THE U_p-OPERATOR OF ATKIN ON MODULAR FUNCTIONS OF LEVEL THREE

BY

Alan Adolphson

1. Introduction

In [7] Dwork determines the number of p-adic unit eigenvalues of Atkin's U_p -operator on modular functions of level 2. He applies these techniques in [8] to modular functions of level 3. After lengthy calculation, he obtains an answer when $p \equiv 1 \pmod{3}$ but leaves unsettled the case $p \equiv -1 \pmod{3}$. In [2], we gave a new proof of Dwork's result in the level 2 case. In this work, we extend this method to the level 3 case. We determine the number of unit eigenvalues when $p \equiv 1 \pmod{3}$ (Corollary 1 to the main theorem) and give an upper bound for this number when $p \equiv -1 \pmod{3}$ (Corollary 1 to Proposition 1).

In Section 2, we discuss the Hasse invariant and compute its values at certain points. The computation is based on the fact that after a change of variable the Hasse invariant satisfies a hypergeometric differential equation (see [8]). Theorem 1 is in [8], but we offer a different proof based on Lemma 1 and the infinite product for det $(I - tU_p)$. This avoids the need for an a priori upper bound on the degree of det $(I - tU_p)$ (mod p). Our Main Theorem (the principal result of [8]) is deduced as a corollary of Theorem 2, rather than by a computation involving differential operators as in [8]. For the final step, however, we still rely on a result of Dwork (Lemma 3). In fact, we feel our approach reveals the significance of Dwork's lemma.

I am indebted to B. Dwork for providing me with a copy of his manuscript [8] and for suggesting improvements to the original version of this work. I would also like to thank B. Dwork and S. Sperber for pointing out errors in the original version.

Throughout this paper, p is a prime $p \ge 5$. We let \mathbf{F}_p denote the prime field of p elements, $\mathbf{\bar{F}}_p$ its algebraic closure, \mathbf{Q}_p the field of p-adic numbers, \mathbf{Z}_p the ring of p-adic integers. If f is a polynomial with coefficients in \mathbf{Z}_p , we write $\mathbf{\bar{f}}$ for the polynomial with coefficients in \mathbf{F}_p which are the reductions mod $p\mathbf{Z}_p$ of the coefficients of f. If α , $\beta \in \mathbf{Z}_p[[t]]$ are such that $(\alpha - \beta) \in p\mathbf{Z}_p[[t]]$ we will write $\alpha \equiv \beta \pmod{p}$. We use the standard notation for hypergeometric functions [9, p. 162]:

$$F(a, b; c; \lambda) = \sum_{j=0}^{\infty} ((a)_j (b)_j / (c)_j j!) \lambda^j$$

Received May 31, 1977.

© 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America where for any non-negative integer j and $a \in \mathbf{Q}_p$, $(a)_0 = 1$, $(a)_j = \prod_{s=0}^{j-1} (a+s)$ for j > 0.

2. The level three Hasse invariant

Consider the family of elliptic curves given by the projective equation

(2.1)
$$X_1^3 + X_2^3 + X_3^3 - 3\mu X_1 X_2 X_3 = 0,$$

where $\mu \in \overline{\mathbf{F}}_p$, $\mu^3 \neq 1$. An explicit formula for the Hasse invariant of this family has been given by Katz [11, equ. (2.3.7.20)]. Define $h(\mu) \in \mathbb{Z}_p(\mu)$ by

(2.2)
$$h(\mu) = \mu^{p-1} \sum_{j=0}^{\lfloor (p-1)/3 \rfloor} ((1/3)_j (2/3)_j / j! j!) \mu^{-3j}$$

where [] denotes the greatest integer function. Then $\bar{h}(\mu)$ is the Hasse invariant of (2.1). We have

(2.3)
$$h(\mu) = \begin{cases} \sum_{\substack{j=0\\(p-2)/3\\j \equiv 0}}^{(p-1)/3} ((1/3)_j(2/3)_j/j! \ j!)\mu^{p-1-3j} & \text{if } p \equiv 1 \pmod{3} \\ \sum_{\substack{j=0\\j \equiv 0}}^{(p-2)/3} ((1/3)_j(2/3)_j/j! \ j!)\mu^{p-1-3j} & \text{if } p \equiv -1 \pmod{3} \end{cases}$$

Thus in either case deg $h(\mu) = p - 1$, and $\mu \mid h(\mu)$ iff $p \equiv -1 \pmod{3}$.

