CHEVALLEY GROUPS AS STANDARD SUBGROUPS, II

BY
Gary M. Seitz ${ }^{1}$

Introduction

This paper continues the work that was begun in [13]. Our situation is that A is a standard subgroup of a finite group G and $\tilde{A}=A / Z(A)$ is a group of Lie type having Lie rank at least 3 and defined over a field of characteristic 2 . Our goal, in this paper, is to show that under the hypotheses of the main theorem of [13], either (a), (d), or (e) of that theroem holds, or there is an involution $t \in C_{G}(A)$ and a t-invariant subgroup, $G_{0} \leq G$, such that G_{0} satisfies (b) or (c) of the main theorem. Once we prove the existence of such a group G_{0}, all that will remain in the proof of the main theorem is the verification that $G_{0}=E(G)$. That verification will occur in part three of the series.
Our construction of the group G_{0} is as follows. Using the results of $\S 4$ of [13] we find a subgroup $X \leq A$ so that $O^{2^{\prime}}\left(C_{\mathrm{A}}(X)\right)$ is a standard subgroup of $C_{G}(X)$ and $t \notin Z^{*}\left(C_{G}(X)\right)$. By induction, Hypothesis (*), or by appealing to the literature, we have the structure of $E=E\left(C_{G}(X)\right)$. The group G_{0} will be $\left\langle E, E^{w}\right\rangle$, where w is a suitable element of the Weyl group of A. The structure of G_{0} is obtained by developing sufficient commutator information in order to apply the work of Curtis [5]. However, there are some difficulties in obtaining the necessary commutator relations. This is due, in part, to the fact that root subgroups of A may be properly contained in root subgroups of G_{0}, and in some cases not even contained in root subgroups of G_{0}. Another difficulty occurs when X is taken as an abelian Hall subgroup of a group, J, generated by two opposite root subgroups of A, and we find that J does not centralize $E\left(C_{G}(X)\right)$.
Throughout the paper we operate under the following assumptions: $|Z(A)|$ is odd, $K=C_{G}(A)$ has cyclic Sylow 2 -subgroups, and $\tilde{A} \neq \operatorname{Sp}(6,2)$, $U_{6}(2), O^{ \pm}(8,2)^{\prime}$, or $L_{n}\left(2^{a}\right)$. The omission of $\tilde{A} \cong L_{n}\left(2^{a}\right)$ is justified by the corollary in [14]. Let $R \in \operatorname{Syl}_{2}(K)$ and $\langle t\rangle=\Omega_{1}(R)$.

5. Preliminaries

If X is any subgroup of G we set $X_{A}=\left\langle\left(O^{2^{2}}(A \cap X)\right)^{X}\right\rangle$. So $X_{A} \unlhd X$.
We will need a slight generalization of (1.3) of [14].
(5.1) Let X be a finite group, P a standard subgroup of X with $C_{X}(P)$ of

[^0]2-rank 1 and $|Z(P)|$ odd. Let $S \in \operatorname{Syl}_{2}(N(P))$ and let t be the involution in $C_{S}(P)$. Suppose that there is an element $g \in N(S)-S$ with $g^{2} \in S$ and $t^{g} \in$ $P C_{X}(P)$. Then $[P, O(X)]=1$. So if L is a t-invariant 2 -component of X with $P \leq L$, then L is quasisimple.

Proof. This is just (1.3) of [14] with slightly weaker hypotheses. These hypotheses are precisely what was needed to prove that result.
(5.2) Let $X<Y<Z$ be finite groups of Lie type defined over a field of characteristic 2, and each generated by its root subgroups. Suppose that σ is an involutory automorphism of Z and of Y and $X=E\left(C_{Z}(\sigma)\right)$. Then there is an even integer n and $q=2^{a}$, such that $(\tilde{X}, \tilde{Y}, \tilde{Z})$ is either
$(\operatorname{PSp}(n, q), \operatorname{PSU}(n, q), \operatorname{PSU}(n+1, q))$

$$
\text { or } \quad(\operatorname{PSp}(n, q), \operatorname{PSL}(n, q), \operatorname{PSL}(n+1, q))
$$

Proof. First note that by the Borel-Tits Theorem ((3.9) of [3]) σ must induce an outer automorphism of Z. Checking centralizers of outer automorphisms (see §19 of [1]) we obtain the result.

Next, we discuss national conventions. Let X be a group of Lie type defined over a field of characteristic 2 and having root system Σ. Then $|Z(A)|$ is odd. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a fundamental system of roots for Σ. Once we have chosen a Borel subgroup, B_{1}, of X and fundamental reflections s_{1}, \ldots, s_{n} of the Weyl group of X we often write $X=\left\langle K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\rangle$ where each $K_{\alpha_{i}}$ is generated by the root subgroups corresponding to the roots $\pm \alpha_{i}$. Let B_{1}^{0} be the opposite Borel subgroup.

Now suppose that t is an involutory field, graph, or graph-field automorphism of X defined with respect to the root system Σ. So

$$
K_{\alpha_{i}}^{t} \in\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\} \text { for each } i=1, \ldots, n
$$

Then $O^{2^{\prime}}\left(C_{X}(t)\right)=Y$ is a Chevalley group with root system determined by Σ and we write $Y=\left\langle J_{\beta_{1}}, \ldots, J_{\beta_{m}}\right\rangle$ where

$$
\left\{J_{\beta_{1}}, \ldots, J_{\beta_{m} \mid}\right\}=\left\{O^{2^{\prime}}\left(C(t) \cap\left\langle K_{\alpha_{i}}, K_{\alpha_{i}}^{t}\right\rangle\right): i=1, \ldots, n\right\} .
$$

(See Theorem 33 of [15].) Note that $C_{B_{1}}(t)$ and $C_{B_{1}}{ }^{0}(t)$ are opposite Borel subgroups in $C(t)$.

We will have occasion to use the fact that the set $\left\{J_{\beta_{1}}, \ldots, J_{\beta_{m}}\right\}$ in some sense determines $\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}$.
(5.3) Let $X=\left\langle K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\rangle$ and $Y=\left\langle J_{\beta_{1}}, \ldots, J_{\beta_{m}}\right\rangle$ be as above. C_{1}, C_{1}^{0} be t-invariant opposite Borel subgroups of G for which t permutes the corresponding root subgroups. Let $L_{\alpha_{1}}, \ldots, L_{\alpha_{n}}$ be the associated subgroups, corresponding to $K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}$. Assume that $C_{B_{1}}(t)=C_{C_{1}}(t), C_{B_{1}}(t)=C_{C_{1}}(t)$, and, for $i=1, \ldots, n$,

$$
O^{2^{\prime}}\left(C(t) \cap\left\langle K_{\alpha_{i}}, K_{\alpha_{i}}^{t}\right\rangle\right)=O^{2^{\prime}}\left(C(t) \cap\left\langle L_{\alpha_{i}}, L_{\alpha_{i}}^{t}\right\rangle\right)
$$

Then $\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}=\left\{L_{\alpha_{1}}, \ldots, L_{\alpha_{n}}\right\}$.
Proof. Let bars denote images in $X / Z(X)$. For each $\alpha \in \Sigma$ there is a root subgroup \bar{U}_{α} of \bar{X}, with $\bar{U}_{\alpha} \leq \bar{B}_{1}$ if $\alpha \in \Sigma^{+}$and $\bar{U}_{\alpha} \leq \overline{B_{1}^{0}}$ if $\alpha \notin \Sigma^{+}$. Use Theorem (1.4) of [4] to construct a group Y such that $Y / Z(Y) \cong \bar{X}$, and Y is a group generated by isomorphic copies of the group \bar{U}_{α} and having a presentation that involves only the commutator relations that exist among these root subgroups. Then t can be regarded as an automorphism of Y. Now, if we start from root subgroups that are in $\overline{C_{1}} \cup \overline{C_{1}^{0}}$, then with suitable labeling of the elements, the same commutator relations exist and we are led to the same group Y. We conclude that there is an automorphism, σ, of \bar{X} such that the following hold: $\sigma t=t \sigma$ (viewing $t \in \operatorname{Aut}(\bar{X})$), $\bar{B}_{1}^{\sigma}=\bar{C}_{1}, \overline{B_{1}^{0^{\sigma}}}=$ $\overline{C_{1}^{0}}$, and $\bar{K}_{\alpha_{i}}^{\sigma}=\bar{L}_{\alpha_{i}}$, for $i=1, \ldots, n$. Then, for $j=1, \ldots, m$, we have

$$
\bar{J}_{\beta_{i}}^{\sigma}=\bar{J}_{\beta_{i},}, \quad\left(\overline{B_{1} \cap J_{\beta_{j}}}\right)^{\sigma}=\overline{C_{1} \cap J_{\beta_{i}}} \quad \text { and } \quad\left(\overline{B_{1}^{0} \cap J_{\beta_{j}}}\right)^{\sigma}=\overline{C_{1}^{0} \cap J_{\beta_{i}}}
$$

But we have assumed that $C_{B_{1}}(t)=C_{C_{1}}(t)$ and $C_{B_{1}}{ }^{0}(t)=C_{C_{1}}{ }^{0}(t)$. It follows that σ normalizes

$$
\overline{B_{1} \cap J_{\beta_{j}}} \text { and } \overline{B_{1}^{0} \cap J_{\beta_{j}}} \text { for } j=1, \ldots, m
$$

Let \hat{X} be the subgroup of $\operatorname{Aut}(\bar{X})$ generated by \bar{X} together with all diagonal automorphisms of \bar{X}. We can write $\sigma=\sigma_{1} \sigma_{2}$, where $\sigma_{2} \in \hat{X}$ and σ_{1} is the product of a field and a graph automorphism of \bar{X}, defined with respect to the Borel subgroups \bar{B}_{1} and $\overline{B_{1}^{0}}$ of \bar{X}, and centralizing t. Then $\sigma_{2} t=t \sigma_{2}$ (an equation in $\operatorname{Aut}(\bar{X})$) and σ_{1} stabilizes the set $\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}$, inducing a graph automorphism (possibly the identity). Now σ_{2} acts on $\bar{J}=O^{2}\left(C_{\bar{X}}(t)\right)$, and from the choice of σ, we see that σ_{2} normalizes each of

$$
\bar{J}_{\beta_{i}}, \overline{B_{1} \cap J_{\beta},}, \quad \text { and } \overline{B_{1}^{0} \cap J_{\beta_{1}}},
$$

for $i=1, \ldots, m$. So σ_{2} induces a diagonal automorphism of \bar{J} (with respect to the Borel subgroups $\left.\overline{B_{1} \cap J}, \overline{B_{1}^{0} \cap J}\right)$, and since $\sigma_{2} \in C_{\hat{X}}(t)$, we use the Bruhat decomposition to see that σ_{2} is in the Cartan subgroup of \hat{X} that normalizes each of the root subgroups, \bar{U}_{α}, for $\alpha \in \Sigma$. Then $\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}^{\sigma}=\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}$, proving the lemma.
(5.4) Let $Y=\operatorname{PSL}(4,2), \operatorname{PSL}(5,2), \operatorname{PSU}(4,2), \operatorname{PSU}(5,2), \operatorname{PSp}(4,4)$ or $P S p(4,2) \times P S p(4,2)$. Let σ be an involutory automorphism of Y with $C_{Y}(\sigma) \cong P S p(4,2)$. If X is a σ-invariant subgroup of Y with $C_{Y}(\sigma)<X<Y$ and $C_{Y}(\sigma) \not \subset X \nsupseteq Y$, then $Y \cong \operatorname{PSU}(5,2)$ or $\operatorname{PSL}(5,2)$ and $X^{\prime} \cong P S U(4,2)$ or $\operatorname{PSL}(4,2)$, respectively. We omit the details.

Proof. If $Y \cong P S p(4,2) \times P S p(4,2)$, then this is easy. In the other cases the result follows from Sylow's theorem together with an analysis of the action of X on the underlying vector space defining Y. We omit the details.

$$
\begin{equation*}
\text { Let } \tilde{A} \cong O^{ \pm}(n, 2)^{\prime}, I \leq A, \text { and let } P<A \text { satisfy } \tag{5.5}
\end{equation*}
$$

$$
P Z(A) / Z(A) \cong P S O^{+}(8,2)
$$

Suppose that $P=E\left(C_{A}(I)\right)$ is a standard subgroup of $C_{G}(I)$ and that

$$
R \in S y l_{2}\left(C_{G}(P) \cap C_{G}(I)\right)
$$

Finally assume that when A is regarded as acting on the subspace of the usual F_{2}-module, V, of $O^{ \pm}(n, 2)$ we may write $V=V_{1} \perp V_{2}$, with $\operatorname{dim}\left(V_{1}\right)=8, P$ fixes each 1 -space of V_{2}, and V_{1} is P-invariant. Then $C_{G}(I)^{\sim} \not \equiv M(22)$.

Proof. Suppose otherwise. Then $C(t) \cap E\left(C_{G}(I)\right) \cong \operatorname{Aut}\left(O^{+}(8,2)^{\prime}\right)$ (see Table 1, p. 441 in [2]). Let x be a 3 -element centralizing t and acting as a graph automorphism of order 3 on P. We know that $x \in C(t) \leq N(A)$. However from the embedding of P in A we see that this is impossible.

6. Notation and the subgroup E

Write $A=\left\langle U_{ \pm \alpha_{1}}, \ldots, U_{ \pm \alpha_{1}}\right\rangle$, where for $\alpha \in \Sigma$ (the root system of A), U_{α} is the corresponding root subgroup. Set $V_{\alpha}=\Omega_{1}\left(U_{\alpha}\right)$ and $J_{\alpha}=\left\langle V_{ \pm \alpha}\right\rangle$. Then for each $\alpha \in \Sigma, J_{\alpha} \cong S L(2, q)$ for some $q=2^{a}$. For $i=1, \ldots, l$ we may choose the fundamental reflection $s_{i} \in J_{\alpha_{i}}$. Choose $r \in \Sigma^{+}$such that r is long and $V_{r} \leq Z(U)$ and set $J=J_{r}$. We set $J_{\alpha}=\left\langle U_{\alpha}, U_{-\alpha}\right\rangle$.

At this point we assume that Hypothesis (*) holds and that the theorem is true for all pairs $\left(A_{1}, G_{1}\right)$ with $\left|A_{1}\right|<|A|$. By [14] we may assume that $\tilde{A} \not \equiv \operatorname{PSL}(n, q)$. Also we have \tilde{A} of Lie rank at least 3 , but $\tilde{A} \neq P S p(6,2)$, $\operatorname{PSU}(6,2), \operatorname{PSO}^{ \pm}(8,2)$. We adopt the notation of [13].

Choose $X \leq A$ and $D=E\left(C_{\mathrm{A}}(X)\right)$ as in (4.1) of [13]. Set $E=E\left(C_{G}(X)\right)$.
(6.1) The pair (\tilde{D}, \tilde{A}) is one of the following (up to isomorphism):
(i) $\left(O^{ \pm}(n-4, q)^{\prime}, O^{+}(n, q)^{\prime}\right)$, n even,
(ii) $\quad\left(L_{6}(q), E_{6}(q)\right)$,
(iii) $\left(O^{+}(12, q)^{\prime}, E_{7}(q)\right)$,
(iv) $\left(E_{7}(q), E_{8}(q)\right)$,
(v) $\left(\operatorname{PSp}(6, q), F_{4}(q)\right)$,
(vi) $\quad\left(\operatorname{PSU}(6, q),{ }^{2} E_{6}(q)\right)$,
(vii) $\quad(P S p(n-2, q), \operatorname{PSp}(n, q))$, n even,
(viii) $\quad(P S U(n-2, q), \operatorname{PSU}(n, q))$.

Proof. This follows from (4.1) and (4.3) of [13].
(6.2) $R=\langle t\rangle$ and one of the following holds:
(i) $\tilde{E} \cong \tilde{D} \times \tilde{D}$, with t interchanging the factors.
(ii) \tilde{E} is a finite group of Lie type defined over a field of characteristic 2, and t induces an outer automorphism of \tilde{E} (a field, graph, or graph-field automorphism).

Proof. The structure of \tilde{E} is given by induction, Hypothesis (*), or by application of the theorems in [11], [12], [14], and [20]. In addition, we use (5.5) in case $\tilde{D} \cong O^{+}(8,2)^{\prime}$. To see that $R=\langle t\rangle$ use (3.2) of [16].
Table 2

${ }_{\text {D }}$	E	diagram	t
(1) $O^{+}(n-4, q)^{\prime}=\left\langle J_{\alpha_{p}} \ldots, J_{\alpha_{3}}\right\rangle, l=n / 2$	$O^{+}\left(n-4, q^{2}\right)^{\prime}$		field
(2) $O^{-}(n-4, q)^{\prime}=\left\langle\hat{J}_{\alpha_{p}} \ldots, J_{\alpha_{3}}\right\rangle, l=(n-2) / 2$	$O^{+}\left(n-4, q^{2}\right)^{\prime}$		graph-field
(3) $L_{6}(q)=\left\langle J_{a_{6}}, J_{\alpha_{3}}, J_{\alpha_{4}}, J_{a_{5}}, J_{\alpha_{6}}\right\rangle$	$L_{6}\left(q^{2}\right)$	$\mathrm{O}_{1}^{\mathrm{O}}-\mathrm{O}_{3}-\mathrm{O}_{4}-\mathrm{O}_{5}^{0}$	field
(4) $E_{7}(q)=\left\langle J_{\alpha_{1}}, \ldots, J_{\alpha_{\gamma}}\right\rangle$	$E_{7}\left(q^{2}\right)$		field
(5) PSU($n-2, q)=\left\langle J_{a_{l}} J_{a_{l l}}, \ldots, J_{\alpha_{2}}\right\rangle, l=n / 2$	$\operatorname{PSL}\left(\boldsymbol{n}-2, q^{2}\right)$	$\underset{2}{\mathrm{O}}$	graph-field
(6) PSU($n-2, q)=\left\langle\hat{J}_{\alpha_{p}} J_{a_{l-1}}, \ldots, J_{\alpha_{2}}\right\rangle, l=(n-1) / 2$	$\operatorname{PSL}\left(\mathrm{n}-2, q^{2}\right)$	$\underset{2}{\mathrm{O}}-$	graph-field
(7) $\operatorname{PSp}(n-2, q)=\left\langle J_{\alpha_{p}} \ldots, J_{\alpha_{2}}\right\rangle, l=n / 2$	$P S p\left(n-2, q^{2}\right)$	$\bigcirc \underset{i}{\mathrm{O}} \Longrightarrow \mathrm{l}_{i-1}$	field

(8) $\left.P S p(n-2, q)=J_{l}, \ldots, J_{2}\right\rangle, l=n / 2$
(9) $P S p(n-2, q)=\left\langle J_{l}, \ldots, J_{2}\right\rangle, l=n / 2$
(10) $P S p(n-2, q)=\left\langle J_{l}, \ldots, J_{2}\right\rangle, l=n / 2$
(11) $P S p(n-2, q)=\left\langle J_{l}, \ldots, J_{2}\right\rangle, l=n / 2$
(12) $P S p(n-2, q)=\left\langle J_{l}, \ldots, J_{2}\right\rangle, l=n / 2$

The group D is generated by certain of the groups $\hat{J}_{\alpha_{i}}, i=1, \ldots, l$. Indeed, for all cases except (6.1)(i), D is generated by all but one of the groups $\hat{J}_{\alpha_{i}}$. There is a unique root $s \in \Sigma^{+}$such that $V_{s} \leq Z(U \cap D)$ and $V_{s}^{\#}$ consists of root involutions in E. However, there are cases where root subgroups of A contained in D are not contained in root subgroups of E. This can occur if t induces a graph automorphism of the Dynkin diagram of E. In the accompanying table we list the possible configurations that occur in (6.2)(ii). Indicated are the groups \tilde{D}, \tilde{E}, the Dynkin diagram of \tilde{E}, and the type of automorphism that t induces on \tilde{E}.

We remark that except for cases (10) and (11) above we always have $s \sim r$ in W, so $J_{s} \sim J_{r}$ in A. When we discuss the pair (\tilde{D}, \tilde{E}) we will always refer to one of the entries in the preceding table with the given embedding of root systems. So, for example, we distinguish between ($\operatorname{PSp}(4, q), \operatorname{PSU}(4, q)$) and $\left(\operatorname{PSp}(4, q), \operatorname{PSO}^{-}(6, q)\right)$, even though $\operatorname{PSU}(4, q) \cong \operatorname{PSO}^{-}(6, q)$.
(6.3) Assume that the root system, $\Sigma_{1} \subseteq \Sigma$, of D is not of type C_{2}, B_{2}, B_{3}, A_{3}, B_{4}, or D_{4}, and also assume $r \sim s$ in W. There is an involution $w \in A$ such that $\bar{J}_{r}^{w}=\bar{J}_{s}$ (see (4.1) for the definition of \bar{J}_{r} and $\left.\bar{J}_{s}\right)$. If $J_{\alpha_{1}} \leq C\left(\bar{J}_{r}\right)$, then there is a root $\alpha \in \Sigma$ such that $\bar{J}_{\alpha} \leq C\left(\bar{J}_{r}\right) \cap C\left(\bar{J}_{s}\right) \cap C\left(J_{\alpha_{i}}^{w}\right)$. If W is not of type F_{4}, then α can be chosen conjugate to r.

Proof. This is proved by direct check. The following table gives the relevant information. The first column gives the type of W, the second gives the element w. The third column lists the roots, α_{i}, with $J_{\alpha_{i}} \leq C\left(\bar{J}_{r}\right)$, and the last column gives the corresponding roots α.

E_{6}	$\left(s_{3} s_{5}\right)^{s_{4} s_{2}}$	$\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$	$\alpha_{3}, \alpha_{3}, \alpha_{3}+\alpha_{4}+\alpha_{5}, \alpha_{5}, \alpha_{5}$
E_{7}	$\left(s_{2} s_{5}\right)^{s_{4} s_{3} s_{1}}$	$\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}$	$\alpha_{2}, \alpha_{2}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}, \alpha_{5}, \alpha_{2}$
E_{8}	$\left(s_{3} s_{2}\right)^{s_{4} s_{5} s_{6} s_{7} s_{8}}$	$\alpha_{1}, \ldots, \alpha_{7}$	$\alpha_{3}, \alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}, \alpha_{3}, \alpha_{3}+\alpha_{4}+\alpha_{5}$,
			$\alpha_{3}, \alpha_{3}, \alpha_{3}$
F_{4}	$s_{3}^{s_{2} s_{1}}$	$\alpha_{2}, \alpha_{3}, \alpha_{4}$	$\alpha_{2}+2 \alpha_{3}, \alpha_{2}+\alpha_{3}, \alpha_{2}$
D_{n}	$\left(s_{3} s_{1}\right)^{s_{2}}$	$\alpha_{3}, \ldots, \alpha_{n}$	$\alpha_{n}, \alpha_{n}, \ldots, \alpha_{n}, \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, \alpha_{n}, \alpha_{n-1}$
C_{n}	s_{1}	$\alpha_{2}, \ldots, \alpha_{n}$	$\alpha_{n}, \ldots, \alpha_{n}, \alpha_{n}+2 \alpha_{n-1}+2 \alpha_{n-2}$,
		$\alpha_{n}+2 \alpha_{n-1}$	
B_{n}	$\left(s_{3} s_{1}\right)^{s_{2}}$	$\alpha_{3}, \ldots, \alpha_{n}$	$\alpha_{n-1}, \ldots, \alpha_{n-1}, \alpha_{n-1}+2 \alpha_{n}, \alpha_{n-1}+\alpha_{n}$

We will also consider roots not conjugate to r. If Σ has roots of different lengths, let γ be the short root in Σ^{+}of highest height. Let δ be the short root of highest height in the root system of D. So $J_{\delta} \leq D$ and $J_{\delta} \sim J_{\gamma}$ in A.
(6.4) Suppose $\tilde{A} \cong F_{4}(q)$. Let $P=E\left(C_{A}\left(J_{\gamma}\right)\right)$. Then

$$
P=\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle \cong S p(6, q), \quad P=E\left(C_{A}(Y)\right)
$$

for Y a $(q+1)$-Hall subgroup of $J_{\gamma} \cong S L(2, q)$. Also $Z=\left\langle J_{\alpha_{1}+\alpha_{2}+\alpha_{3}}, J_{s}\right\rangle \cong$ $S p(4, q)$.

