \sum_{1}^{\infty} 2^{k} \int_{0}^{1} w_{1}\left(\phi_{k}, s\right) \frac{d s}{s} . \tag{1.4.5}
\end{equation*}
$$

In the above inequalities we have used the notation $w_{1}\left(\phi_{k}, s\right)$ for the moduli of continuity of the $\phi_{k}$.

The following estimates can be easily verified:

$$
\begin{array}{lll}
w_{1}\left(\phi_{k}, s\right) \leq 2\left|E_{k}\right| & \text { if } & s>\frac{1}{4}\left(1-r_{k}\right),  \tag{1.4.6}\\
w_{1}\left(\phi_{k}, s\right) \leq 2 n\left|B_{0}\right| s & \text { if } & s<\frac{1}{4}\left(1-r_{k}\right) .
\end{array}
$$

Consequently

$$
\begin{equation*}
\int_{0}^{1} w_{1}\left(\phi_{k}, s\right) \frac{d s}{s} \leq 2 n^{n+1}\left|E_{k}\right|+2\left|E_{k}\right| \log \frac{1}{\left|E_{k}\right|} . \tag{1.4.7}
\end{equation*}
$$

From (1.4.5) and (1.4.7) we get

$$
\begin{equation*}
\int_{0}^{1} w_{1}(F, s) \frac{d s}{s} \leq C\|F\|_{1}+\sum_{1}^{\infty} 2^{k}\left|E_{k}\right| \log \frac{1}{\left|E_{k}\right|} . \tag{1.4.8}
\end{equation*}
$$

Now consider the two families of subindicies, $\left\{k^{\prime}\right\}$ and $\left\{k^{\prime \prime}\right\}$, defined as follows:

$$
\begin{equation*}
\left\{k^{\prime}\right\} \text { is the set of } k ' s \text { for which } 2^{k}\left|E_{k}\right|<3^{-k} \tag{1.4.9}
\end{equation*}
$$ $\left\{k^{\prime \prime}\right\}$ is the set of $k$ 's for which $2^{k}\left|E_{k}\right| \geq 3^{-k}$.

Thus

$$
\begin{align*}
& \quad \sum_{1}^{\infty} 2^{k}\left|E_{k}\right| \log \frac{1}{\left|E_{k}\right|}  \tag{1.4.10}\\
& \leq \sum_{1}^{\infty} 2^{k}\left|E_{k}\right|\left|\log 2^{k}\right| E_{k}| |+\int_{B_{0}} F \log ^{+} F d x \\
& \leq \int_{B_{0}} F \log ^{+} F d x+\sum_{k^{\prime}} 3^{-k / 2}+\log 3 \sum_{k^{\prime \prime}} k 2^{k}\left|E_{k}\right| \\
& \leq \frac{3}{2}+2 \int_{\mathbf{B}_{0}} F \log ^{+} F d x .
\end{align*}
$$

By combining (1.4.10), (1.4.8), (1.4.5) and (1.4.3) we get the desired result.
Remark. Lemmas 1.3 and 1.4 provide a generalization of Theorem 3 in Zo's paper; see [8].

The following lemma is essentially due to L. Carleson and P. Sjölin (see [3, p. 563]). This, however, is a different type of proof.
1.5. Lemma (Carleson-Sjölin). Let $T$ be a sublinear operator mapping $L^{p}\left(R^{n}\right), p>1$, into weak $L^{p}\left(R^{n}\right)$ such that
(a)

$$
|E(|T(f)|>\lambda)|<\frac{C_{0}}{(p-1)^{\rho}} \frac{1}{\lambda^{p}}\|f\|_{p}^{p}, \quad p>1
$$

where $C_{0}$ and $\rho$ are independent from $f$ and $p$. Let $Q$ be a cube in $R^{n}$ and $\lambda>1 /|Q|$; then
(i) $\quad|Q \cap\{|T(f)|>\lambda\}|<\frac{C_{1}}{\lambda}|Q|+C_{2} \frac{|\log \lambda|}{\lambda} \int_{\mathbf{R}^{n}}|f|\left[1+\left(\log ^{+}|f|\right)^{\rho} \log ^{+} \log ^{+} f\right] d x$

Here, $C_{1}$ and $C_{2}$ do not depend on $f$ or $\lambda$.
Proof. Let $E_{k}$ be the set where $2^{k}<|f| \leq 2^{k+1}, k \geq 1$. Let $f_{k}$ be the function that equals $f$ on $E_{k}$ and is zero otherwise. Let $Q$ be a given cube in
$R^{n}$ and choose $\lambda>1 /|Q|$. From (a), taking $p=1+1 / k$ we have

$$
\begin{align*}
\left|E\left(\left|T\left(f_{k}\right)\right|>\lambda\right)\right| & <\frac{C_{0}}{\lambda^{1+1 / k}} k^{\rho} 2^{k}\left|E_{k}\right|  \tag{1.5.1}\\
& <\frac{C}{\lambda}|Q|^{1 / k} k^{\rho} 2^{k}\left|E_{k}\right| \\
& \leq \frac{C(Q)}{\lambda} k^{\rho} 2^{k}\left|E_{k}\right|
\end{align*}
$$