For later use, we calculate $\bar{h}(\omega)$, where $\omega^3 = 1$. From [5, (8.4)], it follows that the periods of the differential of the first kind on (2.1) satisfy the differential equation

(2.4)
$$(\mu^3 - 1)y'' + 3\mu^2 y' + \mu y = 0.$$

By [13], the polynomial $h(\mu)$ satisfies eq. (2.4). Making the change of variable $\lambda = \mu^3$ and multiplying by a constant transforms (2.4) into

(2.5)
$$\lambda(1-\lambda)y'' + ((2-5\lambda)/3)y' - y/9 = 0$$

(where y', y'' now denote derivatives with respect to λ). The point is that (2.5) is a classical hypergeometric equation [9, p. 161] and its properties are well known. It is satisfied by $F(1/3, 1/3; 1; 1 - \lambda)$.

Suppose first $p \equiv 1 \pmod{3}$. Put

$$B(\lambda) = \sum_{j=0}^{p-1} ((1/3)_j/j!)^2 \lambda^j \in \mathbb{Z}_p[\lambda].$$

Then by [6, Cor. 1 to Lemma 1 and (3.2')],

$$B(\lambda) \equiv F(1/3, 1/3; 1; \lambda)/F(1/3, 1/3; 1; \lambda^p) \pmod{p}$$

Hence $\overline{B}(1 - \lambda)$ satisfies (2.5). It is easily seen that deg $\overline{B} = (p - 1)/3$. Thus $\overline{B}(1 - \mu^3)$ satisfies (2.4) and has degree p - 1 in μ . Since $\overline{h}(\mu)$ has these same properties, and since -1 is the unique root of the indicial equation of

equ. (2.4), it follows that $\overline{B}(1-\mu^3)$ is a constant multiple of $\overline{h}(\mu)$. Comparing coefficients of μ^{p-1} we conclude (since $(-1)^{(p-1)/3} = 1$) that $\overline{h}(\mu) = \overline{B}(1-\mu^3)$, hence if $\omega^3 = 1$, $\overline{h}(\omega) = \overline{B}(0) = 1$.

Now suppose $p \equiv -1 \pmod{3}$. Put

$$C(\lambda) = \lambda^{(2p-1)/3} \sum_{j=0}^{p-1} ((1/3)_j (2/3)_j / j! j!) \lambda^{-j}.$$

Note that $(1/3)_j(2/3)_j/j! j!$ is a *p*-adic integer and is divisible by *p* for $(p-2)/3 < j \le p-1$. Hence $\overline{C}(\lambda)$ is a polynomial of degree (2p-1)/3. By [6, Cor. 2 to Lemma 1 and equ. (3.2') with s = 0],

$$C(\lambda)/\lambda^{(2p-1)/3} \equiv F(1/3, 2/3; 1; \lambda^{-1})/F(1/3, 2/3; 1; \lambda^{-p}) \pmod{p}.$$

Thus $\overline{C}(\lambda)$ is a solution of (2.5), since it is well known that $\lambda^{-1/3}F(1/3, 2/3; 1; \lambda^{-1})$ satisfies (2.5). Again applying [6], we have

$$\sum_{j=0}^{(2p-1)/3} ((1/3)_j/j!)^2 \lambda^j \equiv F(1/3, 1/3; 1; \lambda)/F(2/3, 2/3; 1; \lambda^p) \pmod{p}.$$

Thus the polynomial $\overline{D}(\lambda) \in \mathbf{F}_p[\lambda]$ defined by

$$\bar{D}(\lambda) = \sum_{j=0}^{(2p-1)/3} ((1/3)_j / j!)^2 (1-\lambda)^j$$

is a solution of (2.5) (since $F(1/3, 1/3; 1; 1 - \lambda)$ is). Since -1/3 is the unique root of the indicial equation of (2.5), it follows that $\bar{D}(\lambda)$ is a constant multiple of $\bar{C}(\lambda)$. Comparing coefficients of $\lambda^{(2p-1)/3}$ we conclude (since $(-1)^{(2p-1)/3} = -1$) that $\bar{D}(\lambda) = -\bar{C}(\lambda)$. It is clear from the definitions of $h(\mu)$ and $C(\mu)$ that $\bar{h}(\mu) = \mu^{-p}\bar{C}(\mu^3)$, hence $\bar{h}(\mu) = -\mu^{-p}\bar{D}(\mu^3)$. Thus if $\omega^3 = 1$, we have $\bar{h}(\omega) = -\omega^{-p}\bar{D}(1) = -\omega^{-p}$.