Proof. This follows from the fact that a graph automorphism of $F_{4}(q)$ interchanges J_{r} and J_{γ}.
(6.5) Suppose $\tilde{A} \cong P \operatorname{Sp}(n, q)$ with $n \geq 6$. Let

$$
P=O^{2^{\prime}}\left(C_{A}\left(J_{\gamma} \times J_{\alpha_{1}}\right)\right) \quad \text { and } \quad Z=O^{2^{\prime}}\left(C_{A}(P)\right)
$$

Then $P=\left\langle J_{\alpha_{n}}, \ldots, J_{\alpha_{3}}\right\rangle \leq D, Z=\left\langle J_{\alpha_{1}}, J_{s}\right\rangle \cong S p(4, q)$, and $P=E\left(C_{A}(Y)\right)$, where Y is a $(q+1)$-Hall subgroup of

$$
J_{\alpha_{1}} \times J_{\gamma} \cong S L(2, q) \times S L(2, q)
$$

Proof. This can be checked using the natural module V for the group $\operatorname{Sp}(n, q)$. The involutions in J_{γ} and $J_{\alpha_{1}}$ are of type a_{2} in the notation of $\S 7$ of [1]. One shows that $J_{\gamma} \times J_{\alpha_{1}}$ induces the identity on a non-degenerate ($n-4$)-subspace of V. The result follows.
(6.6) Let $\tilde{A} \cong \operatorname{PSU}(n, q)$ with $n \geq 6$. Let

$$
P=O^{2^{\prime}}\left(C_{A}\left(J_{\gamma}\right)\right) \quad \text { and } \quad Z=O^{2^{\prime}}\left(C_{A}(P)\right)
$$

Then

$$
P=\left\langle\hat{J}_{\alpha_{n}}, J_{\alpha_{n-1}}, \ldots, J_{\alpha_{3}}\right\rangle, \quad Z=\left\langle J_{\alpha_{1}}, J_{s}\right\rangle \cong S U(4, q) \quad \text { and } \quad P=O^{2}\left(C_{A}(Y)\right)
$$

where Y is a $\left(q^{2}+1\right)$-Hall subgroup of $J_{\gamma} \cong S L\left(2, q^{2}\right)$.
Proof. As in (6.5) this is checked using the natural module V for $S U(n, q)$. We may regard the group J_{γ} as acting on V. Then J_{γ} is trivial on a non-degenerate $(n-4)$-space of V and acts faithfully on a non-degenerate 4 -space, V_{0}, of V stabilizing complementary isotropic 2 -spaces. The group Y is fixed-point-free on V_{0}. From the structure of $S U(4, q)$ we see that no involution in $S U(4, q)$ centralizes an element of order $q^{2}+1$. It follows that

$$
O^{2^{\prime}}\left(C_{\mathrm{A}}\left(J_{\gamma}\right)\right)=O^{2^{\prime}}\left(C_{\mathrm{A}}(Y)\right) \cong S U(n-4, q)
$$

Since the commutator relations imply that $\left\langle\hat{J}_{\alpha_{n}}, \ldots, J_{\alpha_{3}}\right\rangle \cong S U(n-4, q)$ is contained in $C_{A}(Y)$ we have $P=\left\langle\hat{J}_{\alpha_{n}}, \ldots, J_{\alpha_{3}}\right\rangle$. Similarly $\left\langle J_{\alpha_{1}}, J_{s}\right\rangle \leq$ $O^{2^{\prime}}\left(C_{\mathrm{A}}(P)\right)$ and $C_{\mathrm{A}}(P)$ must stabilize V_{0}. The result follows.
(6.7) Let $\tilde{A} \cong{ }^{2} E_{6}(q)$. Let

$$
P=O^{2^{\prime}}\left(C_{A}\left(J_{\gamma}\right)\right) \quad \text { and } \quad Z=O^{2^{2}}\left(C_{A}(P)\right)
$$

Then $P=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle \cong O^{+}(6, q)^{\prime} \cong \operatorname{PSL}(4, q), \quad Z=J_{\gamma}, \quad$ and $P=O^{2}(C(Y))$, where Y is a $\left(q^{2}+1\right)$-Hall subgroup of $J_{\gamma} \cong S L\left(2, q^{2}\right)$.

Proof. $\quad J_{\gamma}=\left\langle U_{\gamma}, U_{-\gamma}\right\rangle$, so we first look at $C_{A}\left(U_{\gamma}\right)$. Using (4.6) of [6] we consider the structure of the parabolic subgroup $\left\langle B, s_{1}, s_{2}, s_{3}\right\rangle=I$. This group satisfies $O^{2^{\prime}}(I)=Q D$, where $Q=O_{2}(I)$ and $D=\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle \cong O^{-}(8, q)^{\prime}$.

Moreover, Q contains a subgroup $Q_{1}<I$ such that Q_{1} is elementary of order q^{8} and D preserves a non-degenerate quadratic form on Q_{1}. Then Q_{1} becomes an orthogonal space and in this space U_{γ} is an anisotropic 2-space. Since $Q_{1} \leq Z(Q), C\left(U_{\gamma}\right) \cap Q D=Q D_{1}$ where $D_{1} \cong O^{+}(6, q)^{\prime}$. But $\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle$ centralizes U_{γ}, so $D_{1}=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle$. Therefore

$$
P=O^{2^{\prime}}\left(C\left(J_{\gamma}\right)\right)=O^{2^{\prime}}\left(C\left(U_{\gamma}\right)\right) \cap O^{2^{\prime}}\left(C\left(U_{-\gamma}\right)\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle .
$$

Next we check that $O^{2^{\prime}}\left(C_{\mathrm{A}}(P)\right)=J_{\gamma}$, as follows. We know that

$$
O^{2^{\prime}}\left(C_{A}\left(J_{r}\right)\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle .
$$

Also, $\alpha_{2} \sim \alpha_{1} \sim \alpha_{2}^{s_{3}} \sim r$ in W. We can then check

$$
C_{\mathrm{A}}\left(J_{\alpha_{2}}\right) \cap C_{\mathrm{A}}\left(J_{\alpha_{1}}\right) \cap C_{\mathrm{A}}\left(J_{2}^{s_{3}}\right)
$$

to get the result.
Finally consider $Y \leq J_{\gamma}$ and $C_{A}(Y)$. Clearly $P \leq C_{A}(Y)$. Also the 2-central involutions in P are root involutions in A and so also in $C_{A}(Y)$. If u is a root involution in $C_{A}(Y)$, then we can use the information in (4.6) of [6] to see that $C_{A}(Y) \cap C_{A}(u)=C_{P}(u)$. Now $C_{P}(u)$ is the centralizer of a transvection, when P is regarded as $S L(4, q)$. It follows that u is a 2 -central involution in $C_{A}(Y)$ and that the Sylow 2-subgroups of $C_{A}(Y)$ are isomorphic to those of $S L(4, q) \cong P$. Setting $Z=\left\langle P^{C_{A}(Y)}\right\rangle$, we use Theorem 1 of [17] to conclude $P=Z=O^{2}\left(C_{A}(Y)\right)$.

7. Generating subgroups

In this section we will construct certain subgroups of G. In later sections these subgroups will be shown to generate a subgroup $G_{0} \leq G$ such that \tilde{G}_{0} is isomorphic to one of the groups in the main theorem. To this end we will establish some commutator relations among the constructed subgroups.

Let X, D be as in §6.
(7.1) Let bars denote images in $C_{G}(X) / X O\left(C_{G}(X)\right)$. Then \bar{D} is a standard subgroup of $\overline{C_{G}(X)}$ and $\bar{D} \not \ddagger \overline{C_{G}(X)}$.

Proof. This is (4.9)-(4.12) of [13].
(7.2) (i) $D \leq E\left(C_{G}(X)\right)$.
(ii) $R=\langle t\rangle \neq E\left(C_{G}(X)\right)$.
(iii) $\left|Z\left(E\left(C_{G}(X)\right)\right)\right|$ is odd.
(iv) The pair $\left(D, E\left(C_{G}(X)\right)^{\sim}\right)$ is one of the pairs listed in the main theorem.

Proof. Look at the group $C_{G}(X) / X$ and apply (5.1) and (6.2). This gives the structure of $E\left(C_{G}(X) / X\right)$. Now apply (3.1).

Let $E=E\left(C_{G}(X)\right)$. The action of t on E shows that $t^{G} \cap t D \neq\{t\}$. Consequently we may assume that we are not in the situation of (3.5)(ii) of [13]. In particular, we may now assume X to be of odd order.
(7.3) Notation. Recall, that if A is an orthogonal group, then $\bar{J}_{r}=J_{r} \times J_{\alpha_{1}}$. Otherwise $\bar{J}_{r}=J_{r}$. Except for the case $\tilde{A} \cong O^{+}(8, q)^{\prime}, X$ is a $(q+1)$-Hall subgroup of \bar{J}_{r}. For each $\alpha \in \Sigma^{+}$with $a \sim r$ in W, choose $w \in W$ with $\alpha=r^{w}$, and regarding $w \in G$ set $\bar{J}_{\alpha}=\bar{J}_{r}^{w}, X_{\alpha}=X^{w}$ and $E_{\alpha}=E^{w}$. Fix notation so that $w=1$ if $\alpha=r$ and w is as in (6.3) if $\alpha=s$.

For each of the possible pairs (\tilde{D}, \tilde{E}) there is a subgroup K_{s} of E, such that $J_{s} \leq K_{s}, K_{s}$ is t-invariant, and

$$
K_{s} \cong S L\left(2, q^{2}\right), S L(2, q) \text { or } S L(2, q) \times S L(2, q)
$$

Indeed, if $\tilde{E} \cong \tilde{A} \times \tilde{A}$, set K_{s} to be the group generated by the root involution in the projections of J_{s} to the components of E. Otherwise, one checks that the involutions in J_{s} are root involutions in E and we set K_{s} to be the group generated by the involutions of the root subgroups of E containing V_{s} and V_{-s}.

Finally, we note that $K_{s}=J_{s} \cong S L(2, q)$ only if $\tilde{D} \cong S p(n, q)$ for n even and \tilde{E} is one of $L_{n}(q), L_{n+1}(q), \operatorname{PSU}(n, q), \operatorname{PSU}(n+1, q)$, or $\operatorname{PSO}^{ \pm}(n+2, q)^{\prime}$.
(7.4) Suppose $\tilde{A} \not \equiv O^{ \pm}(8, q)^{\prime}$ or $O^{ \pm}(10, q)^{\prime}$, and also suppose that (\tilde{D}, \tilde{E}) is not $\left(P S p(n, q), O^{ \pm}(n+2, q)^{\prime}\right)$, with $n \geq 4$. Let $\alpha \in \Sigma$ be conjugate to r. Then $\bar{J}_{\alpha} \leq C_{G}\left(E_{\alpha}\right)$, so $E_{\alpha}=E\left(C_{G}\left(\bar{J}_{\alpha}\right)\right)$.

Proof. It will suffice to prove this for $\alpha=r$. Here $X=X_{r}$ and $E=E_{r}=E_{\alpha}$. The structure of \tilde{E} is known by (6.2) and Table 2. Let s be as in the remark following (6.2) and $J_{s}=\left\langle V_{s}, V_{-s}\right\rangle \leq E$. By (4.3), $D \leq C\left(\bar{J}_{r}\right)$.

Suppose $(\tilde{D}, \tilde{E}) \neq(\operatorname{PSp}(4, q), \operatorname{PSU}(4, q)),(P S p(4, q), \operatorname{PSL}(4, q))$. We claim that $t \notin Z^{*}\left(C\left(\bar{J}_{r}\right)\right)$. Suppose otherwise. Since \bar{J}_{r} and \bar{J}_{s} are conjugate by an element of A, we have $t \in Z^{*}\left(C_{G}\left(\bar{J}_{s}\right)\right)$. Hence, $t \in Z^{*}(Y\langle t\rangle)$, where $Y=$ $C_{E}\left(\bar{J}_{s}\right)$. But a direct check shows this to be false. Thus the claim holds, and, consequently, $D O\left(C\left(\bar{J}_{r}\right)\right) \notin C\left(\bar{J}_{r}\right)$. Now argue as in the proof of (6.2) and then use (5.1) to obtain the structure of $E\left(C\left(\bar{J}_{r}\right)\right)$.

Now $C\left(\bar{J}_{r}\right) \leq C(X)$ and D is standard in each of $E\left(C\left(\bar{J}_{r}\right)\right)$ and $E(C(X))=$ E. By (5.2), either (7.4) holds or ($\left.\tilde{D}, E\left(C\left(\bar{J}_{r}\right)\right), \tilde{E}\right)$ is one of

$$
\begin{aligned}
&(\operatorname{PSp}(n, q), \operatorname{PSL}(n, q), \operatorname{PSL}(n+1, q)) \\
& \text { or } \\
&(\operatorname{PSp}(n, q), \operatorname{PSU}(n, q), \operatorname{PSU}(n+1, q))
\end{aligned}
$$

Suppose one of the latter holds and let w be as in (6.3). Then w interchanges $X \times \bar{J}_{s}$ and $X^{w} \times \bar{J}_{r}$. So $O^{2^{\prime}}\left(C\left(X \bar{J}_{s}\right)\right) \sim O^{2^{\prime}}\left(C\left(\bar{J}_{r} X^{w}\right)\right)=O^{2^{\prime}}\left(C\left(\bar{J}_{r} \bar{J}_{s}\right)\right)$. Comparing centralizers of \bar{J}_{s} in $C(X)$ and in $C\left(\bar{J}_{r}\right)$ we obtain a contradiction. Suppose, now, that

$$
(\tilde{D}, \tilde{E})=(P S p(4, q), \operatorname{PSU}(4, q)) \text { or }(\operatorname{PSp}(4, q), \operatorname{PSL}(4, q))
$$

Then $Y=J_{\alpha_{3}} \times I$, where $I / Z(E) \cong Z_{q+1}$ or Z_{q-1}, respectively. Let X_{0} be a $(q+1)$-Hall subgroup of $J_{\alpha_{3}}$. Then $X_{0} \sim{ }_{A} X$ and $J_{r} \leq C\left(X_{0}\right)$. In fact, $J_{r}=$ $E\left(E\left(C\left(X_{0}\right)\right) \cap C(X)\right)$ (recall that $q>2$ here). Consequently, $N_{G}\left(J_{r}\right) \geq$ $\langle D, I\rangle=E$, and the result follows.

Hypothesis (7.5). (i) $s \sim r$ in W.
(ii) $\tilde{A} \not \equiv O^{ \pm}(n, q)^{\prime}$, with $n=8,10$, or 12 .
(iii) $(\tilde{D}, \tilde{E}) \neq\left(P S p(n, q), O^{ \pm}(n+2, q)^{\prime}\right)$, with $n \geq 4$.

Remark. As stated in $\S 6$ we distinguish the pairs

$$
(P S p(4, q), P S U(4, q)),\left(P S p(4, q), O^{-}(6, q)^{\prime}\right)
$$

and also the pairs

$$
(P S p(4, q), \operatorname{PSL}(4, q)),\left(P S p(4, q), O^{+}(6, q)^{\prime}\right)
$$

So in each case the first pair is not ruled out in Hypothesis (7.5).
(7.6) Assume Hypothesis (7.5). Then $K_{s} \leq C_{G}\left(E_{s}\right)$.

Proof. This is clear from (7.4) if $K_{s}=J_{s} \cong S L(2, q)$. So suppose $J_{s}<K_{s}$. Assume first that $q \geq 4$. Then there is an easy argument as follows. Since $K_{s} \cong \operatorname{SL}\left(2, q^{2}\right)$ or $\operatorname{SL}(2, q) \times \operatorname{SL}(2, q)$, there is a subgroup $\hat{X}_{s} \leq K_{s}$ such that \hat{X}_{s} is an abelian Hall subgroup of K_{s} and $\hat{X}_{s} \cap J_{s}$ is an A-conjugate of the subgroup $X \leq J_{r}$. Moreover \hat{X}_{s} centralizes a $(q+1)$-Hall subgroup of \bar{J}_{s} if $\bar{J}_{s}>J_{s}$. So $\hat{X}_{s} \leq N_{G}\left(E_{s}\right)$ (recall the definition of $\left.E_{s}\right)$. But $K_{s}=\left\langle J_{s}, \hat{X}_{s}\right\rangle$, so $K_{s} \leq N_{G}\left(E_{s}\right)$. As $J_{s} \neq C_{G}\left(E_{s}\right) \cap K_{s} \not K_{s}$ we must have $K_{s} \leq C_{G}\left(E_{s}\right)$ as described.

For the remainder of the proof we assume $q=2$. Recall that $\tilde{A} \not \equiv O^{ \pm}(n, q)^{\prime}$ for $n=8,10$, or 12 . Let $r^{w}=s$, where w is as in (6.3). Choose α_{i} with $J_{\alpha_{i}} \leq C_{\mathrm{A}}\left(\bar{J}_{r}\right)$. Then $J_{\alpha_{1}}^{w} \leq C_{\mathrm{A}}\left(\bar{J}_{s}\right)$. By (6.3) there exists a root $\alpha \in \Sigma$ such that $\bar{J}_{\alpha} \leq C\left(\bar{J}_{r}\right) \cap C\left(\bar{J}_{s}\right) \cap C\left(J_{\alpha_{i}}^{w}\right)$. Suppose, for the moment, that W is not of type F_{4}. Then, by (6.3), we may take $\alpha \sim r$. From the definition of K_{s} one checks that $\bar{J}_{\alpha} \leq C\left(K_{s}\right)$. We claim that $J_{\alpha_{i}}^{w} \leq C\left(K_{s}\right)$. Clearly $K_{s}, J_{\alpha_{i}}^{w} \leq C\left(\bar{J}_{\alpha}\right)$. Also, $J_{s}, J_{\alpha_{i}}^{w} \leq E_{\alpha}=E\left(C\left(\bar{J}_{\alpha}\right)\right)$. This is because E_{α} and E_{r} are conjugate by an element of W (considered as an element of A). If $K_{s} \neq S_{3} \times S_{3}$, then $K_{s} \cong L_{2}(4)$ and we must have $K_{s} \leq E_{\alpha}$ (since $K_{s} \leq N\left(K_{s} \cap E_{\alpha}\right)$ and $K_{s} \cap E_{\alpha} \geq J_{s}$). Suppose $K_{s} \neq E_{\alpha}$. Then $K_{s} \cong S_{3} \times S_{3}$ and $\tilde{E} \cong \tilde{D} \times \tilde{D}$. Because of our standing assumptions on \tilde{A} we see, from the structure of \tilde{E}, that either $\tilde{D} \cong S p(6,2)$ or $K_{s} \leq C_{E}\left(\bar{J}_{\alpha}\right)^{(\infty)}$. As we are assuming $K_{s} \neq E_{\alpha}=C\left(\bar{J}_{\alpha}\right)^{(\infty)}$, we must have $\tilde{D} \cong S p(6,2)$. Since $K_{s} \leq N\left(K_{s} \cap E_{\alpha}\right)$ and $J_{s} \leq K_{s} \cap E_{\alpha}$, we must have $K_{s}=\left(K_{s} \cap E_{\alpha}\right)\langle u\rangle$, where u is an involution satisfying [$\left.u, t\right]=v$ and $\langle v\rangle=V_{s}$. Since $\operatorname{Aut}(S p(6,2))=S p(6,2), v$ interchanges the components of E_{α}. So tu stabilizes each component of E_{α}. In particular, $t u$ stabilizes the intersection of $O_{3}\left(K_{s}\right)$ with each component of E_{α}. But then $v=(t u)^{2}$ centralizes $\mathrm{O}_{3}\left(K_{s}\right)$, a contradiction. So we necessarily have $K_{s} \leq E_{\alpha}$.

Let $L=O^{2^{2}}\left(C_{A}\left(\bar{J}_{\alpha} \bar{J}_{s} \bar{J}_{r}\right)\right.$. Considering $T=C\left(\bar{J}_{\alpha} \bar{J}_{r} L\right)$ as a subgroup of $C\left(\bar{J}_{r}\right)$
we have $O^{2^{\prime}}(T)=\bar{K}_{s}$, where $\bar{K}_{s}=K_{s}$ or $K_{s} \times K_{s}^{x}$, according to whether or not $\bar{J}_{s}=J_{s}$ or $\bar{J}_{s}>J_{s}$. Let $Y=E\left(C_{E_{\alpha}}\left(\bar{J}_{s}\right)\right)$. Then from the structure of $E_{\alpha} \sim E$ we check that

$$
O^{2^{\prime}}\left(C_{\mathrm{E}_{\alpha}}(Y)\right)=O^{2^{\prime}}\left(C_{\mathrm{E}_{\alpha}}\left(\bar{J}_{r} L\right)\right) \cong \bar{K}_{s} .
$$

As $K_{s} \leq O^{2}\left(C_{\mathrm{E}_{\alpha}}\left(\bar{J}_{r} L\right)\right)$ and as $J_{\alpha_{i}}^{w} \leq Y$, we conclude that $J_{\alpha_{i}}^{w} \leq C\left(K_{s}\right)$. Thus, the claim holds.

We show that this also holds if W is of type F_{4}. Consider the possible values of s_{i}^{w}, using the table in (6.3). If $i=2$ or 3 , then $J_{\alpha_{i}}^{w}=J_{\alpha_{i}}$ and $J_{\alpha_{i}} \leq C\left(K_{s}\right)$ (view this in E). Suppose $i=4$. The corresponding value of α is $\alpha=\alpha_{2} \sim r$, and the above arguments apply here. So in all cases we have $J_{\alpha_{i}}^{w} \leq C\left(K_{s}\right)$.

At this stage we have

$$
C_{G}\left(K_{s}\right) \geq\left\langle C_{E}\left(K_{s}\right), J_{\alpha_{i}}^{w}: J_{\alpha_{t}} \leq E\right\rangle=\left\langle C_{E}\left(K_{s}\right), D^{w}\right\rangle=Y_{1}
$$

Since we know the structure of $N\left(K_{s}\right) \cap C\left(\bar{J}_{r}\right)$ we can apply induction and (5.2) to see that $Y_{1}=E_{s}$. It follows that $K_{s} \leq C_{G}\left(E_{s}\right)$, as desired.
(7.7) Assume Hypothesis (7.5).
(i) If \tilde{A} is not an orthogonal group, then for $a_{1}, a_{2} \in A,\left[J_{s}^{a_{1}}, J_{s}^{a_{2}}\right]=1$ if and only if $\left[K_{s}^{a_{1}}, K_{s}^{a_{2}}\right]=1$.
(ii) If \tilde{A} is an orthogonal group, then for a_{1}, a_{2} in $A\left[K_{s}^{a_{1}}, K_{s}^{a_{2}}\right]=1$, provided $\left[\bar{J}_{s}^{a_{1}}, \bar{J}_{s}^{a_{2}}\right]=1$.