Let us consider the sets $X_{k}(\lambda)=E\left(\left|T\left(f_{k}\right)\right|>\lambda\right.$ and the exceptional set $X(\lambda)=\bigcup_{1}^{\infty} X_{k}(\lambda)$. By (1.5.1) we have

$$
\begin{equation*}
|X(\lambda)|<\frac{C}{\lambda} \int_{\mathrm{R}^{n}}|f|\left(\log ^{+}|f|\right)^{\rho} d x \tag{1.5.2}
\end{equation*}
$$

Let $D_{k}(s)$ be the distribution function of $\left|T\left(f_{k}\right)\right|$ on $Q-X(\lambda)$. We have the estimates

$$
\begin{align*}
& \int_{Q-X(\lambda)} \sum_{1}^{\infty}\left|T\left(f_{k}\right)\right| d x=\sum_{1}^{\infty} \int_{0}^{\lambda} D_{k}(s) d s  \tag{1.5.3}\\
& \leq \sum_{k ; k^{2} \leq 1 / \lambda} \int_{0}^{\lambda} D_{k}(s) d s+\sum_{k ; k^{2}>1 / \lambda} \int_{0}^{1 / k^{2}} D_{k}(s) d s+\int_{1 / k^{2}}^{\lambda} D_{k}(s) d s \\
& \leq|Q| \sum_{1}^{\infty} \frac{1}{k^{2}}+C \sum_{1}^{\infty} \int_{1 / k^{2}}^{\lambda} k^{\rho} 2^{k}\left|E_{k}\right| \frac{d s}{s}
\end{align*}
$$

Let $\bar{f}$ be the function that equals $f$ if $|f| \leq 2$ and zero otherwise. Decompose $f$ as $\bar{f}+\sum_{k}^{\infty} f_{k}$ and use (a) for $\bar{f}$ with $p=1+1 / k_{0}$ for some fixed $k_{0}$. In order to deal with $\sum_{1}^{\infty} f_{k}$ use inequalities (1.5.2) and (1.5.3). This finishes the proof.
1.6. Following E. Stein (see [4]) let us introduce the following kernels:

$$
\begin{equation*}
K_{\alpha}(r)=\frac{\left(1-r^{2}\right)_{+}^{\alpha-1}}{\Gamma(\alpha)}, \quad R(\alpha)>0 \tag{1.6.1}
\end{equation*}
$$

and their Fourier transforms

$$
\begin{equation*}
\hat{K}_{\alpha}(r)=\pi^{-\alpha} r^{-(n / 2)-\alpha+1} J_{(n / 2)+\alpha-1}(2 \pi r) . \tag{1.6.2}
\end{equation*}
$$

Consider the maximal operators

$$
\begin{equation*}
S_{\alpha}^{*}(f)=\sup _{k=1}\left|\int_{R^{n}} e^{i(x, y)} \hat{K}_{\alpha}\left(2^{-k}|y|\right) \hat{f}(y) d y\right|, \quad R(\alpha)>1 / 2-n / 2 \tag{1.6.3}
\end{equation*}
$$

If $f$ is a step function we have (see [4])

$$
\begin{equation*}
\sigma(f)=S_{0}^{*}(f) \tag{1.6.4}
\end{equation*}
$$

## 2. Proof of the main result

Write $\alpha=u+i v$ and consider $1 / 2-n / 2<u<M$. Using the procedure in [7, pp. 158-159], and the formulas

$$
\begin{align*}
\Gamma\left(\frac{n}{2}+\alpha-\frac{1}{2}\right) & \sim \sqrt{2 \pi}|v|^{(n / 2)+u-1} e^{-(\pi|v| / 2)}, \quad v \rightarrow \infty  \tag{2.1.1}\\
\Gamma(z) & =\frac{1}{z} \Gamma(z+1), \quad R(z)>0
\end{align*}
$$

(see [7, p. 281 bottom note], we get the estimates

$$
\begin{equation*}
\left|\hat{K}_{\alpha}(x)\right| \leq \min \left(C_{1}, C_{2} \Gamma\left(\frac{n}{2}+u-1 / 2\right) \frac{e^{2 \pi|v|}|v|^{-(n / 2)+u}\left|\frac{n}{2}+\alpha-1 / 2\right|}{|x|^{(n / 2)+u-1 / 2}}\right) \tag{2.1.2}
\end{equation*}
$$

where $C_{1}$ and $C_{2}$ are uniform provided $1 / 2-n / 2<R(\alpha)<M$. (For similar estimates see [6, pp. 60 and 61].) An application of Lemma 1.1 gives

$$
\begin{equation*}
\left\|S_{\alpha}^{*}(f)\right\|_{2, \infty}^{*} \leq \frac{K}{\left|\frac{n}{2}+u-1 / 2\right|^{3 / 2}}|v|^{-(n / 2)+u} e^{2 \pi|v|}\|f\|_{2,2}^{*}, \quad \frac{1}{2}-\frac{n}{2}<R(\alpha)<M . \tag{2.1.3}
\end{equation*}
$$