3. Reduction mod p of characteristic polynomial of Atkin's operator

For the definition of Atkin's operator, denoted here by U_p , we refer the reader to [3], [7], or [10]. We recall the identity [10, A3. 1.5].

(3.1)
$$\det (I - tU_p) = \prod_{r=0}^{\infty} \prod_{\{\mu\}} (1 - \pi_1(\mu)^{-2(r+1)} (p^r t)^{\deg \mu})^{-1},$$

where $\prod_{\{\mu\}}$ indicates the product is taken over all \mathbf{F}_p -conjugacy classes of elements of $\mathbf{\bar{F}}_p$, excluding the supersingular classes and the cube roots of unity, and $\pi_1(\mu)$ is the unit reciprocal root of the numerator of the zeta function of (2.1).

For any field K, define an endomorphism ψ of $K[\mu]$ by linearity and the condition

$$\psi(\mu^n) = \begin{cases} \mu^{n/p} & \text{if } p \mid n, \\ 0 & \text{if } p \nmid n. \end{cases}$$

Let $A(\mu) \in K[\mu]$. For k a non-negative integer, $\xi \to \psi(A^k\xi)$ is an endomorphism of $K[\mu]$, denoted $\psi \circ A^k$. Let V_n be the subspace of $K[\mu]$ of polynomials of degree $\leq n$. As observed in [4], if we put $n = [\deg A^k/(p-1)]$, then $\psi \circ A^k$ is stable on V_n and the eigenspaces corresponding to non-zero eigenvalues are contained in V_n .

THEOREM 1. Let $h(\mu)$ be defined by (2.3) and consider $\psi \circ h^{p-3}$ as endomorphism of $\mathbf{Q}_p[\mu]$. If $p \equiv 1 \pmod{3}$, then det $(I - tU_p) \equiv (1 - t)^3 \det (I - t(\psi \circ h^{p-3}) | V_{p-3})/(1 - h(0)^{p-3}t) \pmod{p}$. If $p \equiv -1 \pmod{3}$, then

det $(I - tU_p) \equiv (1 - t)(1 - t^2)$ det $(I - t(\psi \circ h^{p-3}) | V_{p-3}) \pmod{p}$.

Before beginning the proof, we need a lemma. If $\mu \in \overline{\mathbf{F}}_p$ let μ_T denote its Teichmüller representative, i.e. μ_T is the unique lifting of μ to characteristic zero satisfying $\mu_T^{pN-1} = 1$, where $N = [\mathbf{F}_p(\mu): \mathbf{F}_p]$. (We take $0_T = 0$. Let A be a polynomial with coefficients in \mathbf{Q}_p and put

$$\pi_A(\mu) = \prod_{i=0}^{N-1} A(\mu_T^{pi}).$$

Note that $\pi_A(\mu) \in \mathbf{Q}_p$ (since $\pi_A(\mu) = \operatorname{Norm}_{\mathbf{Q}_p(\mu_T)/\mathbf{Q}_p} A(\mu_T)$) and depends only on the \mathbf{F}_p -conjugacy class of μ .

LEMMA 1. Considering $\psi \circ A^k$ as endomorphism of the space of polynomials with coefficients in \mathbf{Q}_p , we have

det
$$(I - t(\psi \circ A^k) | V_n) = \prod_{r=0}^{\infty} \prod_{\{\mu\}}^{"} (1 - \pi_A(\mu)^k (p^r t)^{\deg \mu})^{-1}$$

where $n = [\deg A^k/(p-1)]$ and $\prod_{\{\mu\}}^{"}$ indicates a product extended over all \mathbf{F}_p -conjugacy classes of elements of \mathbf{F}_p excluding $\bar{\mu} = 0$.