Proof. This is clear if $J_{s}=K_{s}$, so suppose $J_{s}<K_{s}$. Also, since $J_{s} \leq K_{s}$ it will be sufficient to assume $\left[\bar{J}_{s}^{a_{1}}, \bar{J}_{s}^{a_{2}}\right]=1$ and to prove $\left[K_{s}^{a_{1}}, K_{s}^{a_{2}}\right]=1$. So set $a=a_{2} a_{1}^{-1} \in A$ and assume $\left[\bar{J}_{s}, \bar{J}_{s}^{a}\right]=1$. Then $\bar{J}_{s}^{a} \leq C\left(\bar{J}_{s}\right)$, so $\bar{J}_{s}^{a} \leq E_{s} \leq C_{G}\left(K_{s}\right)$ by (7.6). So $K_{s} \leq C_{G}\left(\bar{J}_{s}^{a}\right)$. Also, $J_{s} \leq E\left(C_{G}\left(\bar{J}_{s}^{a}\right)\right)$ so as in (7.6) either $K_{s} \leq$ $E\left(C_{G}\left(\bar{J}_{s}^{a}\right)\right) \leq C\left(K_{s}^{a}\right) \quad($ by $\quad(7.6)), \quad$ or $\quad E\left(C_{G}\left(\bar{J}_{s}^{a}\right)\right) \cong \tilde{D} \times \tilde{D} \quad$ and $\quad K_{s}=$ $\left(K_{s} \cap E\left(C\left(\bar{J}_{s}^{a}\right)\right)\right)\langle u\rangle$, where $[u, t]=v \in V_{s}^{\#}$. In the latter case argue as follows. By (7.6), $C\left(K_{s}\right) \cap C\left(\bar{J}_{s}^{a}\right) \geq E_{s} \cap C\left(\bar{J}_{s}^{a}\right)$. But this does not coincide with the structure of $C\left(\bar{J}_{s}^{a}\right) \cap C\left(K_{s}\right)$ obtained from the embedding of K_{s} in $C\left(\bar{J}_{s}^{a}\right)$. Therefore, we must have $\left[K_{s}, K_{s}^{a}\right]=1$, as required.
(7.8) Assume Hypothesis (7.5).
(i) $K_{s} \leq C_{G}\left(E_{s}\right)$.
(ii) If $K_{s}>J_{s}, K_{s} \not \equiv S_{3} \times S_{3}$, and if \tilde{A} is not an orthogonal group, then $K_{s}=E\left(C_{G}\left(E_{s}\right)\right)$.
(iii) If $w \in N$ (regarded as an element of W) and $J_{s}^{w}=J_{s}$, then $K_{s}^{w}=K_{s}$.

Proof. Consider $O^{2^{\prime}}\left(C_{G}\left(E_{s}\right)\right) \geq J_{s^{*}}$. We may assume that $K_{s}>J_{s}$. (i) follows from (7.6). Assume \tilde{A} is not an orthogonal group. We have $K_{s} \leq$ $O^{2^{\prime}}\left(C_{G}\left(E_{s}\right)\right)$. If $J_{s} \neq S_{3}$, then J_{s} is a standard subgroup of $C_{G}\left(E_{s}\right)$. Using the main theorem of [10] and (2.1), we obtain (ii). Suppose $J_{s} \cong S_{3}$ and let $V_{s}<I \in \operatorname{Syl}_{2}\left(K_{s}\right)$. We are assuming that $K_{s} \neq S_{3} \times S_{3}$, so $K_{s} \cong L_{2}(4)$. We claim that $I \in \operatorname{Syl}_{2}\left(E\left(C_{G}\left(E_{s}\right)\right)\right)$. Otherwise, there is an element $x \in E\left(C_{G}\left(E_{s}\right)\right)$ with
$x \notin I, x^{2} \in I$, and x normalizing $I\langle t\rangle$. Since $t \notin C\left(E_{s}\right), t^{x} \notin C\left(E_{s}\right)$ and hence $t^{x} \in t I$. But then $t^{x} \in t^{I}$ and $x \in I\left(C(t) \cap C\left(E_{s}\right)\right)=I J_{s}\langle t\rangle$, a contradiction. From here we obtain $K_{s} O\left(C_{G}\left(E_{s}\right)\right)=L\left(C_{G}\left(E_{s}\right)\right)$, and arguing as in the proof of (5.1) we have the result.

Suppose $w \in N$ and $J_{s}^{w}=J_{s}$. Assume \tilde{A} is not an orthogonal group. We have $w \in J_{s} \times C_{A}\left(J_{s}\right)$. So we may assume $w \in C_{A}\left(J_{s}\right)$, for, otherwise, replace w by $w_{1}=g w$ with $g \in W \cap J_{s}$. Then $C_{\mathrm{A}}\left(J_{s}\right)=E\left(C_{\mathrm{A}}\left(J_{s}\right)\right) \leq E_{s} \leq C\left(K_{s}\right)$ (by (i)). So $K_{s}^{w}=K_{s}$ and (iii) holds. Suppose that \tilde{A} is an orthogonal group.

Write $s=r^{w_{1}}$ where $w_{1}=s_{2} s_{3} s_{1} s_{2}$. Then

$$
w \in\left(\bar{J}_{r} \times D\right)^{w_{1}}=J_{s} \times J_{\alpha_{3}} \times D^{w_{1}}
$$

Now $J_{\alpha_{3}} \leq C\left(K_{s}\right)$, so we may assume $w \in D^{w_{1}} \leq E_{r}^{w_{1}}=E_{s}$ and again the result follows from (i).

At this point we know that, given Hypothesis (7.5), we can define a subgroup K_{α} for each $\alpha \in \Sigma$ with $\alpha \sim r$. Namely for such a root α choose $w \in W$ with $s^{w}=\alpha$. Then regard w as an element of A and set $K_{\alpha}=K_{s}^{w}$. By (7.8)(iii) this is well defined. Also, $K_{\alpha}^{t}=K_{\alpha}$. Moreover, (7.7) gives certain commutator relations among the $K_{\alpha^{t}}$ For example, we have:
(7.9) Assume Hypothesis (7.5) and that \tilde{A} is not an orthogonal group. Let $\alpha, \beta \in \Sigma$ and $\alpha \sim \beta \sim r \sim s$. Then $\left[K_{\alpha}, K_{\beta}\right]=1$ if and only if $\left[J_{\alpha}, J_{\beta}\right]=1$.
(7.10) Assume that Hypothesis (7.5) holds. Let $\tilde{A} \cong P S p(n, q)$ with $n \geq 8$, $\operatorname{PSU}(n, q)$ with $n \geq 6$, or $\operatorname{PSp}(6, q)$ with $\tilde{E} \cong \operatorname{PSp}\left(4, q^{2}\right), \quad \operatorname{PSU}(5, q)$, or $\operatorname{PSp}(4, q) \times \operatorname{PSp}(4, q)$. Then the following hold:
(i) There exists $g \in E$ with $t \neq t^{8} \in C(Z)$ (notation as in (6.5) and (6.6)).
(ii) $C_{G}(Z)$ contains $P=\left\langle\hat{J}_{\alpha_{l}}, J_{\alpha_{l-1}}, \ldots, J_{\alpha_{3}}\right\rangle$ as a standard subgroup,

$$
P O\left(C_{G}(Z)\right) \neq C_{G}(Z),
$$

and $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{G}(Z) \cap C_{G}(P)\right)$.
(iii) $\left\langle J_{\alpha_{1}}^{C(Z)}\right\rangle \leq E$, and $\left\langle J_{\alpha_{1}}^{C(Z)}\right\rangle=E\left(C_{G}(Z)\right)$ unless $\tilde{A} \cong P S p(8,2)$.

Proof. To get (i) we consider the action of t on E and use the results of $\S 19$ of [1]. In most cases it follows that if $v \in D$ is a transvection, then $t \sim t v$ by an element of E. Otherwise $t \sim t v$ for v a product of two commuting transvections. Since

$$
C_{\mathrm{A}}(Z) \geq\left\langle\hat{J}_{\alpha_{1}}, \ldots, J_{\alpha_{3}}\right\rangle
$$

we may choose v so that $t^{8}=t v$ satisfies (i). Also, it is easy to check that $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{G}(Z) \cap C_{G}(P)\right)$.

Suppose that $\tilde{A} \cong P S p(n, q)$ or $\operatorname{PSU}(n, q)$, with $n \geq 8$. Notice that if $\tilde{A} \cong P S p(8, q)$, then (7.5)(iii) shows that $\tilde{E} \not \equiv L_{6}(q)$ or $U_{6}(q)$. Let $r \sim \eta \in \Sigma$ and choose η such that $\left[J_{\eta}, Z\right]=1$. Let $L=O^{2^{\prime}}\left(C_{A}\left(J_{\eta} Z\right)\right.$. Then $\tilde{L} \cong$ $\operatorname{PSp}(n-6, q)$ or $\operatorname{PSU}(n-6, q)$. Then $L \times Z \leq E_{\eta}$ and we check that $t \notin Z^{*}\left(C_{E_{n}}(Z)\langle t\rangle\right)$. Consequently, $t \notin Z^{*}\left(C_{G}(Z)\right)$. This proves (ii). As $J_{\alpha_{1}} \leq E$
and $C(Z) \leq C\left(J_{r}\right) \leq N(E)$, certainly $\left\langle J_{\alpha_{l}}^{C(Z)}\right\rangle \leq E$. If $\tilde{A} \not \equiv P S p(8,2)$, then $J_{\alpha_{l}} \leq$ $C_{\mathrm{A}}(Z)^{(\infty)}$ and an easy argument gives the rest of (iii).
In the remaining cases let V be the usual module for $\operatorname{Sp}(6, q), S U(6, q)$, or $S U(7, q)$ and consider A^{g} acting, projectively, on V as $\left(A^{g}\right)^{\sim}$. Since $g \in C\left(J_{r}\right), J_{r} \leq A^{g}$. As $Z<N\left(A^{g}\right)$ and $Z=\left\langle J_{r}^{Z}\right\rangle$, we must have $Z \leq A^{g}$. Also, $g \in C\left(J_{r}\right)$ implies that V_{r} is a root subgroup of A^{8} for a long root. So the elements of $V_{r}^{\#}$ are transvections in their action on $V . C_{Z}\left(V_{r}\right)=Q\left(J_{s} \times H_{0}\right)$, where $Q=O_{2}\left(C_{Z}\left(V_{r}\right)\right), C_{Z}\left(V_{r}\right)$ acts irreducibly on the elementary group Q / V_{r}, and $H_{0} \cong 1$ or Z_{q+1}, depending on whether $Z \cong S p(4, q)$ or $\operatorname{SU}(4, q)$. Consider $C_{A^{8}}\left(V_{r}\right)$. This group has as normal subgroup $O_{2}\left(C_{X}\left(V_{r}\right)\right) I$, where $I \cong S p(4, q), S U(4, q)$, or $S U(5, q)$. Moreover, we may assume $J_{s} \leq I$. From the structure of the parabolic subgroups of X (see $\S 3$ of [5]) we conclude that $Q \leq O_{2}\left(C_{X}\left(V_{r}\right)\right)$.

Now we claim that Z stabilizes a non-degenerate 4 -space of V_{1}. From the embedding of $J_{r} \leq A^{g}$ we see that $J_{r} \times J_{s}$ must stabilize a non-degenerate 4-space, V_{2}, of V. Moreover $V_{2}=V_{3} \perp V_{4}$ where V_{3} and V_{4} are nondegenerate 2 -spaces, J_{r} trivial on V_{4}, and J_{s} trivial on V_{3}. Let $\left\{v_{31}, v_{32}\right\}$ be a hyperbolic pair for V_{3} chosen so that $\left[V_{r}, V_{3}\right]=\left\langle v_{31}\right\rangle$. Then $O_{2}\left(C_{X}\left(V_{r}\right)\right)$ is trivial on $\left\langle v_{31}\right\rangle^{\perp} /\left\langle v_{31}\right\rangle$. Apply the 3-subgroup theorem to J_{s}, Q, and $\left\langle v_{32}\right\rangle$. We have

$$
\left[J_{s},\left\langle v_{32}\right\rangle, Q\right]=1 \quad \text { and } \quad\left[J_{s}, Q,\left\langle v_{32}\right\rangle\right]=\left[Q,\left\langle v_{32}\right\rangle\right] .
$$

Since $Q J_{s}$ normalizes $\left[Q,\left\langle v_{32}\right\rangle, J_{s}\right]\left\langle v_{31}\right\rangle$, we conclude that

$$
\left[Q,\left\langle v_{32}\right\rangle\right] \leq\left[Q,\left\langle v_{32}\right\rangle, J_{s}\right]\left\langle v_{31}\right\rangle \leq V_{2}
$$

So Q stabilizes V_{2} and hence $Z=\left\langle J_{r}, J_{s}, Q\right\rangle$ stabilizes V_{2}, proving the claim. From here we see that $C_{A^{8}}(Z)$ contains $D \cong S p(2, q), S U(2, q)$, or $S U(3, q)$ as a normal subgroup. In the first two cases $q>2$, and so $[D, t]=D$. As $D \leq C(Z)$, we see that $t \notin Z^{*}\left(C_{G}(Z)\langle t\rangle\right)$. This also holds for $\tilde{A} \cong U_{7}(q)$, if $q>2$. If $\tilde{A} \cong U_{7}(2)$ and $t \in Z^{*}\left(C_{G}(Z)\langle t\rangle\right)$, then

$$
D \cong S U(3,2) \quad \text { and } \quad[D, t]=O_{3}(D) \leq O\left(C_{G}(Z)\right)
$$

Viewing $C_{G}(Z) \leq C_{G}\left(J_{r}\right) \cap C_{G}\left(J_{s}\right)$, we see that this is impossible. This proves (ii), and (iii) follows.
(7.11) Assume that the hypothesis of (7.10) hold and choose notation as in (6.5) and (6.6). Then

$$
O^{2}\left(E_{r} \cap E_{s}\right)=C_{G}(Y)_{A}=C_{G}\left(J_{r} \times J_{s}\right)_{A}=C_{G}(Z)_{A}
$$

Proof. We have $Y \leq Z$ and $J_{r} \times J_{s} \leq Z$. So

$$
C_{G}(Z)_{A} \leq C_{G}\left(J_{r} \times J_{s}\right)_{A} \quad \text { and } \quad C_{G}(Z)_{A} \leq C_{G}(Y)_{A} .
$$

By (7.10)(ii), P is a standard subgroup of $C_{G}(Z)$ and $P O\left(C_{G}(Z)\right) \not C_{G}(Z)$. From (6.5) and (6.6), P is standard in $C_{G}(Y)$, and by direct check we have P
standard in $C_{G}\left(J_{r} \times J_{s}\right)$. By (5.2) we conclude that

$$
C_{G}(Z)_{A}=C_{G}\left(J_{r} \times J_{s}\right)_{A}=C_{G}(Y)_{A}
$$

unless, possibly, $E\left(C_{A}(Z)\right)^{\sim} \cong P S p(n, q), E\left(C_{G}(Z)\right)^{\sim} \cong P S U(n, q)$ (respectively $\operatorname{PSL}(n, q)$), and one of $E\left(C_{G}(Y)\right)$ or $E\left(C_{G}\left(J_{r} \times J_{s}\right)\right)^{\sim}$ is isomorphic to $\operatorname{PSU}(n+1, q)$ (respectively $\operatorname{PSL}(n+1, q)$). Suppose that this exceptional case occurs. Let $I=Y$ or $J_{r} \times J_{s}$, so that $E\left(C_{G}(I)\right)^{\sim} \cong P S U(n+1, q)$ (or $\operatorname{PSL}(n+1, q))$.

Let $\delta_{1}=r^{s_{1} s_{2}}$. Then considering $C\left(J_{\delta_{1}}\right) \geq Z$ we see that

$$
\left(C\left(J_{\delta_{1}}\right) \cap C(Z)\right)_{\mathrm{A}}=\left(C\left(J_{\delta_{1}}\right) \cap C(Y)\right)_{\mathrm{A}}=\left(C\left(J_{\delta_{1}}\right) \cap C\left(J_{r} J_{s}\right)\right)_{\mathrm{A}}
$$

Reading this in the groups $C(Z)_{A}, C(Y)_{A}$, and $C\left(J_{r} J_{s}\right)_{A}$ we see that $n=2$. But then $P O\left(C_{G}(Z)\right)=J_{\alpha_{3}} O\left(C_{G}(Z)\right) \leq C_{G}(Z)$, a contradiction.

Finally, $E_{r}=C_{G}\left(J_{r}\right)_{A}$ and $E_{s}=C_{G}\left(J_{s}\right)_{A}$, so $E_{r} \cap E_{s} \geq C_{G}\left(J_{r} \times J_{s}\right)_{A}$. Checking the embedding of J_{s} in E_{r} we get the equality, completing the proof of (7.11).
(7.12) Assume that $\tilde{A} \cong F_{4}(q)$. Let Y, Z be as in (6.4). Choose X_{1} a $(q+1)$-Hall subgroup of J_{s} and $Y_{1} a(q+1)$-Hall subgroup of J_{η}, where $\eta=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then:
(i) $X \times X_{1}$ and $Y \times Y_{1}$ are $(q+1)$-Hall subgroups of Z.
(ii) $Q=\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle$ is a standard subgroup of $C_{G}(Z)$ with

$$
\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{G}(Z) \cap C_{G}(Q)\right)
$$

(iii) $\quad\left(C_{G}\left(X \times X_{1}\right)\right)_{A}$ is Z-conjugate to $\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}$.

$$
\begin{align*}
\left(C_{G}(Z)\right)_{A}=\left(C_{G}\left(X \times X_{1}\right)\right)_{A} & =\left(C_{G}\left(Y \times Y_{1}\right)\right)_{\mathrm{A}}=\left(C_{G}\left(J_{r} \times J_{s}\right)\right)_{\mathrm{A}} \tag{iv}\\
& =\left(C_{G}\left(J_{\gamma} \times J_{\eta}\right)\right)_{\mathrm{A}},
\end{align*}
$$

provided $t \notin Z^{*}\left(C_{E}(Q)\right)$ or $t \notin Z^{*}\left(C_{E^{0}}(Q)\right)$, where $E^{0}=E\left(C_{G}(Y)\right)$.
Proof. By order considerations (i) holds. So by Wielandt [18], $X \times X_{1}$ and $Y \times Y_{1}$ are conjugate. This proves (i) and (iii). We have (ii) by inspection. We have Z containing each of the groups $X \times X_{1}, Y \times Y_{1}, J_{r} \times J_{s}$ and $J_{\gamma} \times J_{\eta}$. Therefore (iv) will follow as in the proof of (7.11), once we show that $t \notin Z^{*}\left(C_{G}(Z)\right)$.

Now $Q^{g}=Z$ for $g=s_{1} s_{4} s_{2} s_{3} s_{2} s_{1} s_{3} s_{4} \in A$. So it suffices to show that $t \notin Z^{*}\left(C_{G}(Q)\right)$, and each of the conditions in (iv) immediately implies that this is the case. This completes the proof of (7.12).

$$
\text { 8. } \tilde{A} \cong E_{n}(q), D_{n}(q), \text { and }{ }^{2} D_{n}(q)
$$

We are now in a position to construct the subgroup G_{0}. The method for all the groups is essentially the same, although there are certain differences. The hardest cases are when the Dynkin diagram of A has a double bond.
(8.1) Suppose that $\tilde{A} \cong E_{n}(q), n=6,7$, or 8 . Let $w_{1} \in W$ be the element $s_{2} s_{4} s_{3}, s_{1} s_{3} s_{4}, s_{8} s_{7} s_{6}$, respectively. Let $G_{0}=\left\langle E, E^{w_{1}}\right\rangle$. Then G_{0} is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong E_{n}\left(q^{2}\right)$ or $E_{n}(q) \times E_{n}(q)$.

Proof. We give the proof for $n=8$, the other cases being similar. $\tilde{E} \cong E_{7}\left(q^{2}\right)$ or $E_{7}(q) \times E_{7}(q)$ and $E=\left\langle K_{\alpha_{1}}, \ldots, K_{\alpha_{7}}\right\rangle$ (see Table 2). Then

$$
E^{w_{1}}=\left\langle K_{\alpha_{1}}^{w_{1}}, \ldots, K_{\alpha_{7}}^{w_{1}}\right\rangle=\left\langle K_{\alpha_{1}}, \ldots, K_{\alpha_{4}}, K_{\alpha_{5}}^{s_{6}}, K_{7}, K_{8}\right\rangle
$$

by (7.8). So $G_{0}=\left\langle K_{\alpha_{\alpha}}, \ldots, K_{\alpha_{8}}\right\rangle$.
First assume that $E \cong E_{7}\left(q^{2}\right)$. Here we claim that $\tilde{G}_{0} \cong E_{8}\left(q^{2}\right)$. To do this we must first know the commutator relations existing between $K_{\alpha_{8}}$ and the groups $K_{\alpha_{1}}, \ldots, K_{\alpha_{7}}$. By (7.9), $\left[K_{\alpha_{8}}, K \alpha_{1}\right]=1$ for $i=1, \ldots, 6$. Also

$$
\left\langle K_{\alpha_{6}}, K_{\alpha_{\gamma}}\right\rangle^{\omega_{1}}=\left\langle K_{\alpha}, K_{\alpha_{8}}\right\rangle \cong S L\left(3, q^{2}\right)
$$

So we can label the elements of $\left\langle K_{\alpha_{7}}, K_{\alpha_{8}}\right\rangle$ by elements of $\mathbf{F}_{q^{2}}$. However this must be done in such a way that the elements of K_{α} have the same labeling in E as in $\left\langle K_{\alpha_{7}}, K_{\alpha_{8}}\right\rangle$. This can be done by relabeling $\left\langle K_{\alpha_{7}}, K_{\alpha_{8}}\right\rangle$ using a field automorphism (see $\S 11$ of [7]). Once this has been done Theorem 1.4 of Curtis [4] shows that G_{0} is a homomorphic image of a certain group G^{*}, where $\tilde{G}^{*} \cong E_{8}\left(q^{2}\right)$ and G^{*} is generated by groups isomorphic to $K_{\alpha_{1}}, \ldots, K_{\alpha_{8}}$, subject to certain relations determined by the groups $\left\langle K_{\alpha_{i}}, K_{\alpha_{i}}\right\rangle, 1 \leq i, j \leq 8$. This proves the claim. Also, note that $\left|Z\left(G_{0}\right)\right|$ is odd, because otherwise $C(A)$ would contain a klein subgroup.

Next, suppose $\tilde{E} \cong E_{7}(q) \times E_{7}(q)$ and write $E=E_{1} E_{2}$ with $E_{2}=E_{1}^{t}, E_{1}$ a perfect central extension of $E_{7}(q)$, and $\left[E_{1}, E_{2}\right]=1$. For $i=1, \ldots, 7$, write $K_{\alpha_{i}}^{1}=K_{\alpha_{i}} \cap E_{1}$ and $K_{\alpha_{i}}^{2}=K_{\alpha_{i}} \cap E_{2}$. Then $K_{\alpha_{i}}=K_{\alpha_{i}}^{1} \times K_{\alpha_{i}}^{2}$ and $K_{\alpha_{i}}^{2}=\left(K_{\alpha_{i}}^{1}\right)^{t}$ for $i=1, \ldots, 7$. Also for $i=1,2$ we have $E_{i}=\left\langle K_{\alpha_{1}}^{i}, \ldots, K_{\alpha_{7}}^{i}\right\rangle$.

