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MINIMAL TOPOLOGIES AND L,-SPACES

BY

C. D. ALIPRANTIS AND O. BURKINSHAW

Abstract

This paper deals with minimal topologies on Riesz spaces. A minimal topo-
logy is a Hausdorff locally solid topology that is coarser than any other Haus-
dorf locally solid topology on the space. It is shown that every minimal
topology satisfies the Lebesgue property, that an Archimedean Riesz space can
admit a locally convex-solid topology that is minimal if and only if the space is
discrete, that C[0, 1] and L([0, 1]) do not admit a minimal topology, and that
the topology of convergence in measure on Lp([0, 1]) (0 < p < o)is a minimal
topology. A similar result is shown for certain Orlicz spaces.

1. Preliminaries

For notation and basic terminology concerning Riesz spaces not explained
below, see [2] and [5]. We recall briefly the basic concepts needed for this paper.
Let L be a Riesz space. A net {u} of L is order convergent to u, in symbols

(o)

if there exists a net {v} with the same indexed set such that [u- u < vfor all
and v, + 0. A subset S of L is said to be

(i)
(ii)
(iii)

solid if ul < vl andvsSimplyusS,
a-order closed if S contains its sequential order limits,
order closed if S contains its order limits.

A Riesz subspace K of L is a vector subspace K of L such that u v v s K for
every pair u, v s K. The Riesz subspace K is said to be

(a)
(b)

order dense if for every 0 < u s L, there exists 0 < v K with 0 < v < u,
super order dense if for every 0 < u s L, there exists a sequence
{u,}

_
K with 0 < u. ’ u in L.

An ideal A of L is a solid vector subspace of L; every ideal is a Riesz
subspace. A a-order closed ideal is called a a-ideal, and an order closed ideal is
called a band.

Received April 5, 1978.

(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

164



MINIMAL TOPOLOGIES AND Lp-SPACES 165

A locally solid topolo#y z on a Riesz space is a linear topology z having a
basis for zero consisting of solid sets. A locally solid topology z on a Riesz space
L is said to be

(1) Lebesgue if u $ 0 in L implies u 0,

(2) Pre-Lebesgue if 0 < un implies that {un} is a z-Cauchy sequence,
(3) tr-Fatou if z has a basis for zero consisting of solid and a-order closed

sets,
(4) Fatou if z has a basis for zero consisting of solid and order closed sets.

A sequence {S,} of subsets of a vector space is said to be normal if
S+ + S,+

_
S, holds for all n. If now L is a Riesz space and {Sn} is a normal

sequence of solid sets, then N n= S, is an ideal of L, called the null ideal of
{S,}. If, in addition, each S, is a-order closed (resp. order closed), then N is a
a-ideal (resp. a band) of L.

DEFINITION 1. Let z be a locally solid topology on a Riesz space L, and let
V denote the collection of all normal sequences of solid z-neighborhoods of
zero. The carrier C, of z is defined by

C,= U Nd’N= V,{V}eIz.
=1

We note that the carrier C, can also be introduced in terms of Riesz pseudon-
orms. Thus, if for a Riesz pseudonorm p we put No {u e L: p(u)= 0}, then

C {Na,’p is a z-continuous Riesz pseudonorm}.
The carrier C is always a a-ideal of L [1, Lemma 2.1, p. 4]. If two locally

solid topologies on a Riesz space satisfy z
_

z2, then C1
_

C,.. A locally solid
topology will be called entire if its carrier is order dense. Note that every entire
topology is necessarily Hausdorff. Every Hausdorff Fatou topology is entire 1,
Lemma 2.1, p. 4].
A linear functional is called order continuous if u, $ 0 in L implies

lim b(u,)= 0. The band of the order continuous linear functionals on L is
denoted by L. The null ideal of an order bounded linear functional is

N {u e L: I l(lu I)- 0}, and its carrier C is defined by C N.
We close this section by mentioning that for this paper all topologies will be

assumed to be Hausdorff.

2. Minimal Topologies

If a Riesz space L admits a locally solid topology, then it also admits a
maximal topology, that is, a locally solid topology that is finer than any other
locally solid topology on L. The maximal topology is simply the topology
generated by the collection of all Riesz pseudonorms on L.
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It is, therefore, natural to ask whether a locally solid Riesz space admits a
minimal topology, that is a locally solid topology that is coarser than any other
locally solid topology on the Riesz space. Of course, if such a topology exists, it
must be uniquely determined. In this section we shall discuss the properties of
minimal topologies and present some interesting examples of Riesz spaces with
minimal topologies. On the other hand, we shall see that not every locally solid
Riesz space has a minimal topology.

