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UNITARY APPROXIMATION OF POSITIVE OPERATORS

BY

JOHN G. AIKEN, JOHN A. ERDOS AND JEROME A. GOLDSTEIN

O. Abstract

Of concern are some operator inequalities arising in quantum chemistry.
Let A be a positive operator on a Hilbert space Jet. We consider the minimization
of U A ll as U ranges over the unitary operators in and prove that in
most cases the minimum is attained when U is the identity operator. The
norms considered are the Schatten p-norms. The methods used are of
independent interest; application is made of noncommutative differential
calculus.

1. Introduction and preliminaries

The motivation for considering the quantity U AII as the unitary opera-
tor U varies, arises from the following considerations. In molecular orbital
calculations, a finite set of vectors {fl, f2, f,} is chosen for physical,
chemical, or computational reasons and is used to reduce the Hamiltonian of
the molecule in question to a finite-dimensional matrix. This set of vectors is
often replaced by an orthonormal set o {el, e2, e,} to reduce the com-
plexity of the computation. The linear transformation B defined by ei Bf
(1 _<i _< n) is called an orthogonalization of (although orthonormalization
seems to be a better term).

It is desirable to choose B so that the e are, in some sense, as close as possible
to thef. If B is chosen to be the LiSwdin orthogonalization L, then it is known
that the expression

E(B)= Ilnf,-f,l[
i=1

is as small as possible when B L[1, 2, 3, 12]. In other words E(L) < E(B)for
each orthogonalization B of . Similar results have been proved for certain
unconditional bases in the infinite-dimensional case [8, Chapter VI, Theorem
3.4].

This theorem can be interpreted as a minimization problem involving
Hilbert-Schmidt norms. In the present paper we give this reformulation, shar-
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pen the results of [1] considerably and give extensions of the results to the
operator norm and the other Schatten p-norms. We also establish that E has a
unique local minimum. This is an important theoretical result in that it can be
used to justify numerical methods for computing LiSwdin orthogonalizations in
quantum chemistry.

In this paper the term Hilbert space will mean complex Hilbert space and the
inner product will be denoted by (., .. The term operator will mean bounded
linear operator and the spectrum of an operator A will be denoted by a(A). The
set of all operators on a Hilbert space will be denoted by ().
We refer to [5] or [8] for properties of the Schatten p-classes. The following is

abrief summary of the results we require. For any compact operator A let
IA[ (A* A)1/2 and sx(A), s2(A), be the (positive)eigenvalues of IAI in
decreasing order and repeated according to multiplicity. If, for some p > 0,

s,(A)p < ,
we say that A is in the Schatten p-class cp and write

II111,, s,(A)’
i=

If p _> 1, p with the above norm is a Banach space; if 0 < p < 1,p is a metric
space with metric d given by d(X, Y) o?= si(X Y)P. For all p > 0,p is an
ideal of (t).
The class c is called the trace class. If A s t and {x i} is any orthonormal

basis of then the quantity z(A) defined by z(A) o= (Axe, x) is indepen-
dent of the choice of {x} and is called the trace of A. Note that if A s p then
A I1 z(IA [P). The class c2 is called the Hilbert-Schmidt class and is a Hilbert

space under the inner product (A, B) z(B* A). If p > 1 and lip + 1/q 1
then for A p, B s

I (AB) Ilanl[, I[all,ilnll ,
We state, for reference, the following standard theorem (see, for example [9,

Problem 105])

THEOREM 1.1. IfX is any bounded operator on a Hilbert space then X may be
expressed uniquely as X UP where P is a positive operator and U is a partial
isometry such that ker (U) ker (P). IfX is selfadjoint then U is selfadjoint and
commutes with P.

This unique expression UP for X will be referred to as the polar decomposi-
tion of X. Note that P (X* X)/2. Recall that a selfadjoint unitary operator is
called a symmetry and every symmetry V is of the form E F where E and F
are orthogonal projections with EF 0 and E + F I.
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Our main results generalize the following theorem.

THEOREM 1.2 [1], [2], [3], [8], [12]. Let {f,, ...,f,} be a basis of unit
vectors for a finite-dimensional Hilbert space. The expression E(B)==, liBf/-f/I[ 2 subject to the condition that {Bf/: 1 <_ <_ n} is orthonormal, has
a unique minimum. This minimum is attained when B is the unique positive opera-
tor that makes {Bf/} orthonormal.