Proof. This follows easily from the trace formula [4]

Tr
$$(\psi \circ A^k)^n = (p^n - 1)^{-1} \sum_{\mu_T^{p-1} = 1} A(\mu_T)^k A(\mu_T^p)^k \cdots A(\mu_T^{p^{n-1}})^k.$$

We obtain

(3.2)
$$-\sum_{n=1}^{\infty} \operatorname{Tr} (\psi \circ A^{k})^{n} t^{n} / n = \sum_{n=1}^{\infty} (t^{n} / n) \sum_{r=0}^{\infty} p^{nr} \sum_{\mu^{p^{n-1}}=1} \pi_{A}(\mu)^{nk/\deg \mu}$$
$$= \sum_{r=0}^{\infty} \sum_{\{\mu\}}^{\prime\prime} \sum_{s=1}^{\infty} (\pi_{A}(\mu)^{k} (p^{r} t)^{\deg \mu})^{s} / s,$$

where $\sum_{\mu} \int_{\mu} dn = 0$. Taking exponentials in (3.2) gives the lemma. Q.E.D.

Proof of Theorem 1. From (3.1) we deduce

(3.3)
$$\det (I - tU_p) \equiv \prod_{\{\mu\}}' (1 - \pi_1(\mu)^{-2} t^{\deg \mu})^{-1} \pmod{p}$$
$$\equiv \prod_{\{\mu\}}' (1 - \pi_1(\mu)^{p-3} t^{\deg \mu})^{-1} \pmod{p},$$

since $\pi_1(\mu)$ is a unit in \mathbb{Z}_p hence satisfies $\pi_1(\mu)^{p-1} \equiv 1 \pmod{p}$. From Lemma 1, taking for A the Hasse invariant h of equ. (2.3), we get

(3.4) det
$$(I - t(\psi \circ h^{p-3}) | V_{p-3}) \equiv \prod_{\{\mu\}} (1 - \pi_h(\mu)^{p-3} t^{\deg \mu})^{-1} \pmod{p}$$

But it follows from [13] that if μ is not supersingular, then $\pi_h(\mu) \equiv \pi_1(\mu) \pmod{p}$. If μ is supersingular, then $\pi_h(\mu) \equiv 0 \pmod{p}$. Thus modulo p, det (I = tU)

$$\equiv (1 - \pi_h(0)^{p-3}t)^{-1} \det (I - t(\psi \circ h^{p-3}) | V_{p-3}) \prod_{\mu^3 = 1} (1 - \pi_h(\mu)^{p-3}t^{\deg \mu})^{1/\deg \mu}$$

Note that $\pi_h(0) = h(0)$, which is zero when $p \equiv -1 \pmod{3}$.

Suppose that $p \equiv 1 \pmod{3}$. In this case $\mu^3 = 1$ implies deg $\mu = 1$. Thus

$$\pi_h(\mu) = h(\mu_T) \equiv 1 \pmod{p}$$

by the discussion in Section 2.

Suppose that $p \equiv -1 \pmod{3}$. Let $1, \omega, \omega^2$ be the three cube roots of unity over \mathbf{Q}_p , and let $1, \bar{\omega}, \bar{\omega}^2$ be the their reductions mod p in $\mathbf{\bar{F}}_p$. In this case, we have deg $\bar{\omega} = \text{deg } \bar{\omega}^2 = 2$. Then

$$\pi_{h}(1) = h(1) \equiv -1 \pmod{p}$$

$$\pi_{h}(\bar{\omega}) = h(\omega)h(\omega^{p}) \equiv (-\bar{\omega}^{-p})(-\bar{\omega}^{-p^{2}}) \equiv 1 \pmod{p}$$

$$\pi_{h}(\bar{\omega}^{2}) = h(\omega^{2})h(\omega^{2p}) \equiv (-\bar{\omega}^{-2p})(-\bar{\omega}^{-2p^{2}}) \equiv 1 \pmod{p}$$

by the results of Section 2. Q.E.D.