Now $\left\langle K_{\alpha_{6}}, K_{\alpha_{7}}\right\rangle=\left\langle K_{\alpha_{6}}^{1}, K_{\alpha_{7}}^{1}\right\rangle \times\left\langle K_{\alpha_{6}}^{2}, K_{\alpha_{7}}^{2}\right\rangle \cong S L(3, q) \times S L(3, q)$. Conjugating this by w_{1} we get a similar decomposition for $\left\langle K_{\alpha_{7}}, K_{\alpha_{8}}\right\rangle=\left\langle K_{\alpha_{6}}, K_{\alpha_{7}}\right\rangle^{w_{1}}=$ Y. Write $Y=Y_{1} \times Y_{2}$ where $K_{\alpha_{7}}^{1} \leq Y_{1}$ and $K_{\alpha_{7}}^{2} \leq Y_{2}$. Then set $K_{\alpha_{8}}^{i}=K_{\alpha_{8}} \cap Y_{i}$ for $i=1$, 2. Finally for $i=1,2$ write $G_{i}=\left\langle K_{\alpha_{1}}^{i}, \ldots, K_{\alpha_{8}}^{i}\right\rangle$. We have $G_{1}^{t}=G_{2}$ and arguing as before we have $\left[G_{1}, G_{2}\right]=1, G_{0}=G_{1} G_{2}, \tilde{G}_{1} \cong \tilde{G}_{2} \cong E_{8}(q)$, and $\left|Z\left(G_{0}\right)\right|$ odd. This completes the proof of (8.1).
(8.2) Let $\tilde{A} \cong O^{ \pm}(n, q)^{\prime}$ with $n \geq 14$ and n even. Let

$$
w_{1}=s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} .
$$

Then $G_{0}=\left\langle E, E^{w_{1}}\right\rangle$ is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong O^{+}\left(n, q^{2}\right)^{\prime}$ or $\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}$.

Proof. The argument is similar to that of (8.1). Write

$$
A=\left\langle J_{\alpha_{i}}, \ldots, J_{\alpha_{1}}\right\rangle
$$

so $A \cap E=\left\langle J_{\alpha_{1}}, \ldots, J_{\alpha_{3}}\right\rangle$. Now

$$
\tilde{E} \cong O^{+}\left(n-4, q^{2}\right)^{\prime} \quad \text { or } \quad \tilde{E} \cong \tilde{D} \times \tilde{D}
$$

In the wreathed case we write $E=\left\langle K_{\alpha_{i}}, \ldots, K_{\alpha_{3}}\right\rangle$, where $J_{\alpha_{i}}=C_{K_{\alpha_{1}}}(t)$ and $K_{\alpha_{i}} \cong J_{\alpha_{i}} \times J_{\alpha_{i}}$ For $\tilde{A} \cong O^{+}(n, q)^{\prime}$ or $O^{-}(n, q)^{\prime}$, label the Dynkin diagram of E

respectively. Then write

$$
E=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{l-2}}, \ldots, K_{\alpha_{3}}\right\rangle \quad \text { or }\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{l-1}}, \ldots, K_{\alpha_{3}}\right\rangle,
$$

respectively. Here,

$$
K_{\alpha}=K_{\alpha_{l-1}} \quad \text { and } \quad K_{\beta}=K_{\alpha_{l}} \quad \text { if } \quad \hat{A} \cong O^{+}(n, q)^{\prime}
$$

and

$$
J_{\alpha_{1}}=C(t) \cap K_{\alpha} K_{\beta} \quad \text { if } \quad \tilde{A} \cong O^{-}(n, q)^{\prime}
$$

We then have $E^{w_{1}}=\left\langle\ldots, K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$ and

$$
G_{0}=\left\langle K_{\alpha}, K_{\beta}, \ldots, K_{\alpha_{3}}, K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle \quad \text { or }\left\langle K_{\alpha_{1}}, \ldots, K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle,
$$

depending on whether $\tilde{E} \cong O^{+}\left(n-4, q^{2}\right)^{\prime}$ or $\tilde{D} \times \tilde{D}$.
From (7.8)(ii) we have

$$
K_{\alpha_{4}}^{s_{2} s_{3} s_{4}}=K_{\alpha_{3}}, . K_{\alpha_{3}}^{s_{3} s_{3} s_{4}}=K_{\alpha_{2}}, \quad K_{\alpha_{3}}^{s_{1} s_{2} s_{3}}=K_{\alpha_{2}}, \quad \text { and } \quad K_{\alpha_{2}}^{s_{1} s_{2} s_{3}}=K_{\alpha_{1}} .
$$

Therefore, $\left\langle K_{\alpha_{4}}, K_{\alpha_{3}}\right\rangle^{s_{2} s_{3} s_{4}}=\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$ and $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle^{s_{1} s_{2} s_{3}}=\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$. First, relabel elements in $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$ so that elements of $K_{\alpha_{3}}$ are labeled the same in E and in $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$. Once this has been done relabel the elements of $\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$ so that the labeling of $K_{\alpha_{2}}$ agrees with that in $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$.

We can complete the proof as in (8.1) once we check that certain commutator relations hold. Suppose first that $\tilde{A} \cong O^{+}(n, q)^{\prime}$. Then the necessary relations follow from (7.7)(ii) (such as $\left[K_{\alpha_{i}}, K_{\alpha_{1}}\right]=1$). Suppose that $\tilde{A} \cong O^{-}(n, q)^{\prime}$.

First assume that $\tilde{E} \cong O^{+}\left(n-4, q^{2}\right)^{\prime}$. Then the relations not obtainable from (7.7)(ii) directly are

$$
\left[K_{\alpha}, K_{\alpha_{1}}\right]=\left[K_{\alpha}, K_{\alpha_{2}}\right]=\left[K_{\beta}, K_{\alpha_{1}}\right]=\left[K_{\beta}, K_{\alpha_{2}}\right]=1 .
$$

Consider the group $Y=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{l-1}}\right\rangle$. Then $\tilde{Y} \cong L_{4}\left(q^{2}\right)$ and t induces a graph-field automorphism on Y, with $C_{Y}(t)=\left\langle J_{\alpha_{l}}, J_{\alpha_{l-1}}\right\rangle$. It follows that $\left\langle J_{\alpha_{l}}, K_{\alpha_{l-1}}\right\rangle=Y$. So we need only show that

$$
\left\langle J_{\alpha_{l}}, K_{\alpha_{l-1}}\right\rangle \leq C\left(K_{\alpha_{1}}\right) \cap C\left(K_{\alpha_{2}}\right)
$$

However,

$$
J_{\alpha_{l}} \leq C\left(K_{\alpha_{1}}\right) \cap C\left(K_{\alpha_{2}}\right)
$$

as $J_{\alpha_{1}} \leq E_{\alpha_{1}} \cap E_{\alpha_{2}}$, and

$$
K_{\alpha_{l-1}} \leq C\left(K_{\alpha_{1}}\right) \cap C\left(K_{\alpha_{2}}\right)
$$

by (7.7)(ii).
If $\tilde{E} \cong \tilde{D} \times \tilde{D}$ the same arguments apply. Here use the facts that $\left\langle K_{\alpha_{i}}, K_{\alpha_{l-1}}\right\rangle=\left\langle J_{\alpha_{i}}, K_{\alpha_{l-1}}\right\rangle \leq C\left(K_{\alpha_{1}}\right) \cap C\left(K_{\alpha_{2}}\right)$. This shows that $\left[K_{\alpha_{i}}, K_{\alpha_{1}}\right]=$ $\left[K_{\alpha_{1}}, K_{\alpha_{2}}\right]=1$, the desired relations. The proof of (8.2) is then complete.

To handle the orthogonal groups of lower dimensions we must work a bit harder.
(8.3) Let $\tilde{A} \cong O^{ \pm}(10, q)^{\prime}$ or $O^{ \pm}(12, q)^{\prime}$ and set

$$
w_{1}=s_{2} s_{3} s_{4} s_{1} s_{2} s_{3} .
$$

Then $G_{0}=\left\langle E, E^{w_{1}}\right\rangle$ is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}$, $O^{+}\left(10, q^{2}\right)^{\prime}$, or $O^{+}\left(12, q^{2}\right)^{\prime}$.

Proof. Choose notation for E as in (8.2). The difficulty here is that (ii) of Hypothesis (7.5) does not hold. Consequently, we cannot apply (7.7). Let $K_{\alpha_{2}}=K_{\alpha_{3}}^{s_{3} s_{3}}$ and $K_{\alpha_{1}}=K_{\alpha_{2}}^{s_{1} s_{2}}$.

Let $I \leq \bar{J}_{r}=J_{\alpha_{1}} \times J_{r}$ be cyclic of order $q+1$ and such that I corresponds to the centralizer of a non-degenerate ($n-2$)-subspace of the usual module for $O^{ \pm}(n, q) \quad(n=10$ or 12$)$. We may choose $I \leq X$. Then $E\left(C_{A}(I)\right) \cong$ $O^{\mp}(n-2, q)^{\prime}$. Let $P=E\left(C_{A}(I)\right)$. It is easy to check that P is a standard subgroup of $C_{G}(I)$ and

$$
\langle t\rangle \in S y l_{2}\left(C_{G}(I) \cap C_{G}(P)\right) .
$$

Also $E \leq C_{G}(I)$, so $t \notin Z^{*}\left(C_{G}(I)\right)$. As $I \leq X,\left(C_{G}(I) \cap C_{G}(X)\right)_{A}=E$ so by induction and $(5.5), E\left(C_{G}(I)\right) \cong O^{+}\left(n-2, q^{2}\right)^{\prime}$ or $\tilde{P} \times \tilde{P}$. Except for the case $E\left(C_{G}(I)\right) \cong \tilde{P} \times \tilde{P} \cong O^{-}(n-2, q)^{\prime} \times O^{-}(n-2, q)^{\prime}$ the Dynkin diagram of $E\left(C_{G}(I)\right)$ is of type D_{k} for $k=\frac{1}{2}(n-2)$ (or the union of two such diagrams).

Let $\delta_{1}=r^{s_{2} s_{1} s_{3} s_{2}}$ and note that $\bar{J}_{r} \sim{ }_{A} \bar{J}_{\delta_{1}}=J_{\alpha_{3}} \times J_{\delta_{1}}$. Also

$$
t \notin Z^{*}\left(C\left(\bar{J}_{\delta_{1}}\right) \cap E\left(C_{G}(I)\right)\langle t\rangle\right)
$$

Consequently $t \notin Z^{*}\left(C_{G}\left(\bar{J}_{r}\right)\right)$. It follows from (5.2) that $E=E\left(C_{G}(X)\right)=$ $E\left(C_{G}\left(\bar{J}_{r}\right)\right)$, so $\bar{J}_{r} \leq C_{G}(E)$. Define a subgroup, $L \leq E$, as follows. If $\tilde{A} \cong$ $O^{+}(n, q)^{\prime}$, set $L=K_{\alpha_{4}} \times K_{\alpha_{5}}$ or $K_{\alpha_{5}} \times K_{\alpha_{6}}$, depending on whether $n=10$ or 12. If $\tilde{A} \cong O^{-}(n, q)^{\prime}$, set $L=K_{\alpha_{3}} \times K_{\alpha_{3}}^{s_{4}}$ or $K_{\alpha_{4}} \times K_{\alpha_{4}}^{s_{5}}$, depending on whether $n=10$ or 12 .

From the embedding of $L \leq E \leq E\left(C_{G}(I)\right)$ we have the structure of

$$
Z=\left(E\left(C_{G}(I)\right) \cap C_{G}(L)\right)_{A} .
$$

If $E\left(C_{G}(I)\right) \cong O^{+}\left(n-2, q^{2}\right)^{\prime}$, then $\tilde{Z} \cong O^{+}\left(4, q^{2}\right)^{\prime}$ or $O^{+}\left(6, q^{2}\right)^{\prime}$, depending on whether $n=10$ or 12 . Then $C_{Z}(t) \cong O^{\mp}(4, q)^{\prime}$ or $O^{\mp}(6, q)^{\prime}$, according to $\tilde{A} \cong O^{ \pm}(n, q)^{\prime}$, and depending on whether $n=10$ or 12 . Similarly, we have
the structure of Z and $C_{Z}(t)$ if $E\left(C_{G}(I)\right)$ is wreathed. Now, $C_{G}(L) \geq$ $\left\langle\bar{J}_{r}, C_{Z}(t)\right\rangle$. Also, $\left\langle\bar{J}_{r}, C_{Z}(t)\right\rangle=C_{A}(L \cap A)$ (use the Lie structure or argue as in the proof of (2A) in Wong [19]). There exists $a \in A$ such that $L^{a} \cap A=\bar{J}_{s}$ and $L^{a} \geq K_{s}$. Then

$$
C_{G}\left(K_{s}\right) \geq C_{G}\left(L^{a}\right) \geq\left\langle C_{A}\left(L^{a} \cap A\right), Z^{a}\right\rangle=\left\langle C_{A}\left(\bar{J}_{s}\right), Z^{a}\right\rangle
$$

So $E\left(C_{A}\left(\bar{J}_{s}\right)\right)$ is standard in $C_{G}\left(L^{a}\right)$ and $t \notin Z^{*}\left(C_{G}\left(L^{a}\right)\right)$. From (5.2) and the fact that $C_{G}\left(L^{a}\right) \leq C_{G}\left(\bar{J}_{s}\right)$ we conclude that $K_{s} \leq L^{a} \leq C\left(E_{s}\right)$. Once we have this, we can prove (7.7)(ii) and complete the proof as in (8.2).

In dealing with the orthogonal groups $O^{ \pm}(8, q)^{\prime}, q \geq 4$, we must introduce a certain subgroup as follows. Let I be a $(q-1)$-Hall subgroup of $\bar{J}_{r}=$ $J_{\alpha_{1}} \times J_{r}$, normalized by s_{1}, and $I \leq H$. Let $I_{1}<I$ be such that

$$
\left|I: I_{1}\right|=q-1 \quad \text { and } \quad C_{\mathrm{A}}\left(I_{1}\right) \geq\left\langle J_{\alpha_{1}}, \ldots, J_{\alpha_{2}}\right\rangle
$$

If $\tilde{A} \cong O^{+}(8, q)^{\prime}$ we may take $I_{1}=X$, where X is as in (4.1) of [13].
(8.4) Let $\tilde{A} \cong O^{+}(8, q)^{\prime}$ with $q \geq 4$; set $F=E\left(C_{G}\left(I_{1}\right)\right)$ and $F^{s}=F^{s_{1} s_{2}}$. Then $G_{0}=\left\langle F, F^{s}\right\rangle$ is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and

$$
\tilde{G}_{0} \cong O^{+}\left(8, q^{2}\right)^{\prime} \quad \text { or } \quad O^{+}(8, q)^{\prime} \times O^{+}(8, q)^{\prime}
$$

Proof. We have $O^{2}\left(C_{A}\left(I_{1}\right)\right)=\left\langle J_{\alpha_{4}}, J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$ and $t \notin Z^{*}\left(C_{G}(I)\right)$ by (4.7) of [13]. So

$$
\tilde{F} \cong O^{+}\left(6, q^{2}\right)^{\prime} \quad \text { or } \quad O^{+}(6, q)^{\prime} \times O^{+}(6, q)^{\prime}
$$

We label $F=\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle$, as usual. So, $J_{\alpha_{1}} \leq K_{\alpha_{1}}$ for $i=2,3,4$.
Now $C(I) \cap\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle=J_{\alpha_{3}} \times J_{\alpha_{4}}$. It follows that

$$
O^{2^{\prime}}\left(C_{F}(I)\right)=K_{\alpha_{3}} \times K_{\alpha_{4}} .
$$

As $C_{G}(I) \leq C_{G}\left(I_{1}\right)$ we have $K_{\alpha_{3}} \times K_{\alpha_{4}}=E\left(C_{G}(I)\right)$. In particular, s_{1} normalizes $K_{\alpha_{3}} \times K_{\alpha_{4}}$, and since s_{1} centralizes $J_{\alpha_{3}}$ and $J_{\alpha_{4}}$ we have $K_{\alpha_{3}}^{s_{1}}=K_{\alpha_{3}}$ and $K_{\alpha_{4}}^{s_{1}}=K_{\alpha_{4}}$. Let $K_{\alpha_{1}}=K_{\alpha_{2}}^{s_{1} s_{2}}$.

Next, we note that there is a subgroup $Z \leq A$ such that $Z(A) Z \mid Z(A)$ is cyclic of order $q-1, E\left(C_{A}(Z)\right)=\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle$, and Z centralizes I_{1}. To see this, just choose $Z=C_{H}\left(\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle\right)$. Then $C_{F}(Z) \geq\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle$, so $t \notin Z^{*}\left(C_{G}(Z)\right)$ and

$$
E\left(C_{G}(Z)\right)^{\sim} \cong L_{4}\left(q^{2}\right) \quad \text { or } \quad L_{4}(q) \times L_{4}(q)
$$

depending on whether $\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle^{\sim} \cong L_{3}\left(q^{2}\right)$ or $L_{3}(q) \times L_{3}(q)$. In any case we write

$$
E\left(C_{G}(Z)\right)=\left\langle\hat{K}_{\alpha_{1}}, K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle
$$

where $\hat{K}_{\alpha_{1}} \geq J_{\alpha_{1}},\left[\hat{K}_{\alpha_{1}}, K_{\alpha_{3}}\right]=1$, and $\left\langle\hat{K}_{\alpha_{1}}, K_{\alpha_{2}}\right\rangle \cong\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle$. But then $\hat{K}_{\alpha_{1}}=$ $K_{\alpha_{2}}^{s_{s} s_{2}}=K_{\alpha_{1}}$ and $\left[K_{\alpha_{1}}, K_{\alpha_{3}}\right]=1$. Similarly, $\left[K_{\alpha_{1}}, K_{\alpha_{4}}\right]=1$. We now have all necessary commutator relations to determine the structure of
$\left\langle K_{\alpha_{1}}, K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle=G_{00}$. We conclude that $G_{00}=G_{0}$ and (8.4) follows.
(8.5) Let $\tilde{A} \cong O^{-}(8, q)^{\prime}$, with $q \geq 4$. Choose I and I_{1} as in the remarks preceding (8.4), and set $F=E\left(C_{G}\left(I_{1}\right)\right)$. Then $G_{0}=\left\langle F, F^{s_{1} s_{2}}\right\rangle$ is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and

$$
\tilde{G}_{0} \cong O^{+}\left(8, q^{2}\right)^{\prime} \quad \text { or } \quad O^{-}(8, q)^{\prime} \times O^{-}(8, q)^{\prime}
$$

Proof. $F=\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$. As in (4.5) of [13] we argue that $t \notin Z^{*}\left(C_{G}(I)\right.$) (use the fact that $t^{8} \in t V_{\alpha_{3}}^{\#}$ for some $\left.g \in E\right)$. So

$$
\tilde{F} \cong O^{+}\left(6, q^{2}\right)^{\prime} \quad \text { or } \quad O^{-}(6, q)^{\prime} \times O^{-}(6, q)^{\prime}
$$

We write $F=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{2}}\right\rangle$ or $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$, respectively. Here, labeling corresponds to the Dynkin diagram

respectively, and in the wreathed case we really mean a union of two diagrams.

It follows from the above that $E\left(C_{G}(I)\right)=K_{\alpha} \times K_{\beta}$ or $K_{\alpha_{3}}$, respectively. Let $g \in N\left(V_{\alpha_{3}}\right) \cap K_{\alpha} K_{\beta}$ or $g \in N\left(V_{3}\right) \cap K_{\alpha_{3}}$, with $t^{8}=t v$ and $v \in V_{\alpha_{3}}^{\#}$. Consider $C_{G}\left(t^{g}\right) \leq N\left(A^{8}\right)$. We have $\bar{J}_{r} \leq C\left(t^{8}\right)$, so $\bar{J}_{r}=\bar{J}_{r}^{(\infty)} \leq N\left(A^{g}\right)^{(\infty)}=A^{g}$. Also, g centralizes I, so the embedding of I in A^{8} is the same as that of I in A. Consider A^{8} acting on the subspaces of the usual module, M, for $O^{-}(8, q)$. Writing

$$
I=\left(I \cap J_{\alpha_{1}}\right) \times\left(I \cap J_{r}\right)
$$

we see that M contains 4 -spaces, M_{1} and M_{2}, such that $M=M_{1} \perp M_{2}, I \cap J_{\alpha_{1}}$ and $I \cap J_{r}$ fix all the 1 -spaces of M_{1} and the preimage of $I \cap J_{\alpha_{1}}$ and $I \cap J_{r}$ in $O^{-}(8, q)$ acts fixed-point-freely on M_{2}. Now $J_{\alpha_{1}} \leq C\left(I \cap J_{r}\right)$ and $J_{r} \leq$ $C\left(I \cap J_{\alpha_{1}}\right)$, and these facts imply that $J_{\alpha_{1}}$ and J_{r} stabilize M_{1} and M_{2}. So \bar{J}_{r} stabilizes M_{2}. Hence $E\left(C_{A^{8}}\left(\bar{J}_{r}\right)\right)=E\left(C_{A^{8}}(I)\right) \cong L_{2}\left(q^{2}\right)$. As in the proof of (4.5) of [13] this implies that $t \notin Z^{*}\left(C_{G}\left(\bar{J}_{r}\right)\right)$. As $C_{G}\left(\bar{J}_{r}\right) \leq C_{G}(I)$, we have $E\left(C_{G}\left(\bar{J}_{r}\right)\right)=K_{\alpha} \times K_{\beta}$ or $K_{\alpha_{3}}$. Now set $K_{\alpha_{1}}=K_{\alpha_{2}}^{s_{1} s_{2}}$ and $K_{r}=K_{\alpha_{2}}^{s_{s_{1}} s_{2}}$. Then

$$
\left\langle K_{\alpha_{1}}, K_{r}\right\rangle=K_{\alpha_{1}} \times K_{r} \geq J_{\alpha_{1}} \times J_{r} .
$$

Also, there is an abelian subgroup $\hat{I}>I$ with

$$
\hat{I} / I \cong Z_{q+1} \times Z_{q+1} \quad \text { or } \quad Z_{q-1} \times Z_{q-1}
$$

depending on whether $F=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{2}}\right\rangle$ or $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$. Then $K_{\alpha_{1}} \times K_{r}=\left\langle\hat{I}, \bar{J}_{r}\right\rangle$. Now \hat{I} normalizes $C_{G}(I)$, so $K_{\alpha_{1}} \cap K_{r} \cap C\left(E\left(C_{G}(I)\right)\right)$ is a normal subgroup of $K_{\alpha_{1}} \times K_{r}$ containing \bar{J}_{r}. We must have

$$
K_{\alpha_{1}} \times K_{r} \leq C\left(E\left(C_{G}(I)\right)\right)
$$

This says that $\left[K_{\alpha_{1}}, K_{\alpha}\right]=\left[K_{\alpha_{1}}, K_{\beta}\right]=1$ or $\left[K_{\alpha_{1}}, K_{\alpha_{3}}\right]=1$, depending on whether $F=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{2}}\right\rangle$ or $\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$.

Suppose $F=\left\langle K_{\alpha}, K_{\beta}, K_{\alpha_{2}}\right\rangle$ and write $s_{3}=s_{\alpha} s_{\beta}$ for $s_{\alpha} \in K_{\alpha}$ and $s_{\beta} \in K_{\beta}$. Then $K_{\alpha}=K_{\alpha_{2}}^{s_{\alpha} s_{2}}$, so by the above,

$$
\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle \sim\left\langle K_{\alpha_{2}}^{s_{\alpha}}, K_{\alpha_{1}}\right\rangle \sim\left\langle K_{\alpha_{2}}^{s_{\alpha_{2}} s_{2} s_{1}}, K_{\alpha_{1}}^{s_{2} s_{1}}\right\rangle=\left\langle K_{\alpha}^{s_{1}}, K_{\alpha_{2}}\right\rangle=\left\langle K_{\alpha}, K_{\alpha_{2}}\right\rangle .
$$

So in this case we have all necessary commutator relations to conclude that $G_{00}=\left\langle F, K_{\alpha_{1}}\right\rangle$ satisfies $\tilde{G}_{00} \cong O^{+}\left(8, q^{2}\right)^{\prime}$. As $A \leq G_{00}$ we have $G_{00}=G_{0}$.