We now reformulate the above. If B is any operator such that {Bf} is orthon-
ormal then clearly B is invertible and so, by the polar decomposition, B UL
where U is unitary and L is invertible and nonnegative. If B’ is any other
operator such that {B} is orthonormal, then B’ WB where W is the unitary
map defined by WBf B. Thus B’= U’L when U’= WU is unitary. There-
fore varying B subject to {Bf} being orthonormal is equivalent to varying U
over all unitary operators while keeping L fixed. Then, writing e= Bfwe have

Ilsf,- ll
i-1

(I B- )e I12
i=1

II(U- L-’)V-’e,

2

since {Ue} is an orthonormal basis of H. Thus minimizing E(B) becomes a
problem of minimizing g- c Xllz as g ranges over all unitary operators.
The generalized problem is to consider the function F(U) [IU- A[[ for

fixed positive A as U varies over all unitaries with U- A . We use
methods of the calculus. Briefly, our main results state that for p > 1, the
operator U is a critical point of F if and only if U is a symmetry commuting
with A and F has a unique local and global minimum when U I. These
results can be considered as a contribution to the theo of non-commutative
approximation as developed by Halos [10], giving (in the teinology of [10])
I as a unitary approximant in norm to any positive operator. In Nct, the
results are a little more general, since if X is an operator with ker X ker X*
then X may be written as X UA where Uo is unitary and A is positive.
Since if U X e for some p > 0 then

our results show that U0 is a unitary approximant to X in norm.
We thank the referee for doing a very thorough job and making helpful

comments.
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2. Differentiation of the norm in Vp

In this section we find the derivative of the norm in the Banach space p. It
will be observed that the full force of these results are not used in Section 3
since the quantity 11X + T]I X g is considered there only in the case when
T is one-dimensional. However, we feel that the inclusion of these results is
justified since they are of independent interest and are likely to have further
applications. The real part of a complex number z will be denoted by (z).

THEOREM 2.1. If p > 1, the map Xv-- Ilxllg R) is (Frbchet) differen-
tiable with derivative Dx at X given by

Dx(T) 1/2p( X IP- U*T + r*ulxl - )
where sl is the positive square root of X*X and X u lsl is the polar
decomposition ofX. Ifthe underlying Hilbert space isfinite-dimensional, the same
result holds for 0 < p < 1 at every invertible element X.

Proof It has been shown by McCarthy [11] that fin (1 < p < ) is uni-
formly convex. It follows from a standard result (see e.g. [4 p. 36, Theorem 1])
that fin has Fr6chet differentiable norm. Hence the map X- IlSll is differen-
tiable and for the case 1 < p < , it only remains to establish the formula for
the derivative.

Let X, T cp and let E be any projection commuting with X. We claim that

Ox[ET(I E)] 0.

A calculation shows that

(2E- I)[X + ET(I- E)](2E- I)= X- ET(I- E).
Observe that 2E I is unitary. It is therefore clear that

IIs / ET(I- E)II --IIS ET(I- E)II 
or, in other words IIx / ET(I E)II is an even function of T. Thus the deriva-
tive vanishes at zero which establishes the claim.
Now consider the case when X is positive. Then X o= 2(xi (R) x) where

2 > 0 and {x} is an orthonormal basis. Let E be the projection onto the space
spanned by xi and let F, I- ET= Ei. Since, from above, Dx(E1TF1)=
Dx(F TE1) 0 we have

Dx(T) Dx(EI TE)+ Dx(F TF,).
Repeating the above argument, a simple induction now shows that for any
integer n,

Dx(T) Dx(E, TE,) + Dx(F. TF.).
i=l
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It is elementary that

Ox(e, TE,) p[- <Tx,, x,)] p<X’- Tx,,

(Perhaps the easiest way to see this is to evaluate

d

t=0

aRer noting that [IX + tE, TE, [l 12‘ + t(Tx,, x,)[P + E, 2;.) Hence

Dx(T) <X-T,. ,) + Dx(, T.).
i=1

Since (F.) converges strongly to zero as n , it follows (see [6, Lemma 2])
that (F, TF,) converges to zero in n. Since Dx is continuous, (DF. TF.)) 0
and we see that