4. Main theorem and corollaries

Suppose $p \equiv 1 \pmod{3}$. Consider the matrix (in the usual monomial basis) of $\psi \circ h^{p-3}$ on V_{p-3} . The first entry of the first row is $h(0)^{p-3}$, the other entries in the first row are zero. The last entry in the last row is 1, the other entries in the last row are zero. Thus

$$\det (I - t(\psi \circ h^{p-3}) | V_{p-3}) = (1 - h(0)^{p-3}t)(1 - t) \det (I - t(\psi \circ h^{p-3}) | W),$$

where W is the space of polynomials with coefficients in \mathbf{Q}_p of degree $\leq p - 4$ with no constant term. From Theorem 1, we obtain

(4.1)
$$\det (I - tU_p) \equiv (1 - t)^4 \det (I - t(\psi \circ h^{p-3}) | W) \pmod{p}$$

MAIN THEOREM. Suppose $p \equiv 1 \pmod{3}$. Then

deg [det $(I - t(\psi \circ h^{p-3}) | W) \pmod{p}$] = p - 4,

i.e., as an operator on $W, \psi \circ h^{p-3}$ has no eigenvalues divisible by p.

The proof of the Main Theorem will be given in Section 5. By (4.1), we have:

COROLLARY 1. For $p \equiv 1 \pmod{3}$, Atkin's operator U_p has p eigenvalues (counting multiplicities) which are p-adic units.

Comparing (4.1) with [10, (A3.3.3)], we see that

 $\det (I - t(\psi \circ h^{p-3}) | W) \equiv \det (I - tT_{p-1}(p)) \pmod{p},$

where $T_{p-1}(p)$ is the *pth* Hecke operator acting on cusp forms of weight p-1 and level three. But the dimension of the space of cusp forms of weight p-1 and level three is p-4 [12], so by the Main Theorem we have:

COROLLARY 2. For $p \equiv 1 \pmod{3}$, all eigenvalues of the Hecke operator $T_{p-1}(p)$ are p-adic units.

For the connection with the Cartier operator, see [10, (A3.3.3)].

Now suppose $p \equiv -1 \pmod{3}$. Examining the matrix of $\psi \circ h^{\bar{p}-3}$ as before (and keeping in mind that h has no constant term in this case) we see that

 $\det (I - t(\psi \circ h^{p-3}) | V_{p-3}) = (1-t) \det (I - t(\psi \circ h^{p-3}) | W).$

Comparing this with Theorem 1, we obtain

(4.2) det
$$(I - tU_p) \equiv (1 - t)^2 (1 - t^2)$$
 det $(I - t(\psi \circ h^{p-3}) | W) \pmod{p}$.

The conclusion of the Main Theorem is false when $p \equiv -1 \pmod{3}$. One has instead:

PROPOSITION 1. If $p \equiv -1 \pmod{3}$, then

 $deg \left[det \left(I - t(\psi \circ h^{p-3}) \middle| W\right) \pmod{p}\right] \le p - 5.$

The proof of Proposition 1 will be given in Section 6. By (4.2), we have:

COROLLARY 1. For $p \equiv -1 \pmod{3}$, Atkin's operator U_p has no more than p - 1 eigenvalues which are p-adic units.

Combining (4.2) with [10, A3.3.3] gives

$$\det \left(I - t(\psi \circ h^{p-3}) \middle| W\right) \equiv \det \left(I - tT_{p-1}(p)\right) \pmod{p},$$

hence by Proposition 1:

COROLLARY 2. For $p \equiv -1 \pmod{3}$, the Hecke operator $T_{p-1}(p)$ has at least one eigenvalue which is a p-adic non-unit.

5. Proof of main theorem

LEMMA 2. Let k and n be positive integers. If n > 1, let α be the unique positive integer such that

$$(\alpha - 1)(p - 1)/(n - 1) < k \le \alpha(p - 1)/(n - 1).$$

If n = 1, let $\alpha = 0$. Then $[k(p - n)/(p - 1)] = k - \alpha$.

Proof. The assertion is clear if n = 1. If n > 1 define ε by the equation

(5.1)
$$k = ((\alpha - 1)(p - 1)/(n - 1)) + \varepsilon$$

so that

(5.2)
$$0 < \varepsilon \le (p-1)/(n-1).$$

Using (5.1) to express k we compute

$$(k(p-n)/(p-1) - (k-\alpha) = 1 - \varepsilon(n-1)/(p-1),$$

and by (5.2), $0 \le 1 - \varepsilon (n-1)/(p-1) < 1$. Q.E.D.