Now suppose that $F=\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle$. All that is needed here is to show that

$$
\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle^{\sim} \cong L_{3}(q) \times L_{3}(q) .
$$

Let $L=\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle \cap C\left(J_{\alpha_{2}} \times J_{\alpha_{2}}^{s_{3}}\right)$. Then $L / L \cap Z\left(\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle\right)$ is cyclic of order $q+1$. Regarding $\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$ as $O^{-}(6, q)^{\prime}$ acting on its usual module, L acts trivially on a non-degenerate 4 -space of index 2 . Since the $(q+1)$-Hall subgroup of $J_{\alpha_{3}} \cap H$ centralizes $J_{\alpha_{2}} \times J_{\alpha_{2}}^{s_{3}}$, we conclude that $L \leq J_{\alpha_{3}} Z(A)$, so $\left[L, J_{\alpha_{1}}\right]=1$. Now from above we have $E\left(C_{A}(L)\right)^{\sim} \cong O^{+}(6, q)^{\prime}$ and so $E\left(C_{\mathrm{A}}(L)\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle$.

The group L is conjugate to a subgroup of X, so $t \notin Z^{*}\left(C_{G}(L)\right)$ and, necessarily, $E\left(C_{G}(L)\right) \cong L_{4}(q) \times L_{4}(q)$. Consequently,

$$
E\left(C_{G}(L)\right)=\left\langle\hat{K}_{\alpha_{2}}, \hat{K}_{\alpha_{1}}, \hat{K}_{\alpha_{2}}^{s_{3}}\right\rangle
$$

where $\hat{K}_{\alpha_{2}} \geq J_{\alpha_{2}}, \hat{K}_{\alpha_{1}} \geq J_{\alpha_{1}}$, each $\hat{K}_{\alpha_{1}}$ is t-invariant and

$$
\hat{K}_{\alpha_{1}} \cong \hat{K}_{\alpha_{2}} \cong L_{2}(q) \times L_{2}(q)
$$

We also have $L \leq J_{\alpha_{3}} \leq K_{\alpha_{3}} \leq C\left(K_{\alpha_{1}}\right)$, so $K_{\alpha_{1}} \leq E\left(C_{G}(L)\right)$ and we must have $K_{\alpha_{1}}=\hat{K}_{\alpha_{1}}$. But then,

$$
\hat{K}_{\alpha_{2}}=\hat{K}_{\alpha_{1}}^{s_{2} s_{1}}=K_{\alpha_{2}} \quad \text { and } \quad\left\langle K_{\alpha_{1}}, K_{\alpha_{2}}\right\rangle=\left\langle\hat{K}_{\alpha_{1}}, \hat{K}_{\alpha_{2}}\right\rangle,
$$

showing that $\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle^{\sim} \cong L_{3}(q) \times L_{3}(q)$. This completes the proof of (8.5).

$$
\text { 9. } \tilde{A} \cong \operatorname{PSp}(n, q) \text { or } \operatorname{PSU}(n, q)
$$

In this section and the next we assume that $\tilde{A} \cong \operatorname{PSp}(n, q)$ or $\operatorname{PSU}(n, q)$. In the present section we also assume that either $\tilde{E} \cong \tilde{D} \times \tilde{D}$ or that the pair (\tilde{D}, \tilde{E}) is of type (7), (12), or (13) in Table 2. This implies that the Dykin diagram for E is the same as that of D (or the union of two such, in the wreathed case). Let \tilde{A} have Lie rank l.

For any root $\alpha \in \Sigma$ with $U_{\alpha} \leq E$ we have associated a root subgroup $\hat{U}_{\alpha} \leq E$ such that $U_{\alpha} \leq \hat{U}_{\alpha}\left(\hat{U}_{\alpha}\right.$ is a direct product in the wreathed case). Moreover $J_{\alpha} \leq \hat{J}_{\alpha} \leq\left\langle\hat{U}_{\alpha}, \hat{U}_{-\alpha}\right\rangle=\hat{K}_{\alpha}$. If the components of E are not odddimensional unitary groups, then $\hat{K}_{\alpha}=K_{\alpha}$. In the exceptional cases, $\alpha \sim s$ and $\hat{K}_{\alpha} \cong S U(3, q)$ or $S U(3, q) \times S U(3, q)$. With this notation, we have $E=\left\langle\hat{K}_{\alpha_{l}}, K_{\alpha_{l-1}}, \ldots, K_{\alpha_{2}}\right\rangle$.

Set $K_{\alpha_{1}}=K_{\alpha_{2}}^{s_{1} s_{2}}, E^{0}=E^{s_{1} s_{2}}$, and $G_{0}=\left\langle E, E^{0}\right\rangle$. We will show that

$$
G_{0}=\left\langle\hat{K}_{\alpha_{l}}, K_{\alpha_{l-1}}, \ldots, K_{\alpha_{1}}\right\rangle
$$

and that G_{0} satisfies the necessary commutator relations.
(9.1) Suppose that $n \geq 8$. Then G_{0} is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and either

$$
\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}
$$

or

$$
\tilde{A} \cong P S p(n, q) \quad \text { and } \quad \tilde{G}_{0} \cong P S p\left(n, q^{2}\right), P S U(n, q), \text { or } \operatorname{PSU}(n+1, q)
$$

Proof. By (7.11),

$$
C_{G}(Z)_{\mathrm{A}}=C_{G}\left(J_{r} \times J_{s}\right)_{\mathrm{A}}=\left\langle\hat{K}_{\alpha}, K_{\alpha_{l-1}}, \ldots, K_{\alpha_{3}}\right\rangle=P
$$

In particular, $s_{1} \in J_{\alpha_{1}} \leq C_{G}(P)$ and it follows that

$$
E^{0}=\left\langle\hat{K}_{\alpha_{k}}, \ldots, K_{\alpha_{4}}, K_{\alpha_{3}}^{s_{2}}, K_{\alpha_{1}}\right\rangle
$$

Also we have

$$
\begin{aligned}
{\left[J_{\alpha_{3}}, K_{\alpha_{1}}\right] } & =\left[J_{\alpha_{3}}, K_{\alpha_{2}}^{s_{1} s_{2}}\right] \sim\left[J_{\alpha_{3}}^{s_{s_{1}} s_{1}}, K_{\alpha_{2}}\right] \sim\left[J_{\alpha_{3}}^{s_{\alpha_{1}} s_{3} s_{3} s_{2}}, K_{\alpha_{3}}\right] \\
& =\left[J_{\alpha_{1}}, K_{\alpha_{3}}\right]=1 .
\end{aligned}
$$

In particular, $s_{3} \in C\left(K_{\alpha_{1}}\right)$. This implies that

$$
\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle \sim\left\langle K_{\alpha_{2}}^{s_{3}}, K_{\alpha_{1}}\right\rangle=\left\langle K_{\alpha_{2}}^{s_{3}}, K_{\alpha_{2}}^{s_{1} s_{2}}\right\rangle \sim\left\langle K_{\alpha_{2}}^{s_{3} s_{2} s_{1}}, K_{\alpha_{2}}\right\rangle=\left\langle K_{\alpha_{3}}, K_{\alpha_{2}}\right\rangle .
$$

Finally, we have the relation

$$
\left[K_{\alpha_{3}}, K_{\alpha_{1}}\right]=\left[K_{\alpha_{4}}^{s_{3} s_{4}}, K_{\alpha_{1}}\right] \sim\left[K_{\alpha_{4}}, K_{\alpha_{1}}^{s_{s_{3}}}\right]=\left[K_{\alpha_{4}}, K_{\alpha_{1}}\right]=1 .
$$

With the above relations we argue as in §8 that

$$
G_{00}=\left\langle\hat{K}_{\alpha,}, K_{\alpha_{l-1}}, \ldots, K_{\alpha_{1}}\right\rangle
$$

is semi-simple $\left|Z\left(G_{00}\right)\right|$ is odd, and

$$
\tilde{G}_{00} \cong \tilde{A} \times \tilde{A}, P S p\left(n, q^{2}\right), P S U(n, q), \text { or } P S U(n+1, q)
$$

Since $A \leq G_{00}$, we have $G_{00}=G_{0}$, and the proof of (9.1) is complete.
(9.2) Suppose that $\tilde{A} \cong \operatorname{PSp}(6, q)$ or $\operatorname{PSU}(6, q)$, with $q \geq 4$, or that $\tilde{A} \cong$ $\operatorname{PSU}(7, q)$. Then G_{0} is semi-simple, $\left|Z\left(G_{0}\right)\right|$ is odd, and either

$$
\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}
$$

or

$$
\tilde{A} \cong P S p(6, q) \quad \text { and } \quad \tilde{G}_{0} \cong P S p\left(6, q^{2}\right), \operatorname{PSU}(6, q), \text { or } \operatorname{PSU}(7, q)
$$

Proof. The argument is similar to that of (9.1) although we must work more to get some of the commutator relations. As in (9.1) we need only show that $G_{00}=\left\langle\hat{K}_{\alpha_{3}}, K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$ satisfies the necessary commutator relations.

First we claim that $\left[\hat{K}_{\alpha_{3}}, K_{\alpha_{1}}\right]=1$. Note that

$$
\left[J_{\alpha_{3}}, K_{\alpha_{1}}\right]=\left[J_{\alpha_{3}}, K_{\alpha_{2}}^{s_{2} s_{2}}\right] \sim\left[J_{\alpha_{3}}^{s_{2} s_{1}}, K_{\alpha_{2}}\right]=\left[J_{r}, K_{\alpha_{2}}\right]=1
$$

If $\tilde{D} \cong P S p(4, q)$ and $\tilde{E} \cong P S U(4, q)$, then $\hat{K}_{\alpha_{3}}=J_{\alpha_{3}}$ so the claim holds. Consider the other cases. Using (7.8)(i) and the above we have $\left[K_{\alpha_{3}}, K_{\alpha_{1}}\right]=$ 1. So we may assume $\hat{K}_{\alpha_{3}}>K_{\alpha_{3}}$; that is

$$
\left(\hat{K}_{\alpha_{3}}\right)^{\sim} \cong P S U(3, q) \quad \text { or } \quad P S U(3, q) \times P S U(3, q)
$$

By (7.11) $\hat{K}_{\alpha_{3}}=C_{G}(Z)_{A}=E\left(C_{G}(Z)\right)$. Let $Y=C_{G}\left(\hat{K}_{\alpha_{3}}\right)$. Then Z is a standard subgroup of Y.

We first show that $t \notin Z^{*}(Y)$. Suppose otherwise. If $\tilde{E} \cong \tilde{D} \times \tilde{D}$ then $K_{r} \leq Y$ and $t \notin Z^{*}\left(K_{r}\langle t\rangle\right)$. So suppose that $\tilde{E} \cong \operatorname{PSU}(5, q)$. If $q>4$, let $I=$ $C_{E}\left(\hat{K}_{\alpha_{3}} \circ J_{s}\right)$. Then $I / Z(E)$ is cyclic of order $(q+1) / d$ for $d=(5, q+1)$. If $q=4$ and

$$
O^{2}\left(C\left(J_{r}\right) / C\left(J_{r} E\right)\right) \cong P S U(5, q)
$$

set $I=1$. Finally, if $q=4$ and

$$
O^{2}\left(C\left(J_{r}\right) / C\left(J_{r} E\right)\right) \cong P G U(5, q)
$$

then we may choose $I=\langle x\rangle$ where $I \leq C\left(J_{r}\right)$ and I induces an outer diagonal automorphism of E of order 5 and centralizing $\hat{K}_{\alpha_{3}} \circ J_{s}$. Since I centralizes $J_{r} \times J_{s}$, and since we are assuming that $Z O(Y) \unlhd Y$, we have $[Z, I] \leq O(Y)$.

Also, $\hat{K}_{\alpha_{3}}$ contains a subgroup I_{1}, with $\left[J_{\alpha_{3}}, I_{1}\right]=1, I_{1} \geq Z\left(\hat{K}_{\alpha_{3}}\right)$, and $I_{1} / Z\left(\hat{K}_{\alpha_{3}}\right)$ is cyclic of order $(q+1) / e$, where $e=(3, q+1)$. Note that for this case $\tilde{A} \cong P S p(6, q)$, so $q \geq 4, q+1>3$, and $I_{1} \neq Z\left(\hat{K}_{\alpha_{3}}\right)$. Now $\left[I I_{1}, Z\right] \leq O(Y)$ and $I I_{1}$ acts on $E\left(C_{G}\left(J_{\alpha_{3}}\right)\right)=E^{s_{1} s_{2}}$, centralizing $J_{r} \times J_{s}$. It follows that $I I_{1}$ induces a group of inner automorphisms of $E^{s_{1} s_{2}}$ of order dividing $q+1$. Consequently, there is a subgroup $I_{0} \leq I I_{1}$ with $I_{0} \leq C\left(E^{s_{1} s_{2}}\right)$ and $I_{0} \nsubseteq Z(E)$. So $I_{0}^{s_{0} s_{1}}$ centralizes $J_{r} \times E$.

In particular $I_{0}^{s_{2} s_{1}} \leq C\left(\hat{K}_{\alpha_{3}}\right)=Y$. Since $I_{0}^{s_{2} s_{1}}$ also centralizes $J_{r} \times J_{s}$ we have $I_{0}^{s_{2} s_{1}} \leq O(Y)$. We want to have $I_{0}^{s_{2} s_{1}} \leq C(Z)$, and to get this it will certainly suffice to show that $[Z, O(Y)]=1$. Let $O=O(Y)$ and let $v \in V_{r}$ be an involution. Then

$$
O=C_{0}(t) C_{0}(t v) C_{0}(v)
$$

Now $C_{0}(t) \leq N(A) \cap C\left(J_{\alpha_{3}}\right) \leq N(Z)$, so $\left[C_{0}(t), Z\right] \leq Z \cap O(Y) \leq Z(Z)$ and $C_{0}(t) \leq C_{0}(v)$. Also there is an element $g \in \hat{K}_{\alpha_{3}}^{s_{s} s_{1}}$ with $t^{g}=t v . C_{0}(t v)$ normalizes A^{8} and, as $q \geq 4, C_{Z}(t v) \times J_{\alpha_{3}} \leq A^{8}$. Since $C_{0}(t v) \leq O(Y)$ we conclude that $C_{0}(t v) \leq C_{0}(v)$. We then have $v \in C_{G}(O(Y))$, so $Z \leq\left\langle v^{Y}\right\rangle \leq$ $C_{G}(O(Y))$, as needed. In particular, $I_{0}^{s_{2} s_{1}} \leq C_{G}(Z)$, which implies $C_{G}\left(I_{0}^{s_{2} s_{1}}\right) \geq$ $\left\langle Z, J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle=A$. So $I_{0}^{s_{2} s_{1}}=I_{0}$, whereas $I_{0}^{s_{2} s_{1}} \leq C(E)$ and $I_{0} \nsubseteq C(E)$. This contradiction shows that $t \notin Z^{*}(Y)$.

Let $Q=E(Y)$. As $Y \leq C\left(J_{\alpha_{3}}\right) \sim C\left(J_{r}\right)$ and since $\left(C\left(J_{r}\right) \cap Y\right)_{A}=K_{s}$ we
apply the theorem of [9] and obtain

$$
\tilde{Q} \cong P S U(4, q) \quad \text { or } \quad P S U(4, q) \times P S U(4, q),
$$

depending on whether $\tilde{E} \cong \operatorname{PSU}(5, q)$ or $\operatorname{PSU}(5, q) \times \operatorname{PSU}(5, q)$. So we may write $Q=\left\langle K_{\alpha}, K_{s}\right\rangle$, where

$$
K_{\alpha} \cong S L\left(2, q^{2}\right) \quad \text { or } \quad S L\left(2, q^{2}\right) \times S L\left(2, q^{2}\right)
$$

and $K_{\alpha} \geq J_{\alpha_{1}}$. Now $K_{\alpha} \leq C\left(\hat{K}_{\alpha_{3}}\right) \leq C\left(J_{\alpha_{3}}\right)$, so $K_{\alpha} \leq E^{s_{1} s_{2}}$. Since K_{α} also centralizes $C\left(J_{\alpha_{3}}\right) \cap \hat{K}_{\alpha_{3}}$ (which is just I_{1} if $\left.E \cong \operatorname{PSU}(5, q)\right)$ we conclude from the action of $\operatorname{PSU}(5, q)$ on its usual module, that $K_{\alpha}=K_{\alpha_{1}}$. In particular, we have now proved that $\left[K_{\alpha_{1}}, \hat{K}_{\alpha_{3}}\right]=1$.

What remains is the structure of $\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$. For this start with $\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle$ and notice that since $q \geq 4, C=C_{A}\left(\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle\right) \nsubseteq Z(A)$. So we consider $C_{G}(C)$. Then $\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle$ is standard in $C_{G}(C)$ and

$$
\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{G}(C) \cap C\left(\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle\right)\right) .
$$

Choose $v \in V_{\alpha_{1}}^{\#}$. Then there is an element $g \in K_{\alpha_{1}}$ with $t^{8}=t v$. Then C normalizes A^{8} and it is not difficult to see that $C_{A^{8}}(C)$ is not 2-constrained. From here the argument in (4.5) of [13] shows that $t \notin Z^{*}\left(C_{G}(C)\right)$.

Apply the main theorem of [12] and conclude that

$$
E\left(C_{G}(C)\right) \cong L_{3}\left(q^{2}\right) \text { or } L_{3}(q) \times L_{3}(q) \text { if } \tilde{A} \cong P S p(6, q)
$$

and

$$
\begin{gathered}
E\left(C_{G}(C)\right) \cong L_{3}\left(q^{4}\right) \text { or } \quad L_{3}\left(q^{2}\right) \times L_{3}\left(q^{2}\right) \text { if } \\
\tilde{A} \cong \operatorname{PSU}(6, q) \quad \text { or } \quad \operatorname{PSU}(7, q) .
\end{gathered}
$$

Now $C \leq H$ and so $C \leq N\left(J_{r}\right) \cap C\left(J_{\alpha_{2}}\right)$. Viewing this in $N_{G}\left(J_{r}\right)$ we conclude that $C \leq C\left(K_{\alpha_{2}}\right)$. It follows that

$$
E\left(C_{G}(C)\right)^{\sim} \cong\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle^{\sim} \times\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle^{\sim} \quad \text { if } \quad \tilde{E} \cong \tilde{D} \times \tilde{D}
$$

and otherwise $E\left(C_{G}(C)\right)^{\sim} \cong L_{3}\left(q^{2}\right)$. We know that $K_{\alpha_{2}} \leq E\left(C_{G}(C)\right)$, so we must have $E\left(C_{G}(C)\right)=\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}\right\rangle$. From here we easily derive the necessary commutator relations. This completes the proof of (9.2).

10. $\tilde{A} \cong P S p(n, q)$ or $\operatorname{PSU}(n, q)$ (continued)

We continue the assumption that $\tilde{A} \cong P S p(n, q)$ or $\operatorname{PSU}(n, q)$. Here we also assume that the pair ($\tilde{D}, \tilde{E})$ is of type (5), (6), (8), (9), (10), or (11) in Table 2. Set $E^{0}=E^{s_{1} s_{2}}$ and $G_{0}=\left\langle E, E^{0}\right\rangle$.
(10.1) Assume that $\tilde{A} \cong P S p(n, q)$ with $n \geq 8$ and that $\tilde{E} \cong O^{-}(n, q)^{\prime}$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong O^{+}(n+2, q)^{\prime}$.
Proof. Write $E=\left\langle K_{\alpha i}, \ldots, K_{\alpha_{2}}\right\rangle$, where $l=n / 2$ and $J_{\alpha_{1}} \leq K_{\alpha_{1}} \cong S L\left(2, q^{2}\right)$
and $J_{\alpha_{i}}=K_{\alpha_{i}}$ for $i=2, \ldots, l-1$. We choose the $K_{\alpha_{i}}$ satisfying the usual commutator relations for $\operatorname{PSO}^{-}(n, q)$. In particular, $\left\langle K_{\alpha_{1}}, K_{\alpha_{1-1}}\right\rangle \cong \operatorname{PSU}(4, q)$ and $\left[K_{\alpha_{i}}, K_{\alpha_{i}}\right]=1$ for $i=2, \ldots, l-2$. We point out that (7.4) fails to hold in this case.

Let $\varepsilon=\alpha_{l}+2 \alpha_{l-1}+\cdots+2 \alpha_{3}+\alpha_{2}$ and $\gamma=\varepsilon+\alpha_{2}+\alpha_{1}$. Then

$$
C_{E}\left(J_{\alpha_{2}} \times J_{\varepsilon}\right)=\left\langle K_{\alpha_{i}}, \ldots, K_{\alpha_{4}}\right\rangle
$$

So $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{2}} \times J_{\varepsilon}\right)\right)$ and hence $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{1}} \times J_{\gamma}\right)\right)$ (because $\alpha_{2}^{s_{1} s_{2}}=\alpha_{1}$ and $\varepsilon^{s_{1} s_{2}}=\gamma$). It follows from (5.2) that

$$
C_{G}\left(J_{\alpha_{1}} J_{\gamma}\right)_{A}=C_{G}(Y)_{A}
$$

(Y as in (6.5)). On the other hand, $C_{G}(Y)_{A} \sim C_{G}\left(X X_{1}\right)_{A}=C_{E}\left(X_{1}\right)_{A}$, and from the embedding of D in E we have $C_{E}\left(X_{1}\right)_{A} \cong O^{+}(n-2, q)^{\prime}$. Consequently, we write

$$
C_{G}\left(J_{\alpha_{1}} J_{\gamma}\right)_{A}=L=\left\langle J_{\alpha}, J_{\beta}, J_{l-1}, \ldots, J_{\alpha_{3}}\right\rangle
$$

where $J_{\beta}=J_{\alpha}^{t} \cong S L(2, q),\left[J_{\alpha}, J_{\beta}\right]=1,\left\langle J_{\alpha}, J_{l-1}\right\rangle^{\sim} \cong L_{3}(q)$, and $\left[J_{\alpha}, J_{\alpha_{1}}\right]=1$ for $i=3, \ldots, l-2$. Finally $C(t) \cap J_{\alpha} J_{\beta}=J_{\alpha_{1}}$.

It will suffice to show that $\left[J_{\alpha}, J_{\alpha_{2}}\right]=\left[J_{\beta}, J_{\alpha_{2}}\right]=1$, for once these relations are checked we have $\left\langle J_{\alpha}, J_{\beta}, J_{\alpha_{1-1}}, \ldots, J_{\alpha_{1}}\right\rangle=G_{00}$ satisfying the defining relations for $O^{+}(n+2, q)^{\prime}$. Since $G_{00} \geq A$ we have $G_{00}=G_{0}$, completing the proof. There is a subgroup $P \leq J_{\alpha} \times J_{\beta}$ such that P is a t-invariant $(q+1)$ Hall subgroup of $J_{\alpha} \times J_{\beta}$ and $P_{0}=C_{P}(t)=X^{s_{1} \cdots s_{t-1}}$. Notice that $J_{\alpha} J_{\beta}=\left\langle P, J_{\alpha_{1}}\right\rangle$, so it will suffice to show that $P \leq C\left(J_{\alpha_{2}}\right)$.