DEFINITION 2. A Hausdorff locally solid topology on a Riesz space L is
called minimal if is coarser than any other Hausdorff locally solid topology z
on L, i.e.,

_
z.

The basic properties of a minimal topology are included in the next theorem.

THEOREM 3. Let L be a Riesz space with a minimal topology . Then the
following statements hold"

(i)
(ii)

Every di:sjoint sequence of L is -convergent to zero., is a Lebesgue topology.

Proof. Let denote the set of all -continuous Riesz pseudonorms on L.
For each p and v L+ define pv(u)= p(lu ^ v)for u L; then pois also a
Riesz pseudonorm.

(i) Now let {u,} be a positive disjoint sequence of L, and

S {v L+" there exists k with v ^ u, 0 for all n > k}.

Then the set of Riesz pseudonorms (po" p and v S} generates a locally
solid topology z on L which is Hausdorff (since Sa {0}, see [5, Section 28,
p. 160]). Clearly

U 0.

Now by hypothesis is coarser than , and thus

U 0.

(ii) If u $ 0 in L, fix an index ft. Let e > 0 and

T {v L+" v ^ (u eua) + 0 for some }.
The set of Riesz pseudonorms {p" p . and v T} defines a locally solid

topology on L that must be Hausdorff. To see this, suppose po(u) 0 for all
p and all v T. Since (u- eua)- T for each , it follows that ul ^(u- eua)- 0 for each . But u $ 0, so u I^ ua 0. Thus u T, which
implies u u / u 0 and hence u 0. Therefore is a Hausdorff
topology.
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It now follows by the definition of z that

t/a 8t/fl) +

and hence we must have

U BUff) +

Since O < u, <_ (u,- eua) + +
u ,0.|

Note.
referee.

and e is arbitrary, it follows that

The above simple proof that replaces our original is due to the

Remark. There is a close relationship between a Riesz space with a minimal
topology and its universal completion. If is a minimal topology on L, then
Theorem 3 combined with [2, Theorem 24.3] shows that has a Lebesgue
extension to the universal completion/2 of L, and in fact/_Y is the topological
completion of (L, ).

Combining part (ii) of the last theorem with the fact that C[0, 1] does not
admit a Lebesgue topology [2, Example 8.2, p. 53], we obtain the following.

THEOREM 4. C[0, 1] has no minimal topology.

Recall that a non-zero element u of a Riesz space is called a discrete element
if Iv <- u implies v 2u. g Riesz space L is called discrete if the band
generated by the discrete elements is all of L. An atom is a non-zero element u
of a Riesz space such that 0 N v N U l, 0 < W < u l, and v ^ w 0 imply v 0
or w 0. In an Archimedean Riesz space an element is a discrete element if and
only if it is an atom. Also the Archimedean discrete spaces are precisely the
order dense Riesz subspaces of the Riesz spaces of the form Rx [2, Theorem
2.17, p. 17].

THEOREM 5. An Archimedean Riesz space L admits a minimal topology that is
also locally convex if and only if L is a discrete space.

In this case, the minimal topology is the topology of pointwise convergence.

Proof. Assume that L is discrete. By [2, Theorem 2.17, p. 17], L is an order
dense Riesz subspace of some Rx. We claim that the locally convex-solid topo-
logy of pointwise convergence on L is a minimal topology. To see this, let z be
a locally solid topology on L, and let {u}

_
L+ satisfy
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If lim u(x) 0 for some x, then by passing to a subnet we can assume that
there exists e > 0 such that u(x) > e > 0 for all . But then 0 < eZ v L
satisfies 0 < v < u for all , contradicting

U 0.

Therefore, is minimal.
Now assume that L admits a minimal topology that is in addition locally

convex. By Theorem 3, is a Lebesgue topology; therefore/_;
___
L’. Now let

0<uL. Choose 0<tk with tk(u)>0. Since bL, there exists
0 < v C with 0 < v < u. If [0, v] does not contain any discrete element, then
there exists a disjoint sequence {v.} with 0 < v. < v for all n. For each n, choose
2, with 2, b(v,)= 1. By Theorem 3,

2, Vn O;

consequently lim b(A, v.)= O, a contradiction. The discreteness of L is now
immediate. 1

Repeating almost verbatim the arguments of the second part ofthe previous
proof we can establish the following interesting result.