Dx(T) p Z (Xp- Txi, xi) poz(SP- T)
i=1

which is the required formula in the case when X > 0.
Now let X be any element of and let X u lxl be its polar decomposi-

tion. It is well known that there exists V such that either V or V* is an isometry
and such that V and U coincide on (ker x I), Thus s v lxl. If v* is an
isometry then for any T s we have (using VV* I)

Ix + TI-- Ixl/ IXIV*T + T*V]XI + T*VV*T= lxl + V’T[
and so IIs / Zll--- IIIXl / V*TII",. Therefore Dx(T)= DIxI(V*T). Thus

Dx(T) DIxI(V*T) p.’r( X l’- V*Z) p’c( s l’- U*T)
as required. In the case when V is an isometry, taking the adjoint and perform-
ing a similar computation yields

Dx(T) DIx.I(VT* pz(I X* - VT*).
Use IX* 1- V IX IP-V* and the desired result follows easily.

In finite dimensions, if X is invertible then the eigenvalues of IX[ are
bounded away from zero and the above proof of the formula holds also in the
case 0 < p < 1. However, in this case a separate argument is needed to show
that the map X- IlXll," is differentiable. To see this we decompose the map
thus" choose n such that 2p > 1 an/t consider the maps

x Ixl: IxI ’/="+-+ IxI ’/="’’="
I=. IIxll

The derivative of the first map at A is the map X A*X + X*A. That the final
map is differentiable follows from the main result. To show the differentiability
of the remaining map it is sufficient to show that the map X X/2 is differen-
tiable as a map between strictly positive operators. By the inverse mapping
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theorem it is enough to show that the inverse map, that is X X2, has an
invertible derivative. The derivative of X-X2 at A is X - AX + XA and it
follows from a result of Rosenblum (see e.g. [13 p. 8, Corollary 0. 13]) that this
map is invertible whenever a(A)c a(-A)= 0. Since this last condition is
satisfied if A is a positive invertible operator it follows that the map X- I]XI]
is differentiable and the proof is complete. |

Note that in infinite dimensions the conditions X e cgp and X invertible are
incompatible and the conclusion of the theorem is meaningless for p < 1. Also,
if p 1, the result is clearly false at every singular element.

3. Approximation theorems

The main part of this section consists of applying the results of Section 2 to
prove unitary approximation theorems in the Schatten p-classes. For com-
pleteness we first prove a simple result in the operator norm.

THEOREM 3.1. Let A be a positive operator on a Hilbert space g. Thenfor
every unitary operator U on ,.Jet, [lI A <-[I U A < ][I + A [[.

Proof. If lixil 1, then

ll(U A)x]l 2 ((I + A2 U*A AU)x, x>
> 1 + ax ]12 211Axl]

(1 IIAx]l )2.

Since, for positive A,

we have

inf IlAxll= inf (Ax, x>, sup IIAxl[= sup (Ax, x>,
Ilxll Ilxll Ilxll Ilxll

IIU-A[I > sup I1- ]IAxI[
IIx

sup II-<Ax, x>l
Ilxll-x

sup I((I-A)x,x>l
Ilxll=x

This proves the left inequality.
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Next,

IIU-AII= sup IIUx-Axll
_< sup (1 + Ilaxll)

sup ((I+A)x,x)

III + All. !
Our results will show that for p > 1, the best unitary approximation to a

positive operator A in the norm of cgp is I (providing any such approximation
exists). The next result shows that for any p > 0, if U- A 6 p for some
unitary operator, then at least I is a candidate for an approximant of A; that is,
I--Ap.
THEOREM 3.2. If iS any two-sided ideal of()a U A Jror some

unitary U a positive A, then I A J. In particular U A p implies that
I-Ap(O<p).

Proof Since every two-sided ideal of () is selfadjoint, we have
u* A and so -AU* + UA (U- A)U* U(U* a) . Hence

i A ( A)(V* + A)+ AV* VA .
As A is positive, I + A is invertible and so

I- A (- A)(I + A)- .
Note that in the case when . (the set of all compact operators) there is

a one line proof of the above result depending on the fact that ()/ff is a
C*-algebra" for then the image of U under the canonical map ()--
()/ is positive and unitary and so it is the identity in ()/.
The following lemma is the key result for the approximation theorem.

LEMMA 3.3. Let A be a strictly positive operator and let

IA {U" U unitary, U A cg,}.

If OlA is non-empty, let F,(U)= IIg- Allg, g . Then for v to be.a local
maximum or a local minimum ofFp (p > 1), it is necessary that V be a symmetry
commutin9 with A.