We have $P \leq C_{G}\left(P_{0}\right)=C_{G}(X)^{w}$, where $w=s_{1} \cdots s_{l-1}$. Also

$$
E^{w}=\left\langle K_{\alpha_{i}}^{w}, J_{\alpha_{l-2}}, \ldots, J_{\alpha_{1}}\right\rangle
$$

and P centralizes $J_{\alpha_{1}} \times J_{\gamma} \times\left\langle J_{\alpha_{l-2}}, \ldots, J_{\alpha_{3}}\right\rangle=I$. Consider the group $O^{-}(n, q)^{\prime}$ acting on its usual module M. There is a homomorphism φ from E^{w} onto $O^{-}(n, q)^{\prime}$. Then (I) φ has as its fixed space an anisotropic 2-space of M. From there we can determine $C_{E^{w}}(I)$. If $l \neq 5$ (that is, $n \neq 10$) then $C_{E^{w}}(I)$ is cyclic of order $q+1$. If $l=5$, then

$$
C_{E^{w}}(I) \cong Z_{q+1} \times L_{2}(q) \quad \text { and } \quad C_{E^{w}}(I) \geq J_{\alpha_{3}}^{s_{4} s_{5} s_{4}}
$$

For $l \neq 5$ set $I_{1}=I$ and for $l=5$ set $I_{1}=I \times J_{\alpha_{3}}^{s_{4} s_{5} s_{4}}$. Since P centralizes I we must have $P \leq E^{w} C\left(E^{w}\right)$, and, the projection of P to E^{w} must centralize I_{1}. Now $\left(I_{1}\right) \varphi$ defines a unique non-degenerate $(n-2)$-subspace, M_{0}, of M, on which the stabilizer in $O^{-}(n, q)^{\prime}$ induces $O^{+}(n-2, q)^{\prime}$. We already know that

$$
C_{G}(P)_{A} \cong O^{+}(n-2, q)^{\prime}
$$

and the commutator relations imply that $\left\langle J_{\alpha_{1-2}}^{s_{L_{1}} s_{1} s_{1-1}}, J_{\alpha_{l-2}}, \ldots, J_{\alpha_{1}}\right\rangle=Q$ satisfies $\tilde{Q} \cong O^{+}(n-2, q)^{\prime}$ and $(Q) \varphi$ acts on M_{0}. It follows that $P \leq C(Q)$. In particular, $P \leq C\left(J_{\alpha_{2}}\right)$, as required.
(10.2) Assume that $\tilde{A} \cong P S p(6, q)$ with $q \geq 4$ and $\tilde{E} \cong O^{-}(6, q)^{\prime}$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong O^{+}(8, q)^{\prime}$.

Proof. Let C be a $(q-1)$-Hall subgroup of J_{r}. Then

$$
O^{2^{\prime}}\left(C_{\mathrm{A}}(C)\right)=\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle
$$

Also, $C^{s_{1} s_{2}} \leq J_{\alpha_{3}} \leq K_{\alpha_{3}}$, where $E=\left\langle K_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$. So $C_{E}\left(C^{s_{1} s_{2}}\right)$ involves $O^{-}(4, q)^{\prime} \cong$ $L_{2}\left(q^{2}\right)$ and so $t \notin Z^{*}\left(C_{G}(C)\right)$. Since

$$
F=C_{G}(C) \cap C\left(X^{s_{2} s_{1}}\right)
$$

satisfies $\tilde{F} \cong L_{2}\left(q^{2}\right)$ we must have $C_{G}(C)_{A}=O^{+}(6, q)^{\prime}$. Write

$$
I=C_{G}(C)_{A}=\left\langle J_{\alpha}, J_{\beta}, J_{\alpha_{2}}\right\rangle
$$

where $\left[J_{\alpha}, J_{\beta}\right]=1, J_{\beta}=J_{\alpha}^{t},\left\langle J_{\alpha}, J_{\alpha_{2}}\right\rangle^{\sim} \cong L_{3}(q)$, and $J_{\alpha_{3}}=C(t) \cap J_{\alpha} J_{\beta}$.
One checks that $C_{I}\left(J_{\alpha} J_{\beta}\right) / Z(I)$ is cyclic of order $q-1$ and contained in $J_{\alpha_{3}}^{s_{2}} Z(I)$. So, let $C_{1}=C\left(J_{\alpha} J_{\beta}\right) \cap J_{\alpha_{3}}^{s_{2}}$, and let P be the t-invariant $(q-1)$-Hall subgroup of $J_{\alpha} J_{\beta}$ with $C_{P}(t)=C^{s_{1} s_{2}}$. Then

$$
Q=C_{G}\left(C^{s_{1} s_{2}}\right)_{A}=\left\langle J_{\alpha}^{s_{1} s_{2}}, J_{\beta}^{s_{1} s_{2}}, J_{\alpha_{1}}\right\rangle \quad \text { and } \quad A \cap Q=\left\langle J_{\alpha_{3}}^{s_{2}}, J_{\alpha_{1}}\right\rangle .
$$

Now, P normalizes Q, and since P centralizes $C \times C_{1}$ we conclude that $P \leq Q C_{G}(Q)$ and P projects into a Cartan subgroup of Q normalizing $J_{\alpha_{1}}$. It follows that $J_{\alpha} J_{\beta}=\left\langle J_{\alpha_{3}}, P\right\rangle \leq N\left(J_{\alpha_{1}}\right)$ and hence $J_{\alpha} J_{\beta} \leq C\left(J_{\alpha_{1}}\right)$.

We now conclude that if $G_{00}=\left\langle J_{\alpha}, J_{\beta}, J_{\alpha_{2}} J_{\alpha_{1}}\right\rangle$, then $A \leq G_{00}$ and $\tilde{G}_{00} \cong$ $O^{+}(8, q)^{\prime}$. Then $C_{G_{00}}(X)_{\tilde{A}}^{\sim} \cong C_{G}(X)^{\sim}$, so $E \leq G_{00}$ and we have $G_{00}=G_{0}$. This completes the proof of (10.2).

Similar methods will be used to handle the case (\tilde{D}, \tilde{E}) of type 10).
(10.3) Assume that $\tilde{A} \cong P S p(n, q), n \geq 8$, and $\tilde{E} \cong O^{+}(n, q)^{\prime}$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong O^{-}(n+2, q)^{\prime}$.

Proof. Write $E=\left\langle J_{\alpha}, J_{\beta}, J_{\alpha_{l-1}}, \ldots, J_{\alpha_{2}}\right\rangle$, where $l=n / 2, J_{\beta}=J_{\alpha}^{t},\left[J_{\alpha}, J_{\beta}\right]=1$, $J_{\alpha_{l}}=C(t) \cap\left(J_{\alpha} \times J_{\beta}\right),\left\langle J_{\alpha}, J_{\alpha_{l-1}}\right\rangle^{\sim} \cong L_{3}(q)$, and $\left[J_{\alpha}, J_{\alpha_{i}}\right]=1$ for $i=2, \ldots, l-2$. Let

$$
\varepsilon=\alpha_{l}+2 \alpha_{l-1}+\cdots+2 \alpha_{3}+\alpha_{2}
$$

as in the proof of (10.1). Then

$$
C_{E}\left(J_{\alpha_{2}} \times J_{\varepsilon}\right)=\left\langle J_{\alpha}, J_{\beta}, J_{\alpha_{l-1}}, \ldots, J_{\alpha_{4}}\right\rangle
$$

Consequently, $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{2}} \times J_{\varepsilon}\right)\right)$ and so $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{1}} \times J_{\gamma}\right)\right)$.
Now $C_{G}\left(J_{\alpha_{1}} J_{\gamma}\right) \leq C_{G}(Y)$, where Y is as in (6.5). As $Y \sim X X_{1}$, in A, we have

$$
C_{G}(Y)_{\mathrm{A}}^{\sim} \sim C_{G}\left(X X_{1}\right)_{\mathrm{A}}^{\sim}=C_{E}\left(X_{1}\right)_{\tilde{A}}^{\sim} \cong O^{-}(n-2, q)^{\prime}
$$

By the above and (5.2), $E\left(C_{G}\left(J_{\alpha_{1}} J_{\gamma}\right)\right)=E\left(C_{G}(Y)\right)$, Set $P=E\left(C_{G}\left(J_{\alpha_{1}} J_{\gamma}\right)\right)$. Then $\tilde{P} \cong O^{-}(n-2, q)^{\prime}$ and we write

$$
P=\left\langle\hat{K}_{\alpha_{i}}, J_{\alpha_{l-1}}, \ldots, J_{\alpha_{3}}\right\rangle,
$$

where $J_{\alpha_{l}} \leq \hat{K}_{\alpha_{l}} \cong L_{2}\left(q^{2}\right),\left[\hat{K}_{\alpha,}, J_{\alpha_{i}}\right]=1$ for $i=3, \ldots, l-2$, and

$$
\left\langle\hat{K}_{\alpha,}, J_{\alpha_{l-1}}\right\rangle^{\sim} \cong P S U(4, q) \cong O^{-}(6, q)^{\prime} .
$$

If we can show that $\left[\hat{K}_{\alpha_{i}}, J_{\alpha_{2}}\right]=1$, then $G_{00}=\left\langle P, J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle$ will satisfy the defining relations of $O^{-}(n+2, q)^{\prime}$. It will then follow that $G_{00}=G_{0}$, and the proof will be complete. So it suffices to show $\left[\hat{K}_{\alpha_{i}}, J_{\alpha_{2}}\right]=1$. Let $I=I^{t}$ be cyclic of order $q+1$, with

$$
I \leq N\left(C\left(V_{\alpha_{l}}\right) \cap \hat{K}_{\alpha_{l}}\right) \cap N\left(C\left(V_{-\alpha_{l}}\right) \cap \hat{K}_{\alpha_{l}}\right)
$$

Then I normalizes each of the root subgroups of P in the natural root system for P and it follows that I must centralize

$$
\left\langle J_{\alpha_{l-1}}^{s_{l}}, J_{\alpha_{l-1}}, J_{\alpha_{l-2}}, \ldots, J_{\alpha_{3}}\right\rangle=F
$$

So $C_{G}(I) \geq J_{\alpha_{1}} \times J_{\gamma} \times F$.
On the other hand, I is conjugate in $\hat{K}_{\alpha_{l}}$ to a cyclic subgroup of $J_{\alpha_{l}}$ of order $q+1$, which in turn, is conjugate to X. So $E\left(C_{G}(I)\right)^{\sim} \cong O^{+}(n, q)^{\prime}$. As $E\left(C_{G}(I)\right) \cap C(t) \geq J_{\alpha_{\lambda}} \times J_{\gamma} \times F$, we have $E\left(C_{G}(I)\right) \leq A$. Regard \tilde{A} as $O(n+1, q)^{\prime}$. Then \tilde{A} acts on a module M of dimension $n+1$ over \mathbf{F}_{q} and \tilde{A} preserves a quadratic form. Also there is a unique 1 -space, M_{0}, of M with $\left(M_{0}, M\right)=0$. It is easily checked that $\left\langle F, J_{\alpha_{2}}\right\rangle \cong O^{+}(n, q)^{\prime}$ and that $\left\langle F, J_{\alpha_{2}}\right\rangle$ stabilizes a unique complement, M_{1}, to M_{0}. Moreover, M_{1} is the unique complement to M_{0} stabilized by $J_{\alpha_{1}} \times J_{\eta} \times F$. It is also easy to see that $E\left(C_{G}(I)\right)$ must stabilize a complement to M_{0}. Consequently $E\left(C_{G}(I)\right)=$ $\left\langle F, J_{\alpha_{2}}\right\rangle$. In particular, $J_{\alpha_{2}} \leq C_{G}(I)$. So $C\left(J_{\alpha_{2}}\right) \geq\left\langle J_{\alpha_{l}}, I\right\rangle=\hat{K}_{\alpha_{l}}$ as needed.
(10.4) Assume that $\tilde{A} \cong P S p(6, q)$ with $q \geq 4$ and $\tilde{E} \cong O^{+}(6, q)^{\prime}$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong O^{-}(8, q)^{\prime}$.

Proof. As in the proof of (10.2), let C be a ($q-1$)-Hall subgroup of J_{r}. Then $O^{2}\left(C_{\mathrm{A}}(C)\right)=\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$. We claim that

$$
E\left(C_{G}(C)\right)^{\sim} \cong O^{-}(6, q)^{\prime} \cong U_{4}(q) \quad \text { or } \quad U_{5}(q)
$$

(For consider $C^{s_{1} s_{2}} \leq J_{\alpha_{3}}$. From the known structure of $E\left(C_{G}(X)\right.$), we have

$$
E\left(C_{G}\left(X C^{s_{1} s_{2}}\right)\right)^{\sim} \cong L_{2}(q) \times L_{2}(q) \quad \text { and } \quad t \notin Z^{*}\left(C_{G}\left(X C^{s_{1} s_{2}}\right)\langle t\rangle\right)
$$

So $t \notin Z^{*}\left(C_{G}(C)\right)$. Also, since $\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$ is standard in $C_{G}(C)$ and $X^{s_{2} s_{1}} \leq$ $J_{r}^{s_{2} s_{1}} \leq C_{G}(C)$, we use the above and induction to get the claim.) Write $E\left(C_{G}(C)\right) \geq\left\langle\hat{K}_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$, where $J_{\alpha_{3}} \leq \hat{K}_{\alpha_{3}} \cong L_{2}\left(q^{2}\right)$ and $\left\langle\hat{K}_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle \cong U_{4}(q)$.

There is a subgroup $I \leq \hat{K}_{\alpha_{3}}$ such that I is cyclic of order $q+1$, and I is in a Cartan subgroup of $\left\langle\hat{K}_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle$ normalizing each of the root subgroups in the root system spanned by $\pm \alpha_{2}$ and $\pm \alpha_{3}$. Then $C_{G}(I) \geq J_{\alpha_{2}} \times J_{\alpha_{2}}^{s_{3}} \times C$. Now I is conjugate in $K_{\alpha_{3}}$ to $X^{s_{1} s_{2}}$, so $E\left(C_{G}(I)\right)^{\sim} \cong O^{+}(6, q)^{\prime}$. As t centralizes $J_{\alpha_{2}} \times J_{\alpha_{2}}^{s_{3}} \times C$ we must have $t \in C\left(E\left(C_{G}(I)\right)\right)$. For otherwise, t induces a graph automorphism on $E\left(C_{G}(I)\right)$ and $\left[C, E\left(C_{G}(I)\right)\right]=1$. But then

$$
S p(4, q)=O^{2^{\prime}}\left(C_{A}(I)\right) \leq O^{2^{\prime}}\left(C_{A}(C)\right)=\left\langle J_{\alpha_{3}}, J_{\alpha_{2}}\right\rangle \cong S p(4, q)
$$

whereas $\left[I, J_{\alpha_{3}}\right] \neq 1$. Now argue as in the proof of (10.3) to obtain

$$
E\left(C_{G}(I)\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle .
$$

Therefore $C\left(J_{\alpha_{1}}\right) \geq\left\langle J_{\alpha_{3}}, I\right\rangle \geqq \hat{K}_{\alpha_{3}}$, and so $\left\langle\hat{K}_{\alpha_{3}}, J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle^{\sim} \cong O^{-}(8, q)^{\prime}$. It follows that $G_{0}=\left\langle\hat{K}_{\alpha_{3}}, J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle$, and the proof of (10.4) is complete.
(10.5) Assume that $\tilde{A} \cong \operatorname{PSp}(n, q)$ or $\operatorname{PSU}(n+1, q)$ with $n \geq 8$ and that $\tilde{E} \cong \operatorname{PSL}(n-1, q)$ or $\operatorname{PSL}\left(n-1, q^{2}\right)$, respectively. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and

$$
\tilde{G}_{0} \cong \operatorname{PSL}(n+1, q) \quad \text { or } \quad \operatorname{PSL}\left(n+1, q^{2}\right)
$$

Proof. Write $E=\left\langle K_{\beta_{2}}, \ldots, K_{\beta_{1}}, K_{\gamma_{1}}, \ldots, K_{\gamma_{2}}\right\rangle$, where each of the generating subgroups is isomorphic to $\operatorname{SL}(2, q)$ or $\operatorname{SL}\left(2, q^{2}\right)$, depending on whether $\tilde{A} \cong \operatorname{PSp}(n, q)$ or $\operatorname{PSU}(n+1, q)$. Notation is chosen to correspond with the following labeling of the Dynkin diagram:

Also, for $i=2, \ldots, l-1, J_{\alpha_{i}}=C(t) \cap K_{\beta_{1}} K_{\gamma_{1}}$ and $\hat{J}_{\alpha_{1}}=C(t) \cap\left\langle K_{\beta_{1}}, K_{\gamma_{1}}\right\rangle$. Finally, $K_{\gamma_{i}}=K_{\beta_{i}}^{t}$ for $i=2, \ldots, l$.

Set $K_{\beta_{1}}=K_{\beta_{2}}^{s_{1} s_{2}}, K_{\gamma_{1}}=K_{\gamma_{2}}^{s_{1} s_{2}}$, and $G_{00}=\left\langle E, K_{\beta_{1}}, K_{\gamma_{1}}\right\rangle$. Then $A \leq G_{00}$, so $G_{00}=G_{0}$. We will show that \tilde{G}_{00} satisfies the necessary commutator relations. Apply the results of $\S 7$. Set $s=r^{s_{1}}$ and K_{s} the corresponding subgroup of E (so $K_{s} \sim K_{\beta_{2}}$). Then by (7.8), $K_{s} \leq C_{G}\left(E_{s}\right)$. Setting $K_{r}=K_{s}^{s_{1}}$ we have $K_{r} \geq J_{r}$ and $K_{r} \leq C_{G}(E)$. Next, we apply (7.11) to get

$$
C_{G}(Z)_{A}=\left\langle K_{\beta_{3}}, \ldots, K_{\beta_{1}}, K_{\gamma_{\gamma}}, \ldots, K_{\gamma_{3}}\right\rangle
$$

In particular, $s_{1} \in Z$, so s_{1} centralizes $C_{G}(Z)_{A}$ and

$$
E^{0}=\left\langle K_{\beta_{1}}, K_{\beta_{3}}^{s_{2}}, K_{\beta_{4}}, \ldots, K_{\beta_{1}}, K_{\gamma_{1}}, \ldots, K_{\gamma_{4}}, K_{\gamma_{3}}^{s_{2}}, K_{\gamma_{1}}\right\rangle
$$

Set $P=\left\langle K_{\beta_{4}}, \ldots, K_{\gamma_{4}}\right\rangle$.
Then $C_{G}(P) \geq\left\langle Z, K_{\beta_{2}}, K_{\gamma_{2}}\right\rangle \geq\left\langle Z, J_{\alpha_{2}}\right\rangle=\left\langle J_{s}, J_{\alpha_{2}}, J_{\alpha_{1}}\right\rangle$ and

$$
\left\langle Z, J_{\alpha_{2}}\right\rangle^{\sim} \cong P S p(6, q) \quad \text { or } \quad \operatorname{PSU}(6, q)
$$

depending on whether $\tilde{A} \cong \operatorname{PSp}(n, q)$ or $\operatorname{PSU}(n, q)$. We also know that

$$
C_{E}(P) \geq\left\langle K_{\beta_{2}}, J_{s}, K_{\gamma_{2}}\right\rangle=\left\langle K_{\beta_{2}}, J_{\delta_{1}}, K_{\gamma_{2}}\right\rangle \quad \text { where } \quad \delta_{1}=s^{s_{2}}=r^{s_{1} s_{2}}
$$

In particular, $t \notin Z^{*}\left(C_{G}(P)\right)$. Since $C_{G}(P) \cap C\left(J_{r}\right) \geq C_{E}(P)$ we conclude that $E\left(C_{G}(P)\right)^{\sim} \cong \operatorname{PSL}(6, q)$ or $\operatorname{PSL}\left(6, q^{2}\right)$, depending on whether $\tilde{A} \cong P S p(n, q)$ or $\operatorname{PSU}(n+1, q)$.

Choose notation so that $E\left(C_{G}(P)\right)=\left\langle K_{\alpha}, K_{\beta_{2}}, J_{\delta_{1}}, K_{\gamma_{2}}, K_{\beta}\right\rangle$, corresponding to the labeling

of the Dynkin diagram of $E\left(C_{G}(P)\right)$. Here $K_{\beta}=K_{\alpha}^{t}$ and $J_{\alpha_{1}}=C(t) \cap K_{\alpha} K_{\beta}$. Also, notice that $K_{\beta_{1}} \times K_{\gamma_{1}} \leq C_{G}(P)$. As $K_{\beta_{2}} \leq E \leq C_{G}\left(K_{r}\right)$, we have $\left[K_{\beta_{2}}, K_{r}\right]=1$, and hence $1=\left[K_{\beta_{2}}^{s_{1} s_{2}}, K_{r}^{s_{1} s_{2}}\right]=\left[K_{\beta_{1}}, K_{\delta_{1}}\right]$. Similarly, $\left[K_{\gamma_{1}}, K_{\delta_{1}}\right]=1$.

We next note that

$$
\left\langle K_{\beta_{1}}, K_{r}\right\rangle \sim\left\langle K_{\beta_{2}}, K_{r}^{s_{r} s_{1}}\right\rangle=\left\langle K_{\beta_{2}}, K_{\delta}\right\rangle
$$

so $\left\langle K_{\beta_{1}}, K_{r}\right\rangle^{\sim} \cong L_{3}(q)$ or $L_{3}\left(q^{2}\right)$. Similarly, $\left\langle K_{\gamma_{1}}, K_{r}\right\rangle^{\sim} \cong L_{3}(q)$ or $L_{3}\left(q^{2}\right)$. With these facts we conclude that $\left\langle K_{\beta_{1}}, K_{r}, K_{\gamma_{1}}\right\rangle \leq E\left(C_{G}(P)\right)$ and is a covering group of $\operatorname{PSL}(4, q)$ or $\operatorname{PSL}\left(4, q^{2}\right)$. Since $\left\langle K_{\beta_{1}}, K_{r}, K_{\gamma_{1}}\right\rangle \leq C\left(K_{\delta_{1}}\right)$ we have

$$
\left\langle K_{\beta_{1}}, K_{r}, K_{\gamma_{1}}\right\rangle=E\left(C\left(K_{\delta_{1}}\right) \cap E\left(C_{G}(P)\right)\right)=\left\langle K_{\alpha}, K_{r}, K_{\beta}\right\rangle .
$$

By (5.3) we have $\left\{K_{\beta_{1}}, K_{\gamma_{1}}\right\}=\left\{K_{\alpha}, K_{\beta}\right\}$.
Suppose $K_{\alpha}=K_{\gamma_{1}}$ and $K_{\beta}=K_{\beta_{1}}$. The looking in $E\left(C_{G}(P)\right)$ we have $K_{\beta_{1}}^{s_{2}}=K_{\gamma_{2}}^{s_{1}}$. But $K_{\beta_{1}}^{s_{2}}=K_{\beta_{2}}^{s_{1} s_{2} s_{2}}=K_{\beta_{2}}^{s_{1}}$. This is impossible. Therefore $K_{\beta_{1}}=K_{\alpha}$ and $K_{\gamma_{1}}=K_{\beta}$.