THEOREM 6. Let L be an atomless Riesz space with a minimal topology
Then (L, )’= {0}.
We now turn our attention to minimal topologies on L,-spaces. Start with a

finite measure space (X, E, tt). It is assumed that the Caratheodory completion
process has been applied to the measure space (X, E, g), so that E is the
a-algebra of all tt-measurable subsets of X. Let ’ denote the equivalence
classes of all real valued it-measurable functions on X; //is often denoted by
Lo(X, E, ). Then is a Riesz space under the orderingf , whenever
f(x) #(x) for -almost all x. Clearly, is a-Dedekind and a-laterally com-
plete (i.e., every positive disjoint sequence has a supremum). By the additivity
of it follows that each disjoint subset of is at most countable, and hence
has a supremum, that is, is laterally complete.
e Riesz pseudonorm

p(u)=
1 + lul

generates a metrizable locally solid topology on . This topology is actually
the topology of convergence in measure, since

u u
if and only if

lim g({x e X" lug(x)- u(x) 2 e})= 0 for all e > 0.
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It is easy to see that is a Lebesgue topology, and in fact the only Hausdorff
locally solid topology that ’ can carry [2, Theorem 24.7, p. 185]. It follows
that ’ has the countable sup property, and consequently ’ is Dedekind
complete. Thus ’ is a universally complete Riesz space. Note also that if the
measure # is non-atomic, then /’ does not have discrete elements. Moreover,
(’, ) is -complete (prove it either directly or by using [2, Theorem 24.2,
p. 182]).
A simple verification now shows that j/is the universal completion of the

Riesz spaces L(X, E, #) for 0 < p < . In actuality each L(X, E, #) is a super
order dense ideal of /. The restriction of to any L,(X, E,/) is the topology of
convergence in measure.

THEOREM 7. Let (X, E,/) be a finite measure space. Then the topology of
convergence in measure is a minimal topology on each Lp(X, Y, l)for 0 < p < .

Proof. For 0 < p < , the topology z generated by the "Lvnorm" on
L,(X,Y., ) is a Lebesgue Fr6chet topology. Thus by [2, Theorem 16.7, p. 112], z
is finer than any other locally solid topology on L(X, E, #). In particular, every
locally solid topology on L,(X, E, l) has the Lebesgue property.

Let be the topology of convergence in measure on L,(X, E, #). Then every
disjoint sequence of L(X, E, /) is -convergent to zero. Indeed, if {f} is a
disjoint sequence of ’, then f=

__
n and <- - fho ds for

all n, so by the Lebesgue dominated convergence theorem,

f, ,0o

The proof now can be completed by invoking the authors’ theorem: A
Lebesgue topology on a Riesz space L is coarser than any other tr-Fatou
topology on L if and only if every disjoint sequence ofL is -convergent to zero;
see [2, Theorem 24.3, p. 182]. |

A similar result holds for an arbitrary measure space (X, E, #). That is, every
abstract Ln-space has a minimal topology. In the general case is generated by
the family of Riesz pseudonorms {pg: E S}, where

]u] d/ for u /p(u)
1 + I.I and s {e z: .(e) < oo}.

The reader can verify that the proof of Theorem 7 is valid. However, here the
minimal topology on each L,(X, E, #) (0 < p < ) is the topology of conver-
gence in measure on the measurable subsets of X whose measure is finite.
The situation for L(X, E, #) is quite different as the next theorem shows.

THEOREM 8. Let (X, E, p) be a non-atomic a-finite measure space. Then
Loo(X, Z,, la) has no minimal topology.
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Proof Let L Loo(X, E, #). Then the norm dual satisfies

E L; (L’),
where (Lf)a is the band of all linear functionals disjoint from L. Let z be the
locally solid topology on L generated by the Riesz seminorms {P0" b (L)a},
where po(u)= I l(lu I) for u L. Since/ is non-atomic it follows that (L)a
separates the points of L [3, p. 348], and thus z is Hausdorff. Since Co {0} for
each b (L;)a it follows easily that C {0}.
Now suppose is a minimal topology on L. Then

_
v, so that C

_
C.

However, is a Lebesgue topology by Theorem 3, and so C is order dense in L
[1, Lemma 2.1, p. 4] which contradicts C= {0}. Thus Loo(X, E, #) has no
minimal topology. |

Is a Lebesgue topology on a Riesz space L that is extendable to the universal
completion of L necessarily minimal? In general, the answer is negative
according to the previous theorem. However, if every locally solid topology has
an order dense carrier, then the answer is affirmative. The details follow. (Recall
that a locally solid topology is called entire if its carrier is order dense.)