If 0 < p <_ 1 the same result holds in a finite-dimensional Hilbert space
provided that V- A is invertible.

Proof. For any unit vector z and any real 0 let W(O) be the unitary operator
defined by W(O)x e(x, z)z + x (x, z)z, (that is, W(O) multiplies the z-
component of any vector by e and acts like the identity on the orthogonal
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complement of z). Since for p > 1, the derivative of Fp exists everywhere, if F,
has a local extremum at V, it is clearly necessary that for each z, dF,(VW,(O))/dO
vanishes at 0 0.

Let V- A U IV- A be the polar decomposition of V- A. Then an
application of the chain rule to the composition of the maps 0- VW,(O)-
F,(VW(O)) and the result of Theorem 2.1 show that

d
Fp[VW(O)] pv[ v h ]P- U* Vi(z (R) z)] O.

dO Io=o

Evaluating the trace using an orthonormal basis containing z, we find that
(Iu- A l.-U*Vz, z) is real. Since this holds for any z, it follows that
IV- A IP-IU*V is selfadjoint.
Observe that V*U is a partial isometry and

ker (V’U)= ker U ker IV- A ker IV- A - 1.

Hence V* U] V A ’- exhibits the unique polar decomposition of a selfad-
joint operator. It follows from Theorem 1.1 that V*U is selfadjoint and com-
mutes with IV-Al-a. Therefore V*U commutes with every power of
V A ]-1, in particular with IV- A Thus

V*(V- A)= V*UIV-- A IV- AIV*U= IV- AIU*V= (V* A)V
and so V*A AV showing that V*A is selfadjoint. Since A is strictly positive,
0 ker A ker V* and it is easy to see that V is a symmetry commuting with
A.
Note that the condition p > 1 was used in the above proof only to guarantee

the existence of the derivative. Hence, if V- A is an invertible operator on a
finite-dimensional Hilbert space, this fact follows from Theorem 2.1 and the
same proof establishes the statement covering the cases 0 < p < 1. |

COROLLARY 3.4. Let A be a non-negative operator on a Hilbert space and let
’A #: O) and Fp be defined as in the lemma. Thenfor V to be a local maximum or
a local minimum ofFp (p > 1) it is necessary that ker (A) be a reducin9 subspace
of V and that V restricted to ker (A)+/- be a symmetry commutin9 with A.

If 0 < p <_ 1 the same result holds in a finite-dimensional Hilbert space
provided that V- A is invertible.

Proof It follows from the proof of Lemma 3.3 that if V is a local maximum
or a local minimum ofF then V*A AV, since strict positivity was not used
up to that point. Let E be the orthogonal projection onto ker (A)+/-. Then V*EA
is the unique polar decomposition of a selfadjoint operator. Thus V*E is selfad-
joint, that is, V*E EV. Multiplying on the left by V and on the right by V*
yields EV* VE. Thus

EVE (V*E)E V*E EV and EVE E(EV*)= EV* VE.
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Hence E commutes with V, so ker A reduces V and the equality (V/)2=
V(EVE) VV*E E shows that V restricted to ker (A)x is a symmetry.
Some parts of the result below have been proved, using different methods, by

Fan and Hoffman [7] and van Riemsdijk [14, Theorem 8].

THEOREM 3.5. Let A be a strictly positive operator on a Hilbert space and
let

qlA {U U unitary, U A c}.
If qla is non-empty then for p > 1 the function F(U)= Ilu- A[lg has a unique
local minimum which occurs at U I and which is also a global minimum. In
particular, if U qla, U :/: I, then

If is finite-dimensional, F has a unique local maximum which occurs at
U -I and which is a #lobal maximum. In particular if U is unitary, U +_ I,
then

Proof We first show that if the global minimum ofF is attained then it is
attained at U I and at no other point. From Theorem 3.2, if q/a # 0 then
I ’a. Also, since a global minimum is a local minimum, from Lemma 3.3, it
can only be attained at some symmetry V, commuting with A. But then I V
and I- A are commuting compact normal operators and so have a common
orthonormal basis {xi} ofeigenvectors. Let i <Axi, xi), # (Vxi, x). Then
[#i 1 and

i=1 i=1

with equality holding only in case # 1 for all i; that is, only if V I. Si-
milarly if the global maximum of F is attained then it is attained at U -I
and at no other point. (Clearly this can only happen if is finite-dimensional
since the conditions I + A p and A > 0 are incompatible in infinite
dimensions).