Therefore

$$
\left\langle K_{\beta_{1}}, K_{\beta_{2}}\right\rangle^{\sim} \cong\left\langle K_{\gamma_{2}}, K_{\gamma_{1}}\right\rangle^{\sim} \cong \operatorname{PSL}(3, q) \quad \text { or } \quad \operatorname{PSL}\left(3, q^{2}\right)
$$

and

$$
\left[K_{\beta_{1}}, K_{\gamma_{2}}\right]=\left[K_{\beta_{2}}, K_{\gamma_{1}}\right]=1
$$

From the structure of E^{0} we have $\left[K_{\beta_{1}}, K_{\gamma_{3}}^{s_{2}}\right]=1$. Write $s_{3}=x y$, with $x \in K_{\beta_{3}}$ and $y=x^{t} \in K_{\gamma_{3}}$. Then $K_{\beta_{1}}^{s_{2} y s_{2}}=K_{\beta_{1}}$ implies $K_{\beta_{2}}^{s_{1} s_{2} s_{2} y s_{2}}=K_{\beta_{2}}^{s_{1} s_{2}}$ and $y \in N\left(K_{\beta_{2}}^{s_{1}}\right)$. Therefore,

$$
\begin{aligned}
{\left[K_{\beta_{1}}, K_{\gamma_{3}}\right] } & =\left[K_{\beta_{2}}^{s_{1} s_{2}}, K_{\gamma_{2}}^{s_{3} s_{2}}\right] \sim\left[K_{\beta_{2}}^{s_{1}}, K_{\gamma_{2}}^{s_{3}}\right]=\left[K_{\beta_{2}}^{s_{1}}, K_{\gamma_{2}}^{y}\right] \\
& \sim\left[K_{\beta_{2}}^{s_{1}}, K_{\gamma_{2}}\right] \sim\left[K_{\beta_{1}}, K_{\gamma_{2}}\right]=1 .
\end{aligned}
$$

We now have

$$
C\left(K_{\beta_{1}}\right) \geq\left\langle K_{\delta_{1}}, P, K_{\gamma_{3}}\right\rangle=\left\langle K_{\beta_{3}}, \ldots, K_{\gamma_{3}}\right\rangle
$$

So $\left[K_{\beta_{1}}, K_{\beta_{3}}\right]=1$. Similarly, $\left[K_{\gamma_{1}}, K_{\beta_{3}}\right]=\left[K_{\gamma_{1}}, K_{\gamma_{3}}\right]=1$. At this point we have sufficient information to determine the structure of \tilde{G}_{00}. This completes the proof of (10.5).
(10.6) Let $\tilde{A} \cong \operatorname{PSp}(6, q)$ with $q \geq 4$ or $\operatorname{PSU}(7, q)$. Assume that $\tilde{E} \cong$ $\operatorname{PSL}(5, q)$ or $\operatorname{PSL}\left(5, q^{2}\right)$, respectively. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \operatorname{PSL}(7, q)$ or $\operatorname{PSL}\left(7, q^{2}\right)$ respectively.

Proof. The argument is similar to that of (10.5). Write $E=$ $\left\langle K_{\beta_{2}}, K_{\beta_{3}}, K_{\gamma_{3}}, K_{\gamma_{2}}\right\rangle$, with notation chosen to correspond to the Dynkin diagram

Set $D=\left\langle K_{\beta_{3}}, K_{\gamma_{3}}\right\rangle$. Then E contains a subgroup I such that $C_{\tilde{E}}(\bar{D})=\bar{K}_{s} \times \bar{I}$,
where bars denote images in \tilde{E} and \bar{I} is cyclic of order $(q-1) / d$ or $\left(q^{2}-1\right) / d$, respectively, where $d=(5, q-1)$ or $\left(5, q^{2}-1\right)$. So $I \not \approx Z(E)$.

Consider $C_{G}(D)$. We claim that $t \notin Z^{*}\left(C_{G}(D)\right)$ and that $E\left(C_{A}(D)\right)=Z$. First note that from the structure of $E\langle t\rangle$ we have $t \sim t v$ with $v \in C_{A}(Z)$ and $v Z(A)$ a transvection in \tilde{A} (see (19.8) of [1]). From here we see that the proofs in (7.10) and (7.11) go through, showing that $E\left(C_{A}(D)\right) \geq Z$. But also $E\left(C_{A}(D)\right) \leq E\left(C_{A}\left(J_{\alpha_{3}}\right)\right)=Z$. This proves the second statement of the claim. We note that $s_{1} \in J_{\alpha_{1}} \leq Z \leq C\left(\left\langle K_{\beta_{3}}, K_{\gamma_{3}}\right\rangle\right)$.

If $\tilde{A} \cong \operatorname{PSU}(7, q)$, then $K_{s} \cong \operatorname{PSL}\left(2, q^{2}\right)$ and $t \notin Z^{*}\left(C_{E}(D)\right)$. Consequently, the claim holds in this case. Suppose now that $\tilde{A} \cong P S p(6, q)$ and that $t \in Z^{*}\left(C_{G}(D)\right)$. Let bars denote images in $C_{G}(D) / O\left(C_{G}(D)\right)$. Then $\bar{Z}=$ $\overline{E\left(C_{G}(D)\right)}$. Since $I \leq C_{G}(D)$ and I centralizes $J_{r} \times J_{s}$, it follows that $\bar{I}=1$. So $[Z, I] \leq O\left(C_{G}(D)\right)$ Let $\quad I_{1}=O\left(C_{D}\left(J_{\alpha_{3}}\right)\right)$. Then $I_{1} \leq C\left(J_{\alpha_{3}} \times J_{s}\right) \quad$ and $I_{1} Z(D) / Z(D)$ is cyclic of order $(q-1) / e$, where $e=(3, q-1)$. Now apply the argument that occurs in the proof of (9.2) in order to get a contradiction. We use $q-1$ in place of $q+1$, but otherwise the argument is the same.

Continue the assumption that $\tilde{A} \cong P S p(6, q)$. The argument of (9.2) actually shows that $E\left(C_{G}(D)\right)^{\sim}$ must contain a non-trivial cyclic subgroup of order dividing $q-1$ and centralizing $J_{r} \times J_{s}$. Checking the possibilities for $E\left(C_{G}(D)\right)^{\sim}$ we have $E\left(C_{G}(D)\right)^{\sim} \cong P S L(4, q)$. If $\tilde{A} \cong P S U(6, q)$, then since $\left[J_{r}, K_{s}\right]=1$ we must have $E\left(C_{G}(D)\right)^{\sim} \cong \operatorname{PSL}\left(4, q^{2}\right)$. Choose notation so that $E\left(C_{G}(D)\right)=\left\langle K_{\alpha}, K_{s}, K_{\beta}\right\rangle$ corresponding to the labeling

of the Dynkin diagram of $E\left(C_{G}(D)\right)$. Also, $K_{\beta}=K_{\alpha}^{t}$ and $J_{\alpha_{1}}=C(t) \cap K_{\alpha} K_{\beta}$.
Note that $\left\langle K_{\alpha}, K_{s}, K_{\beta}\right\rangle \leq E\left(C_{G}\left(J_{\alpha_{3}}\right)\right)=E^{s_{1} s_{2}}=\left\langle K_{\beta_{1}}, K_{\beta_{3}}^{s_{2}}, K_{\gamma_{3}}^{s_{2}}, K_{\gamma_{1}}\right\rangle$, where $K_{\beta_{1}}=K_{\beta_{2}}^{s_{1} s_{2}}$ and $K_{\gamma_{1}}=K_{\gamma_{2}}^{s_{1} s_{2}}$. It is easy to see that in the usual action on the subspaces of a 5-dimensional \mathbf{F}_{q}-space (or $\mathbf{F}_{q^{2}}$-space) for $\tilde{E}^{s_{1} s_{2}}, K_{\alpha} \times K_{\beta}$ acts on the unique 4 -space preserved by $J_{\alpha_{1}}$. From here it follows that $\left\langle K_{\alpha}, \boldsymbol{J}_{s}, K_{\beta}\right\rangle=\left\langle K_{\beta_{1}}, J_{s}, K_{\gamma_{1}}\right\rangle$, so by (5.3), $\left\{K_{\alpha}, K_{\beta}\right\}=\left\{\boldsymbol{K}_{\beta_{1}}, K_{\gamma_{1}}\right\}$. We may choose notation so that $K_{\alpha}=K_{\beta_{1}}$ and $K_{\beta}=K_{\gamma_{1}}$.

In the (B, N)-decomposition for $D=\left\langle K_{\beta_{3}}, K_{\gamma_{3}}\right\rangle$ let t_{3}, v_{3} be involutions generating the Weyl group of D and chosen so that $v_{3}=t_{3}^{t}$. Here $v_{3} \in K_{\beta_{3}}$ and $t_{3} \in K_{\gamma_{3}}$. We then have

$$
\begin{aligned}
\left\langle K_{\beta_{1}}, K_{\beta_{2}}\right\rangle & =\left\langle K_{\beta_{2}}^{s_{1}, s_{2}}, K_{\beta_{3}}^{s_{2} v_{3}}\right\rangle \sim\left\langle K_{\beta_{2}}^{s_{1}, s_{2}}, K_{\beta_{3}}^{s_{2}}\right\rangle \quad\left(\text { as } K_{\beta_{1}} \leq C(D)\right) \\
& \sim\left\langle K_{\beta_{2}}^{s_{1}}, K_{\beta_{3}}\right\rangle \sim\left\langle K_{\beta_{2}}, K_{\beta_{3}}\right\rangle .
\end{aligned}
$$

Similarly

$$
\left\langle K_{\beta_{1}}, K_{\gamma_{2}}\right\rangle \sim\left\langle K_{\beta_{2}}, K_{\gamma_{3}}\right\rangle,\left\langle K_{\gamma_{1}}, K_{\beta_{2}}\right\rangle \sim\left\langle K_{\gamma_{2}}, K_{\beta_{3}}\right\rangle \quad \text { and } \quad\left\langle K_{\gamma_{1}}, K_{\gamma_{2}}\right\rangle \sim\left\langle K_{\gamma_{2}}, K_{\gamma_{3}}\right\rangle .
$$

At this point we have the necessary commutator relations to conclude that $G_{00}=\left\langle K_{\beta_{1}}, K_{\beta_{2}}, K_{\beta_{3}}, K_{\gamma_{3}}, K_{\gamma_{2}}, K_{\gamma_{1}}\right\rangle$ satisfies $\tilde{G}_{00} \cong \operatorname{PSL}(7, q)$ or $\operatorname{PSL}\left(7, q^{2}\right)$ and $A \leq G_{00}$. It follows that $G_{00}=G_{0}$ and (10.6) holds.
(10.7) Let $\tilde{A} \cong \operatorname{PSp}(n, q)$ or $\operatorname{PSU}(n, q)$ with $n \geq 8$ and assume that $\tilde{E} \cong$ $\operatorname{PSL}(n-2, q)$ or $\operatorname{PSL}\left(n-2, q^{2}\right)$, respectively. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \operatorname{PSL}(n, q)$ or $\operatorname{PSL}\left(n, q^{2}\right)$, respectively.

Proof. The argument here is very similar to that of (10.5). The differences are only notational. Write

$$
E=\left\langle K_{\beta_{2}}, \ldots, K_{\beta_{1-1}}, K_{\alpha_{1}}, K_{\gamma_{l-1}}, \ldots, K_{\gamma_{2}}\right\rangle
$$

where each of the generating subgroups is isomorphic to $\operatorname{SL}(2, q)$ or $S L\left(2, q^{2}\right)$, depending on whether $\tilde{A} \cong P S p(n, q)$ or $\operatorname{PSU}(n, q)$. Notation corresponds to the following labeling of the Dynkin diagram:

Also, $K_{\gamma_{i}}=K_{\beta_{i}}^{t}$ for $i=2, \ldots, l-1, J_{\alpha_{i}}=C(t) \cap K_{\beta_{1}} K_{\gamma_{i}}$ for $i=1, \ldots, l-1$, and $J_{\alpha_{l}}=C(t) \cap K_{\alpha_{l}}$. Set $P=\left\langle K_{\beta_{4}}, \ldots, K_{\alpha_{l}}, \ldots, K_{\gamma_{4}}\right\rangle$ and proceed as in (10.5).

Our final result of $\S 7$ is the following.
(10.8) Let $\tilde{A} \cong \operatorname{PSp}(6, q)$ or $\operatorname{PSU}(6, q)$, with $q \geq 4$. Assume that $\tilde{E} \cong$ $\operatorname{PSL}(4, q)$ or $\operatorname{PSL}\left(4, q^{2}\right)$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \operatorname{PSL}(6, q)$ or $\operatorname{PSL}\left(6, q^{2}\right)$.

Proof. Write

$$
E=\left\langle K_{\boldsymbol{\beta}_{2}}, K_{\alpha_{3}}, K_{\gamma_{2}}\right\rangle
$$

with

$$
K_{\beta_{2}}^{t}=K_{\gamma_{2}}, \quad J_{\alpha_{2}}=C(t) \cap K_{\beta_{2}} K_{\gamma_{2}} \quad \text { and } \quad J_{\alpha_{3}}=C(t) \cap K_{\alpha_{3}} .
$$

Now $J_{r}=J_{\alpha_{3}}^{s_{2} s_{1}}$ and by (7.8), $K_{r} \leq E\left(C_{G}(E)\right)$. So

$$
\left[K_{\beta_{2}}^{s_{1} s_{2}}, K_{\alpha_{3}}\right] \sim\left[K_{\beta_{2}}, K_{r}\right]=1
$$

Set $K_{\beta_{1}}=K_{\beta_{2}}^{s_{1} s_{2}}$ and $K_{\gamma_{1}}=K_{\gamma_{2}}^{s_{1} s_{2}}$. Then $\left[K_{\beta_{1}}, K_{\alpha_{3}}\right]=1$ and, similarly, $\left[K_{\gamma_{1}}, K_{\alpha_{3}}\right]=1$.

The group A contains a subgroup I such that $I Z(A) / Z(A)$ is cyclic of order $q-1$ or $(q+1) /(3, q+1)$ (depending on whether $\tilde{A} \cong \operatorname{PSp}(6, q)$ or $\operatorname{PSU}(6, q))$ and such that

$$
I \leq C\left(\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}\right\rangle\right) \cap H
$$

We claim that $\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}\right\rangle$ is standard in $C_{G}(I)$,

$$
\langle t\rangle \in S y l_{2}\left(C(I) \cap C\left(\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}\right\rangle\right)\right)
$$

and $t \notin Z^{*}\left(C_{G}(I)\right)$. The first two assertions are routine. For the other part first note that from the structure of $E^{s_{1} s_{2}}\langle t\rangle$ it is clear that $t \sim t v$, where $v \in J_{\alpha_{1}}^{\#}$. Write $t v=t^{8}$. Then $I \leq C_{A}\left(J_{\alpha_{1}}\right)$, so I normalizes A^{g}. It follows that
$C_{A^{8}}(I)$ is not 2-constrained. From here we argue as in (4.5) of [13] to get the conclusion. Now, we will argue as in (9.2).

Apply the main theorem of [14] and conclude that

$$
E\left(C_{G}(I)\right) \cong L_{3}\left(q^{2}\right) \quad \text { or } \quad L_{3}(q) \times L_{3}(q) \quad \text { if } \quad \tilde{A} \cong P S p(6, q)
$$

and that

$$
E\left(C_{G}(I)\right) \cong L_{3}\left(q^{4}\right) \quad \text { or } \quad L_{3}\left(q^{2}\right) \times L_{3}\left(q^{2}\right) \quad \text { if } \quad \tilde{A} \cong P S U(6, q)
$$

Now I normalizes J_{r} and centralizes $J_{\alpha_{2}}$. Viewing this in $N_{G}\left(J_{r}\right)=N_{G}\left(K_{r}\right)$ we conclude that $K_{\beta_{2}} \times K_{\gamma_{2}} \leq E\left(C_{G}(I)\right)$. Consequently

$$
E\left(C_{G}(I)\right) \cong L_{3}(q) \times L_{3}(q) \quad \text { or } \quad L_{3}\left(q^{2}\right) \times L_{3}\left(q^{2}\right)
$$

Similarly, I normalizes $J_{\alpha_{3}}=J_{r}^{s_{1} s_{2}}$, and we look at $E^{s_{1} s_{2}}$ to conclude $K_{\beta_{1}} \times$ $K_{\gamma_{1}} \leq E\left(C_{G}(I)\right)$. It follows that

$$
E\left(C_{G}(I)\right)=\left\langle K_{\beta_{1}}, K_{\beta_{2}}\right\rangle \circ\left\langle K_{\gamma_{1}}, K_{\gamma_{2}}\right\rangle \quad \text { or } \quad\left\langle K_{\beta_{1}}, K_{\gamma_{2}}\right\rangle \circ\left\langle K_{\gamma_{1}}, K_{\beta_{2}}\right\rangle .
$$

If the latter case holds, then $K_{\beta_{2}}^{s_{1} s_{2}}=K_{r_{1}}$, whereas $K_{\beta_{2}}^{s_{1} s_{2}}=K_{\beta_{1}}$. This is impossible. So the first case must hold, and setting

$$
G_{00}=\left\langle K_{\beta_{1}}, K_{\beta_{2}}, K_{\alpha_{3}}, K_{\gamma_{2}}, K_{\gamma_{1}}\right\rangle
$$

we have, as usual, $A \leq G_{00}=G_{0}$, and the result holds.

$$
\text { 11. } \tilde{A} \cong F_{4}(q)
$$

In this section we assume that $\tilde{A} \cong F_{4}(q)$. To get the necessary commutator relations we must consider the groups $E=E\left(C_{G}(X)\right)$ and also $E^{0}=E\left(C_{G}(Y)\right.$) (notation as in §6). Recall, $P=E\left(C_{A}(Y)\right)$. Once we show that E and E^{0} "pair up" in an acceptable way we set $G_{0}=\left\langle E, E^{0}\right\rangle$ and show that G_{0} has the desired properties.
(11.1) One of the following holds.
(i) $\tilde{E} \cong \tilde{D} \times \tilde{D} \cong \tilde{E}^{0}$.
(ii) $\tilde{E} \cong \operatorname{PSp}\left(6, q^{2}\right) \cong \tilde{E}^{0}$.
(iii) $\tilde{E} \cong \operatorname{PSU}(6, q)$ and $\tilde{E}^{0} \cong O^{+}(8, q)^{\prime}$.
(iv) $\tilde{E} \cong \operatorname{PSL}(6, q)$ and $\tilde{E}^{0} \cong O^{-}(8, q)^{\prime} \cong \tilde{P}$.

Proof. We know the possibilities for the structure of E and E^{0}, and the respective embedding of D and P. Since

$$
\left(C_{G}\left(X \times X_{1}\right)\right)_{A} \quad \text { and } \quad\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}
$$

are Z-conjugate (see (7.12)), we know that the embedding of $\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}\right\rangle$ is the same in each of $\left(C_{G}\left(X \times X_{1}\right)\right)_{A}$ and $\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}$. Checking possibilities, we have the result.
(11.2) Assume that (11.1)(i) or (11.1)(ii) holds and set $G_{0}=\left\langle E, E^{0}\right\rangle$.

Then G_{0} is semisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}$ or $F_{4}\left(q^{2}\right)$, respectively.

Proof. Write

$$
E=\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle,
$$

where $J_{\alpha_{i}} \leq K_{\alpha_{i}}, K_{\alpha_{i}} \cong S L(2, q) \times S L(2, q)$ if (11.1)(i) holds, and $K_{\alpha_{i}} \cong$ $\operatorname{SL}\left(2, q^{2}\right)$ if (11.1)(ii) holds. Moreover,

$$
\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle^{\sim} \cong P S p(4, q) \times P S p(4, q) \quad \text { or } \quad P S p\left(4, q^{2}\right)
$$

and

$$
C_{E}\left(\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle\right)=K_{\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}}
$$

So $t \notin Z^{*}\left(C_{E}\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle\right)$.
By (7.12)(iv) we conclude that

$$
\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle=\left(C_{G}\left(X \times X_{1}\right)\right)_{A}=\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}=C_{E^{o}}\left(Y_{1}\right)_{A} .
$$

So we write $E^{0}=\left\langle\bar{K}_{\alpha_{1}}, \bar{K}_{\alpha_{2}}, \bar{K}_{\alpha_{3}}\right\rangle$ where $J_{\alpha_{i}} \leq \bar{K}_{\alpha_{i}}, \bar{K}_{\alpha_{i}} \cong K_{\alpha_{j}}$ for $i \in\{1,2,3\}$ and $j \in\{2,3,4\}$. Then

$$
\left\langle\bar{K}_{\alpha_{2}}, \bar{K}_{\alpha_{3}}\right\rangle=C_{G}\left(Y Y_{1}\right)_{A}=C_{G}\left(X X_{1}\right)_{A}=\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle
$$

so by (2.3) we have $\bar{K}_{\alpha_{2}}=K_{\alpha_{2}}$ and $\bar{K}_{\alpha_{3}}=K_{\alpha_{3}}$. So

$$
G_{0}=\left\langle\bar{K}_{\alpha_{1}}, K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle
$$

At this point we need only show that $\left[\bar{K}_{\alpha_{1}}, K_{\alpha_{4}}\right]=1$. For once we have this commutator relation, the arguments in $\S 8$ give the structure of G_{0}. Now $\left[\bar{K}_{\alpha_{1}}, K_{\alpha_{4}}\right]=\left[\bar{K}_{\alpha_{1}}, K_{\alpha_{3}}^{s_{4} s_{3}}\right]$ and s_{3} normalizes $\bar{K}_{\alpha_{1}}$ as $\bar{K}_{\alpha_{1}}$ and $K_{\alpha_{3}}$ commute. So it suffices to show that $\left[\bar{K}_{\alpha_{1}}, K_{\alpha_{3}}^{s_{4}}\right]=1$ and for this we need only show that $s_{4} \in N\left(\bar{K}_{\alpha_{1}}\right)$. However this follows from (7.8)(iii) once we interchange the roles of X and Y. We have now completed the proof of (11.2).
(11.3) Assume (11.1)(iii) holds. Then $G_{0}=\left\langle E, E^{0}\right\rangle$ is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong{ }^{2} E_{6}(q)$.

Proof. We write $E=\left\langle J_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle$ where $K_{\alpha_{3}} \cong K_{\alpha_{4}} \cong \operatorname{SL}\left(2, q^{2}\right), J_{\alpha_{3}} \leq$ $K_{\alpha_{3}}, J_{\alpha_{4}} \leq K_{\alpha_{4}},\left[J_{\alpha_{2}}, K_{\alpha_{4}}\right]=1, \quad\left\langle J_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle^{\sim} \cong P S u(4, q), \quad$ and $\quad\left\langle K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle^{\sim} \cong$ $\operatorname{PSL}\left(3, q^{2}\right)$.

The group E^{0} can be expressed $E^{0}=\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\beta_{3}}, J_{\beta_{4}}\right\rangle$ where $J_{\alpha_{1}}, J_{\alpha_{2}}, J_{\beta_{3}}, J_{\beta_{4}}$ are conjugate in E^{0} and the ordering corresponds to the ordering

of the Dynkin diagram of E^{0}. Now

$$
E^{0}=\left\langle P,\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}\right\rangle
$$

and $\left(C_{G}\left(Y \times Y_{1}\right)\right)_{A}$ is Z-conjugate to $\left(C_{G}\left(X \times X_{1}\right)\right)_{A}=\left\langle J_{\alpha_{2}}, K_{\alpha_{3}}\right\rangle$. As

$$
A \leq\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle,
$$

we conclude that $G_{0}=\left\langle J_{\alpha_{1}}, J_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle$.
As in (11.1) it will suffice to show that $\left[J_{\alpha_{1}}, K_{\alpha_{3}}\right]=\left[J_{\alpha_{1}}, K_{\alpha_{4}}\right]=1$. Since $K_{\alpha_{3}}=K_{\alpha_{4}}^{s_{s_{4}}} s_{4}$ and since s_{3} and s_{4} centralize $J_{\alpha_{1}}$, we need only show that [$\left.J_{\alpha_{1}}, K_{\alpha_{4}}\right]=1$. Let I be a $(q+1)$-Hall subgroup of $K_{\alpha_{4}}$, normalizing each of $V_{ \pm \alpha_{2}}, \hat{V}_{ \pm \alpha_{3}}, \hat{V}_{ \pm \alpha_{4}}$, where $\hat{V}_{ \pm \alpha_{3}}$ is the Sylow 2-subgroup of $K_{\alpha_{3}}$ containing $V_{ \pm \alpha_{3}}$, and similarly for $\hat{V}_{ \pm \alpha_{4}}$. Then I centralizes each of $J_{\alpha_{2}}, J_{\alpha_{2}}^{s_{3}}, J_{\alpha_{2}}^{s_{3} s_{4}}$, and J_{r}. Also, I is inverted by t, so t normalizes $E\left(C_{G}(I)\right) \sim E\left(C_{G}(Y)\right)$. Checking centralizers (see $\S 8$ and $\S 19$ of [1]), we see that t must centralize $E\left(C_{G}(I)\right.$), so that $E\left(C_{G}(I)\right) \leq A$. Let $S=E\left(C_{G}(I)\right)$. Then $\tilde{S} \cong P S O^{+}(8, q)^{\prime}$.