THEOREM 9. Assume that is a Lebes#ue topology on a Riesz space L, and
that has a locally solid extension to the universal completion I2 of L. If every
Hausdorff locally solid topology on L is entire, then is minimal.

Proof. Let z be a locally solid topology on L. Choose a basis {V} of zero for
z consisting of solid z-neighborhoods. For each V {V}, let V* denote the
-closure of V; clearly each V* is solid and order closed. Thus {V*} defines a
Fatou topology * on L such that z*

_
z.

We next show that z* is Hausdorff. By way of contradiction assume that
0 < u V* for all V*. Since both C and C are order dense, we can assume that
u Ce c C. Pick a normal sequence {V,} of solid z-neighborhoods ofzero with
u Na, where N ;_ V,. Similarly, pick another normal sequence {l/V,} of
solid -neighborhoods of zero with u Md, where M ,% W. Clearly
uV,* for all n. Now for each n, choose uV, with 0<_u,<u and
u u,, l/V.. Then {u,,}

_
Md and

in Ma, where z is the metrizable Lebesgue topology on Ma generated by
{W Ma}. Now by [2, Theorem 15.9, p. 107], there exists a subsequence {v,} of
{u,} and a net {w} satisfying 0 < w ]’ u in Ma, and such that given , there
exists n with w < v, for all n > n. It follows that {w}

_
N. But since

{w}
_
Na, we get w 0 for all . Hence, u 0, a contradiction.

Now by [2, Theorem 24.3, p. 182], we have
_

z*. Hence z, and there-
fore is minimal. |
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We next show how the previous theorem can be applied to Orlicz spaces.
Consider a finite measure space (X, E, #), and let L. be an Orlicz space
associated with a Young function * whose values are finite. Note that this
excludes Lo being equal to Log(X, ,, p). Then the Banach lattice L. contains
Log as an ideal, and therefore is the universal completion of L(R). On the other
hand, every element f of Lo has an absolutely continuous norm, i.e.,
[f[ _>f $ 0 in Log implies lim [[f 0, where [[.[1 is, of course, the norm of
L; see [4, Theorem 10.3, p. 87]. Next we show that each locally solid topology
on Lo is entire. Since Lo is a Banach lattice, the norm topology is finer than z.

Hence, if z* is the restriction of to L(R)(X, I2, kt), it follows from the absolute
continuity of the norm on Log and the countable sup property, that * is a
Lebesgue topology. So, C, is order dense in L(R), and hence order dense in Lo.
It now follows easily that C,

_
C, and hence C is order dense in La, so that z

is entire. By applying Theorem 9 we now obtain the following result.

THEOREM 10. Let (X, E, p) be a finite measure space, and let be a finite
valued Youngfunction. Then the topology ofconvergence in measure on the Orlicz
space L, is a minimal topology.

We close the paper by presenting some classes of Riesz spaces having mini-
mal topologies.

THEOREM 11. Let L be an order dense Riesz subspace of an Archimedean
Riesz space M. If L admits a minimal topology, then so does M.

Proof Let be the minimal topology of L. Since L is order dense in M, the
universal completion Mu ofM is Riesz isomorphic to/2. Combining Theorem 3
with [2, Theorem 24.3, p. 182], we see that has a Lebesgue extension to Mu.
We claim that the restriction of this extension to M is a minimal topology.
Indeed, if z is a locally solid topology on M, then z restricted to L has an order
dense carrier, and hence (as is easily seen) z has an order dense carrier in M.
The result now follows from Theorem 9. |

THEOREM 12. If a a-laterally complete Riesz space L admits a Hausdorff
Lebesgue topology z, then z is minimal.

Proof. This is Theorem 24.4 of [2], p. 184. |

A Riesz subspace M of a Riesz space L is said to befull in L if for every u L,
there exists v M with [u < v. By Theorem 8 it can be seen that a minimal
topology restricted to a super order dense ideal is no longer minimal. However,
the following result holds regarding restrictions of minimal topologies. Its
straightforward proof is left to the reader.
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THEOREM 13. Let be a minimal topology on a Riesz space L. IfA is either
an order dense full Riesz subspace or a projection band of L, then induces a
minimal topology on A.
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