In the case when is finite-dimensional the unitary operators form a com-
pact set and clearly F attains its extreme values. Thus from above it follows
that for U unitary, U :/: + I,

III + A > u A II, > III A lip.

Suppose now that is infinite-dimensional and let U q/a, U :/: I. Then
U I is compact and normal and so has an orthonormal basis {x} of eigenvec-
tors. Let H span {x, x2, x} and let E be the orthogonal projection
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onto H,. Then, since E,, UE. is a unitary operator on H,, the finite-dimensional
result shows that

liE= UE= E=aEn > liE= E.aE I1 "
Since (En) converges strongly to I, it follows from [6, Lemma 2] that the
sequence (E,,XEn)converges to X in . Hence IIU- AIl-> I1 - AIl. This
shows that the global minimum is attained at I and the first part of the proof
shows that U- All > Ill- A Il.

It remains to show that Fp has no other local extremum and for this, in view
of Lemma 3.3, it is sufficient to check every symmetry V 4: + I which com-
mutes with A. Then V E F where E and F are projections commuting with
A such that E + F I and EF 0. Now if U 4: V is any unitary operator
which acts like the identity on the range of E and commutes with E then it is
easy to see that

Fp(U)- Fp(V)= IIFUF- FAFII -II- F- FAFI[,.
Thus the global result, applied to the range of F, shows that Fp(U) Fp(V) < 0
and so V is not a local maximum. Similarly, V is not a local minimum. This
completes the proof of the theorem. |

The following corollary applies also to the case p 1. Note however that the
strict inequalities do not hold in this case even when A is strictly positive (see
Example 3.8).

COROLLARY 3.6. If A is a non-negative operator and U- A pfor some
p > 1 then

11U Allp >- III AII.
If /g is finite-dimensional then, in addition,

Proof For p > 1 this is proved in the same way as the theorem using
Corollary 3.4 in place of Lemma 3.3. The weaker hypothesis merely results in
the loss of uniqueness.

If p 1 and is finite-dimensional then the results follow from the fact that
for fixed X, IlXll is a continuous function of p. The extension to the infinite-
dimensional case is then proved using a sequence of finite dimensional projec-
tions as in the theorem. |

We now give some results that apply to the case 0 < p < 1.

THEOREM 3.7. Let A be a strictly positive operator,

-Ia {U" O unitary, U A cg
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and, if qla # 0 let Fp(U)= IIU allg (p > 0). Then:

(i) Fp(U)>_ Fe(I) for all unitary operators U commutin9 with A.
(ii) If A > I or if A < I, (that is, if the unit circle does not separate the

spectrum of A)then, for all U qla, Fp(U) >_ Fp(I), and if iNfinite-
dimensional then F(U) < F(-I).

Proof. We merely sketch the proof since it is along the lines of previous
results. If U commutes with A then U and A have a common basis of eigenvec-
torN and so (i) follows as in Theorem 3.5. To prove (ii), note that if A > I or if
A < I then V A is injective for every unitary operator V. Hence, if is finite
dimensional V- A is always invertible. Thus, for finite dimensions, (ii) is
proved just as Theorem 3.5 using the last part of Lemma 3.3. The result is
extended to infinite dimensions using the same technique as before;note that
although Lemma 2 of [6] is stated for normed ideals, the proof obviously holds
for the metric ideals p (0 < p < 1). |

We conclude with an example which shows that in the case 0 < p < 1, the
identity operator is not always a minimum of F(U). In these cases the mini-
mum is presumably attained at points V such that V- A is not injective.

Example 3.8. Let

where 0 < t < 1 and let

cos0 -sin0)V0=\sin0 cos0

Then an elementary calculation shows that the eigenvalues s t(0) > s2(0) 0 of

IV0 A satisfy

s + s 2(2 + ez 2 cos 0), ss (ez + 2 cos O- 2)z.
Thus, for sufficiently small 0 we have s1s2 iX2/ 2 cos 0- 2 and so
st / s2 2. This shows that I is not a unique global minimum of Ft(U);
indeed Ft(V0)= Ft(I) for all 0 in some neighborhood of 0, (cf. Corollary 3.6).
Also, elementarY calculus shows that, for 0 < p < 1, Fp(Vo) has, as a function of
0, a strict maximum at 0 0.
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