We only need $\left[I, J_{\alpha_{1}}\right]=1$, since $K_{\alpha_{4}}=\left\langle J_{\alpha_{4}}, I\right\rangle$. Therefore if $J_{\alpha_{1}} \leq S$, we are done. Suppose, then, that $J_{\alpha_{1}} \notin S$. As above we have

$$
P=J_{\alpha_{2}} \times J_{\alpha_{2}}^{s_{3}} \times J_{\alpha_{2}}^{s_{s_{4}} s_{4}} \times J_{r} \leq S,
$$

and consequently we may write

$$
S=\left\langle J_{\alpha_{2}}, J_{\alpha_{2}}, J_{\alpha_{2}}^{s_{3}}, C\right\rangle, \quad \text { where } \quad\left\langle J_{\alpha_{2}}, C\right\rangle \sim \cong\left\langle J_{\alpha_{2}}^{s_{3}}, C\right\rangle \sim \cong\left\langle J_{\alpha_{2}}^{s_{3} s_{4}}, C\right\rangle \sim \cong L_{3}(q)
$$

We will first handle the case $q>4$. We have $H \cap P$ isomorphic to the direct product of four copies of Z_{q-1}. Thus $H=H \cap P$. Also, $H \leq N_{S}(C)$. From the Theorem in [4] we conclude that C is generated by a pair of opposite root subgroups, $U_{\alpha}, U_{-\alpha}$, for $\alpha \in \Sigma$. As $U_{\alpha} \sim U_{\alpha_{2}}, \alpha$ is a long root and an easy check shows that $\alpha= \pm \alpha_{1}$. Thus $J_{\alpha_{1}}=C \leq S$, as needed. If $q=4$, essentially the same argument applies. However, one must go to the proof of the theorem in [4] and check that for $F_{4}(4)$ all the arguments go through.

Now suppose that $q=2$. Let $P_{0}=O_{3}(P)$ and let $\bar{A} \cong F_{4}(4)$ with $A<\bar{A}$, under the natural embedding. So for each root $\alpha \in \Sigma$ there is a unique root subgroup, \bar{U}_{α}, of \bar{A} with $U_{\alpha}<\bar{U}_{\alpha}$. For $\alpha \in \Sigma$, let $\bar{J}_{\alpha}=\left\langle\bar{U}_{\alpha}, \bar{U}_{-\alpha}\right\rangle$. We then have the groups \bar{P} and \bar{S}, containing P, S, respectively. With this notation, T is a Cartan subgroup of \bar{P}, and hence of \bar{A}. Also, $T \leq N(C)$ implies $T \leq N(\bar{C})$. It now follows that \bar{P} is generated by all the long root subgroups in a root system of \bar{A}. Consequently,

$$
\bar{S} \sim\left\langle\bar{J}_{\alpha_{2}}, \bar{J}_{\alpha_{1}}, \bar{J}_{\alpha_{2}}^{s_{3}}, \bar{J}_{\alpha_{2}}^{s_{3} s_{4}}\right\rangle \quad \text { in } \quad \bar{A},
$$

and this conjugation can be performed by an element, g , normalizing each of $\bar{J}_{\alpha_{2}}, \bar{J}_{\alpha_{2}}^{s_{3}}, \bar{J}_{\alpha_{2}}^{s_{3} s_{4}}, \bar{J}_{r}$. But then $g \in \bar{P}$ (check normalizers in $\left.F_{4}(4)\right)$ and so

$$
\bar{S}=\left\langle\bar{J}_{\alpha_{2}}, \bar{J}_{\alpha_{1}}, \bar{J}_{\alpha_{2}}^{s_{3}}, \bar{J}_{\alpha_{2}}^{s_{3} s_{4}}\right\rangle
$$

In particular, $\bar{J}_{\alpha_{1}} \leq \bar{S}$. So $J_{\alpha_{1}}=\bar{J}_{\alpha_{1}} \cap A \leq \bar{S} \cap A=S$, completing the proof of (11.3).
(11.4) Assume (11.1)(iv) holds. Let $G_{0}=\left\langle E, E^{0}\right\rangle$. Then G_{0} is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong E_{6}(q)$.

Proof. $\tilde{E} \cong \operatorname{PSL}(6, q)$ and we may write $E=\left\langle K_{\beta_{1}}, K_{\beta_{3}}, K_{\beta_{4}}, K_{\beta_{5}}, K_{\beta_{6}}\right\rangle$ where each $K_{\beta_{i}} \cong S L(2, q)$ and notation is chosen to correspond to the Dynkin diagram

viewed as a subdiagram of

So $\left[K_{\beta_{1}}, K_{\beta_{4}}\right]=\left[K_{\beta_{1}}, K_{\beta_{5}}\right]=\left[k_{\beta_{1}}, K_{\beta_{6}}\right]=1,\left\langle K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle^{\sim} \cong \operatorname{PSL}(3, q)$, etc. The group $\langle t\rangle D$ is embedded in $E\langle t\rangle$ in such a way that

$$
\begin{gathered}
J_{\alpha_{2}}=K_{\beta_{4}}, \quad J_{\alpha_{3}}=C(t) \cap\left(K_{\beta_{3}} \times K_{\beta_{5}}\right), \quad J_{\alpha_{4}}=C(t) \cap\left(K_{\beta_{1}} \times K_{\beta_{6}}\right), \\
K_{\beta_{1}}^{t}=K_{\beta_{6}} \quad \text { and } \quad K_{\beta_{3}}^{t}=K_{\beta_{5}} .
\end{gathered}
$$

Let I be a $(q+1)$-Hall subgroup of $J_{\alpha_{4}}$ and \bar{I} a $(q+1)$-Hall subgroup of $K_{\beta_{1}} \times K_{\beta_{6}}$, containing I, with $\bar{I} t$-invariant. Then \bar{I} normalizes $C_{G}(I)_{A}=$ $E\left(C_{G}(I)\right)$ and centralizes $J_{r} \times K_{\beta_{4}}=J_{r} \times J_{\alpha_{2}}$. Writing $I=Y^{w}$, for $w=$ $s_{4} s_{3} s_{2} s_{3} s_{1} s_{2} s_{3}$, we have

$$
P=C_{G}(I)_{A}=\left(E^{0}\right)^{w}=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, C\right\rangle
$$

where $\tilde{C} \cong L_{2}\left(q^{2}\right), C$ is t-invariant, and $C_{C}(t)=J_{\alpha_{4}}^{s_{3} s_{2} s_{3}}$. Then

$$
O^{2^{\prime}}\left(C_{P}\left(J_{\alpha_{2}} J_{r}\right)\right)=C
$$

In particular, $C \leq E$. Let I_{1} be a $(q+1)$-Hall subgroup of C, chosen such that I_{1} is t-invariant and I_{1} normalizes each of the root subgroups, $U_{ \pm \alpha_{2}}, U_{ \pm \alpha_{1}}$. Then I_{1} must centralize $J_{\alpha_{1}}, J_{\alpha_{2}}, J_{r}$. Viewing this in $C_{G}\left(J_{r}\right)$ we see that $I I_{1}$ and \bar{I} are each in E and project to ($q+1$)-Hall subgroups of $C_{\tilde{E}}\left(\tilde{J}_{\alpha_{2}}\right)$. In fact, $I_{1} \leq C \leq E$. Considering the group $\left\langle J_{\alpha_{4}}, I_{1}\right\rangle$, we have $\left\langle J_{\alpha_{4}}, I_{1}\right\rangle \leq C_{E}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right)$.

Using the Bruhat decomposition and the fact that $C_{A}\left(J_{r}\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle$ one checks that $E\left(C_{A}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right)\right)=\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle$. So

$$
C_{G}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right) \geq C_{E}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right) \geq\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}, I_{1}\right\rangle .
$$

It follows that

$$
t \notin Z^{*}\left(C_{G}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right)\right)
$$

so by the main theorem in [14], $L=E\left(C_{G}\left(\left\langle J_{r}, J_{\alpha_{1}}\right\rangle\right)\right)$ satisfies $L \leq E$ and $\tilde{L} \cong L_{3}\left(q^{2}\right), L_{3}(q) \times L_{3}(q)$, or $q=2$ and $\tilde{L} \cong J_{2}$. However, in the last case
$C_{E}(t)$ contains an involution x acting on $\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle$ as a graph automorphism.
But x cannot act on A. So $\tilde{L} \cong L_{3}\left(q^{2}\right)$ or $L_{3}(q) \times L_{3}(q)$.
Suppose that $\tilde{L} \cong L_{3}\left(q^{2}\right)$. Then t induces a field automorphism on \tilde{L}. Let F be a cyclic subgroup of L inverted by t and such that $F Z(L) / Z(L)$ has order $q^{3}+1$. Such a subgroup exists and in E we see that $C_{E}(F)$ is cyclic of order dividing $q^{6}-1$ and $\operatorname{Aut}_{E}(F) \cong Z_{6}$. Let $\langle a, t\rangle$ be a klein group in $N_{E(t)}(F)$, with $a \in E$. Then a inverts F and it follows from consideration of the usual module for $\operatorname{SL}(6, q)$, that a is of type j_{3}, in the notation of $\S 4$ of [1]. Since $C_{\mathrm{E}}(t)^{\sim} \cong P S p(6, q)$ we know that t centralizes a conjugate of F. Therefore, $t \sim t a$. By the results in $\S 7$ of [1] we have a being conjugate to an involution in $V_{\alpha_{2}}^{\#} V_{\alpha_{4}}^{\#}$, so $t \sim t a_{1} a_{2}$, where $a_{1} \in V_{\alpha_{2}}^{\#}$ and $a_{2} \in V_{\alpha_{4}}^{\#}$. Conjugating by an element in $K_{\beta_{1}}$ we have $t \sim t a_{1}$. Finally, conjugate by an element of $C_{E}(t)$ to get $t \sim t v$ for $v \in V_{s}^{\#}$. All of the conjugation above takes place in $E\langle t\rangle$. However by (19.8) of [1] $t \nsim t v$ in $E\langle t\rangle$. This is a contradiction. Therefore, $\tilde{L} \cong L_{3}(q) \times L_{3}(q)$. Let M be the usual module for $\operatorname{SL}(6, q)$ and view $\operatorname{SL}(6, q)$ as a covering group of \tilde{E}. Let $\overline{\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle}$ be the preimage of $\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle$ in $\operatorname{SL}(6, q)$. Then $\overline{\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle}$ stabilizes two complementary 3 -spaces of M, inducing contragredient representations on the subspaces. Therefore, $\overline{\left\langle J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle}$ stabilizes precisely two proper subspaces of M. On the other hand, it is easy to see that the preimage of \tilde{L} in $\operatorname{SL}(6, q)$ must also stabilize complementary 3-spaces in M. It follows that $L=\left\langle K_{\beta_{1}}, K_{\beta_{3}}\right\rangle\left\langle K_{\beta_{5}}, K_{\beta_{6}}\right\rangle$. In particular $K_{\beta_{1}}, K_{\beta_{3}}, K_{\beta_{5}}, K_{\boldsymbol{\beta}_{6}}$ all centralize $J_{\alpha_{1}}$.

It follows that $\left\langle E, J_{\alpha_{1}}\right\rangle^{\sim} \cong E_{6}(q)$ and $A \leq\left\langle E, J_{\alpha_{1}}\right\rangle$. From here we get $\left\langle E, J_{\alpha_{1}}\right\rangle=G_{0}$ and (11.4) holds.

$$
\text { 12. } \tilde{A} \cong \cong^{2} E_{6}(q)
$$

For this section assume that $\tilde{A} \cong{ }^{2} E_{6}(q)$. Then

$$
D=\left\langle J_{\alpha_{2}}, J_{\alpha_{3}}, J_{\alpha_{4}}\right\rangle \quad \text { and } \quad \tilde{D} \cong P S U(6, q)
$$

Therefore, $\tilde{E} \cong \operatorname{PSU}(6, q) \times \operatorname{PSU}(6, q)$ or $\operatorname{PSL}\left(6, q^{2}\right)$.
(12.1) Assume $\tilde{E} \cong \operatorname{PSL}\left(6, q^{2}\right)$ and let $E^{0}=E^{s_{1} s_{2}}$. Then $G_{0}=\left\langle E, E^{0}\right\rangle$ is quasisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong E_{6}\left(q^{2}\right)$.

Proof. Assume $\tilde{E} \cong \operatorname{PSL}\left(6, q^{2}\right)$ and label the Dynkin diagram of E as follows:

Then write $E=\left\langle K_{\beta_{4}}, K_{\beta_{3}}, K_{\beta_{2}}, K_{\beta_{5}}, K_{\beta_{6}}\right\rangle$ with each $\tilde{K}_{\beta_{1}} \cong S L\left(2, q^{2}\right)$ and commutator relations as usual. Here

$$
J_{\alpha_{2}}=C(t) \cap K_{\alpha_{2}}, \quad J_{\alpha_{3}}=C(t) \cap\left(K_{\beta_{3}} \times K_{\beta_{5}}\right), \quad \text { and } \quad J_{\alpha_{4}}=C(t) \cap\left(K_{\beta_{4}} \times K_{\beta_{6}}\right)
$$

Define $K_{\beta_{1}}$ by $K_{\beta_{1}}=K_{\beta_{2}}^{s_{1} s_{2}}$. Then $K_{\beta_{1}} \geq J_{\alpha_{1}}$ and by (7.8), $K_{\beta_{1}} \leq C_{G}\left(E_{\alpha_{1}}\right)$. We next show that $K_{\beta_{3}}, K_{\beta_{4}}, K_{\beta_{5}}$, and $K_{\beta_{6}}$ are each in $E_{\alpha_{1}}$. Consider Y_{3}, a $\left(q^{2}+1\right)$-Hall subgroup of $J_{\alpha_{3}}$ inverted by s_{3}. Then Y_{3} is contained in a subgroup \hat{Y}_{3} of $K_{\beta_{3}} \times K_{\beta_{5}}$ with $\hat{Y}_{3} \cong Y_{3} \times Y_{3}$ and \hat{Y}_{3} inverted by s_{3}. Now \hat{Y}_{3} normalizes $\left(C_{G}\left(Y_{3}\right)\right)_{A}$. Also $C_{E}\left(J_{\alpha_{4}}\right) \geq K_{\beta_{2}}$, so $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{4}}\right)\right)$, and hence $t \notin Z^{*}\left(C_{G}\left(J_{\alpha_{3}}\right)\right)$. By (6.7) $E\left(C_{A}\left(J_{\alpha_{3}}\right)\right)=E\left(C_{A}\left(Y_{3}\right)\right)$. Since $C_{G}\left(J_{\alpha_{3}}\right) \leq C_{G}\left(Y_{3}\right)$, (5.2) implies that $C_{G}\left(J_{\alpha_{3}}\right)_{A}=C_{G}\left(Y_{3}\right)_{A}$. Now $\left\langle J_{\alpha_{3}}, \hat{Y}_{3}\right\rangle=K_{\beta_{3}} \times K_{\beta_{5}}$, so

$$
K_{\beta_{3}} \times K_{\beta_{5}} \leq N\left(C_{G}\left(J_{\alpha_{3}}\right)_{A}\right),
$$

and since $J_{\alpha_{3}} \leq C\left(C_{G}\left(J_{\alpha_{3}}\right)_{A}\right)$ we must have $K_{\beta_{3}} \times K_{\beta_{5}}$ centralizing $C_{G}\left(J_{3}\right)_{A}$. In particular, $K_{\beta_{3}} \times K_{\beta_{5}}$ centralizes $J_{\alpha_{1}}$. Similarly, $K_{\beta_{4}} \times K_{\beta_{6}}$ centralizes $J_{\alpha_{1}}$. So each of $K_{\beta_{3}}, K_{\beta_{4}}, K_{\beta_{5}}$, and $K_{\beta_{6}}$ are in $C\left(J_{\alpha_{1}}\right)_{A}=E_{\alpha_{1}} \leq C\left(K_{\beta_{1}}\right)$.

Let $t_{3} \in K_{\beta_{3}}$ be defined by $\left[t_{3}, t\right]=s_{3}$. Then $t_{3} \in C\left(K_{\beta_{1}}\right)$ and so $\operatorname{SL}\left(3, q^{2}\right) \cong$ $\left\langle K_{\boldsymbol{\beta}_{3}}, K_{\boldsymbol{\beta}_{2}}\right\rangle^{-s_{1} s_{2} t_{3}}=\left\langle K_{\boldsymbol{\beta}_{2}}, K_{\boldsymbol{\beta}_{1}}\right\rangle^{\sim}$. At this point we argue as usual to conclude that $\left\langle E, K_{\beta_{1}}\right\rangle=\left\langle E, E^{0}\right\rangle=G_{0}$ and (12.1) holds.
(12.2) Assume that $\tilde{E} \cong \operatorname{PSU}(6, q) \times \operatorname{PSU}(6, q)$. Set $E^{0}=E^{s_{1} s_{2}}$ and $G_{0}=$ $\left\langle E, E^{0}\right\rangle$. Then G_{0} is semisimple, $\left|Z\left(G_{0}\right)\right|$ is odd, and $\tilde{G}_{0} \cong \tilde{A} \times \tilde{A}$.

Proof. Write $E=\left\langle K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle$ with $J_{\alpha_{1}} \leq K_{\alpha_{i}}, \quad K_{\alpha_{i}} \cong J_{\alpha_{i}} \times J_{\alpha_{i}}$ for $i=$ 1,2,3. Set $K_{\alpha_{1}}=K_{\alpha_{2}}^{s_{1} s_{2}}$, so $J_{\alpha_{1}} \leq K_{\alpha_{1}}$. The argument in (12.1) shows that $\left[K_{\alpha_{1}}, K_{\alpha_{3}}\right]=\left[K_{\alpha_{1}}, K_{\alpha_{4}}\right]=1$. We still need the structure of $\left\langle K_{\alpha_{1}}, K_{\alpha_{2}}\right\rangle$ in order to complete the proof.

Consider J_{γ} as in (6.7). Then

$$
P=O^{2}\left(C_{\mathrm{A}}\left(J_{\gamma}\right)\right)=\left\langle J_{\alpha_{2}}, J_{\alpha_{1}}, J_{\alpha_{2}}^{s_{3}}\right\rangle \quad \text { and } \quad \tilde{P} \cong L_{4}(q)
$$

We argue as in (12.1) that for $i=1,2 K_{\alpha_{1}} \leq C\left(E_{\alpha_{i}}\right)$, so $K_{\alpha_{1}}, K_{\alpha_{2}}$ are in $C\left(J_{\gamma}\right)$. Also s_{3} normalizes J_{γ} so we have $C\left(J_{\gamma}\right) \geq\left\langle K_{\alpha_{2}}, K_{\alpha_{1}}, K_{\alpha_{2}}^{s_{3}}\right\rangle$. By the main theorem in [14] we conclude that $E\left(C\left(J_{\gamma}\right)\right)^{\sim} \cong L_{4}(q) \times L_{4}(q)$. Then

$$
O^{2^{\prime}}\left(C\left(J_{\gamma}\right) \cap C\left(J_{\alpha_{2}}\right)\right) \cong L_{2}(q) \times L_{2}(q)
$$

Since $K_{\alpha_{2}}^{s_{3}} \leq C\left(J_{\alpha_{2}}\right)$ (by 7.8), we have $K_{\alpha_{2}}^{s_{3}}=O^{2}\left(C\left(J_{\gamma}\right) \cap C\left(J_{\alpha_{2}}\right)\right)$. Let E_{1} and E_{2} be the components of E, D_{1} and D_{2} the components of $C\left(J_{\gamma}\right)$. We may assume that $K_{\alpha_{2}}^{s_{3}} \cap E_{i}=K_{\alpha_{2}}^{s_{3}} \cap D_{i}$, for $i=1,2$. Conjugating by s_{3}, we have $K_{\alpha_{2}} \cap E_{i}=K_{\alpha_{2}} \cap D_{i}$, for $i=1,2$. At this point the structure of $\left\langle K_{\alpha_{1}}, K_{\alpha_{2}}, K_{\alpha_{3}}, K_{\alpha_{4}}\right\rangle$ is determined, using the usual arguments. This completes the proof of (12.2).

References

1. M. Aschbacher and G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math J., vol. 63 (1976), pp. 1-91.
2. -, On groups with a standard component of known type, Osaka J. Math., vol. 13 (1976), pp. 439-482.
3. A. Borel and J. Tits, Elements unipotents et sous-groupes paraboliques de groupes reductifs, I, Invent. Math., vol. 12 (1971), pp. 95-105.
4. E. Cline, B. Parshall and L. Scott, Minimal elements of $\mathrm{K}(\mathrm{H} ; \mathrm{p})$ and conjugacy of Levi complements in finite Chevalley groups, J. Alg., vol. 34 (1975), pp. 521-523.
5. C. Curtis, Central extensions of groups of Lie type, J. Reine Angew. Math., vol. 220 (1965), pp. 174-185.
6. C. Curtis, W. Kantor and G. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., vol. 218 (1976), pp. 1-59.
7. P. Fong and G. Seitz, Groups with a (B,N)-pair of rank 2, II, Invent. Math., vol. 24 (1974), pp. 191-239.
8. K. Gomi, Standard subgroups isomorphic to $\operatorname{PSp}\left(4,2^{a}\right), a \geq 2$, to appear.
9. R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., vol. 183 (1973), pp. 355-421.
10. R. Griess, D. Mason and G. Seitz, Bender groups as standard subgroups, Trans. Amer. Math. Soc., vol. 238 (1978), pp. 179-211.
11. I. Miyamoto, Finite groups with a standard subgroup isomorphic to $U_{4}\left(2^{n}\right)$, to appear.
12. ——, Finite groups with a standard subgroup isomorphic to $U_{5}\left(2^{n}\right)$, to appear.
13. G. Sertz, Chevalley groups as standard subgroups, I, Illinois J. Math., vol. 23 (1979), pp. 36-57.
14. - , Standard subgroups of type $L_{n}\left(2^{a}\right)$. J. Algebra, vol. 48 (1977), pp. 417-438.
15. R. Steinberg, Lectures on Chevalley groups, Yale notes, 1967.
16. -, Automorphisms of finite linear groups, Canadian J. Math., vol. 12 (1960), pp. 605-615.
17. F. Timmesfeld, Groups generated by root-involutions, I, II, J. Alg., vol. 33 (1975), pp. 75-134; vol. 35 (1975), pp. 367-442.
18. H. Weilandt, Zum Satz von Sylow, Math. Zeitschr., vol. 60 (1954), pp. 407-408.
19. W. Wong, Generators and relations for classical groups, to appear.
20. H. Yamada, Finite groups with a standard subgroup isomorphic to $U_{S}(2)$, to appear.

University of Oregon
Eugene, Oregon

[^0]: Received July 6, 1976.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.
 (C) 1979 by the Board of Trustees of the University of Illinois

 Manufactured in the United States of America