Here, $\left\|\|_{p, q}^{*}\right.$ is the usual notation for Lorentz's norms. The estimate

$$
\int_{|x| \leqslant 1}\left|K_{\alpha}\right| \log ^{+}\left|K_{\alpha}\right| d x<\frac{C}{u} e^{\pi(v \mid / 2)}(1+|v|)
$$

and Lemmas 1.3 and 1.4 give

$$
\begin{equation*}
\left\|S_{\alpha}^{*}(f)\right\|_{(1, \infty)}^{*}<\frac{C}{u} e^{\pi(|v| / 2)}(1+|v|)\|f\|_{(1,1)}^{*} \tag{2.1.4}
\end{equation*}
$$

To end the proof of the main result consider the case $n=2$, a typical one.
Consider step functions $f$ and the analytic family of operators

$$
\begin{equation*}
T_{\alpha(z)}(f)=\int_{R^{2}} e^{i\langle x, y\rangle} \hat{K}_{\alpha(z)}\left(2^{-k(x)}|y|\right) \hat{f}(y) d y \tag{2.1.5}
\end{equation*}
$$

where $0 \leq R(z) \leq 1, \alpha(z)=\frac{1}{2}[(u-1)+\varepsilon+i v]$ and $k(x)$ is a bounded measurable function taking natural values only. (See [7, p. 280]).

The main theorem and definitions in [2] can be formulated in terms of characteristic functions of finite union of intervals and step functions. From this remark and estimate (2.1.2) we see that $T_{\alpha(z)}(f)$ is admissible (see [2]).

From (2.1.3) and (2.1.4) we have

$$
\begin{gathered}
\left\|T_{\alpha(i v)}(f)\right\|_{(2, \infty)}^{*}<C(|v|+1) \frac{e^{2 \pi|v|}}{\varepsilon^{3 / 2}}\|f\|_{(2,2)}^{*}, \\
\left\|T_{\alpha(1+i v)}(f)\right\|_{(1, \infty)}^{*}<C(|v|+1) \frac{e^{|v| / 4}}{\varepsilon}\|f\|_{(1,1)}^{*} .
\end{gathered}
$$

Take $u=1-\varepsilon$ and define $P_{u}$ by

$$
\frac{1}{P_{u}}=\frac{\varepsilon}{2}+\frac{1-\varepsilon}{1}
$$

Sagher's convexity theorem gives (see [2])

$$
\begin{equation*}
\left\|T_{\alpha(1-\varepsilon)}(f)\right\|_{\left(P_{w}, \infty\right)}^{*} \leq \frac{K}{\varepsilon}\|f\|_{\left(P_{w}, P_{u}\right)}^{*} . \tag{2.1.7}
\end{equation*}
$$

Replacing $P_{u}$ by its value, $P_{u}=1+\varepsilon / 2-\varepsilon$, and using (2.1.7) and the fact that $k(x)$ is arbitrary we get

$$
\begin{equation*}
\left\|S_{0}^{*}(f)\right\|_{(1+(\varepsilon / 2-\varepsilon), \infty)}^{*} \leq \frac{K}{\varepsilon}\|f\|_{(1+\varepsilon / 2-\varepsilon, 1+\varepsilon / 2-\varepsilon)}^{*} . \tag{2.1.8}
\end{equation*}
$$

An application of Lemma 1.5 gives part (ii) of the thesis and Marcinkiewicz's interpolation theorem gives part (i).

## References

1. R. Fefferman, A theory of entropy in Fourier analysis, Advances in Mathematics, to appear.
2. Y. SAGHER, On analytic families of operators, Israel J. Math., vol. 7 (1969), pp. 350-356.
3. P. SJölin, An inequality of Paley and convergence a.e. of Walsh-Fourier Series, Arch. Math., vol. 7 (1969), pp. 551-569.
4. E. M. Stein, Maximal functions, Spherical means, Proc. Nat. Acad. Sci., vol. 73 (1976), pp. 2174-2175.
5.     - Singular integrals and differentiability of functions, Princeton University Press, 1970.
6. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, preprint.
7. E. M. Stein and G. Weiss, Introduction to Fourier analysis in Euclidean spaces, Princeton University Press, Princeton, N.J. 1971.
8. F. Zo, A note on approximation of the identity, Studia Math., vol. 55 (1975), pp. 111-122.

University of Illinois at Chicago Circle<br>Chicago Illinois


[^0]:    Received January 16, 1978.
    ${ }^{1}$ The author has been partially supported by a National Science Foundation grant.