Denote by \overline{V}_m the space of polynomials in $\mathbf{F}_p[\mu]$ of degree $\leq m$.

COROLLARY. Let $f \in \mathbf{F}_p[\mu]$ and put $k = \deg f$. Let n be an integer, $1 \le n \le p$. Then $\psi \circ f^{p-n}$ is stable on $\overline{V}_{k-\alpha}$

Consider now the operator $\psi \circ f^{n-1}$ on $\mathbf{F}_p[\mu]$, where f and n are as defined in the corollary. From (5.1) and (5.2), we have

(5.3)
$$[k(n-1)/(p-1)] = \begin{cases} \alpha & \text{if } \varepsilon = (p-1)/(n-1) \text{ or } n = 1 \\ \alpha - 1 & \text{if } \varepsilon \neq (p-1)/(n-1), \end{cases}$$

where α is defined in Lemma 2. If $\varepsilon = (p-1)/(n-1)$, we have $k = \alpha(p-1)/(n-1)$ and

(5.4)
$$\psi(f^{n-1}\mu^{\alpha}) = c\mu^{\alpha} + \text{lower order terms}$$

where $c \in \mathbf{F}_p^x$ is the coefficient of $\mu^{k(n-1)}$ in f^{n-1} . Thus by (5.3), $\psi \circ f^{n-1}$ is stable on either \overline{V}_{α} or $\overline{V}_{\alpha-1}$, and by (5.4) the kernel of $\psi \circ f^{n-1}$ is contained in $\overline{V}_{\alpha-1}$ in either case (in particular, taking n = 1, ker (ψ) = {0} = V_{-1}).

The Main Theorem will be a corollary of the next theorem.

THEOREM 2. Let $f \in \mathbf{F}_p[\mu]$ and put $k = \deg f$. Suppose *n* is integral, $1 \le n \le p$, and let α , ε be defined by lemma 2 and equ. (5.1) (thus ε is defined only if n > 1). We assume the following:

- (i) $f(0) \neq 0$,
- (ii) f is relatively prime to its derivative,
- (iii) $k \le p(p-1)/(n-1)$ (if n > 1),
- (iv) $\epsilon(n-1) \ge \alpha 1$ (if n > 1).

Then the kernel of $\psi \circ f^{p-n}$ on $\overline{V}_{k-\alpha}$ is isomorphic to the kernel of $\psi \circ f^{n-1}$ on $\overline{V}_{\alpha-1}$.

Proof. The theorem is trivial if k = 0, so we suppose $k \ge 1$. Let $\xi \in \mathbf{F}_p[\mu]$ be such that $\psi(\xi f^{p-n}) = 0$. Then we must have $\xi = \mu \eta$ with $\eta \in \mathbf{F}_p[\mu]$, so

$$\psi(\mu\eta f^{p-n}) = f\psi(\mu\eta/f^n) = 0.$$

Thus $\psi(\mu\eta/f^n) = 0$. This implies $\eta/f^n \in d/d\mu(\mathbf{F}_p(\mu))$. We can then write $\eta = f^n \rho'$ with $\rho \in \mathbf{F}_p(\mu)$ where $\rho' = d\rho/d\mu$, and can assume without loss of generality that ρ has poles only at zeros of f. We will have $\xi \in \overline{V}_{k-\alpha}$ if and only if ρ produces a polynomial η with deg $\eta \leq k - \alpha - 1$. The proof is divided into several cases.

Case 1. Assume $\rho \in \mathbf{F}_p[\mu]$. Then $\eta = f^n \rho'$ implies $\eta = 0$ or deg $\eta \ge nk > k - \alpha - 1$. Hence $\xi \notin \overline{V}_{k-\alpha}$.

If $\rho \notin \mathbf{F}_p[\mu]$ we may write $\rho = \tau/f^r$ where r > 0 and $\tau \in \mathbf{F}_p[\mu]$. We assume $f \nmid \tau$, which determines r uniquely. Further, we can assume without loss of generality that $p \nmid r$: for if $p \mid r$ (by looking at the principal part expansion of $\rho = \tau/f^r$) one can find $\rho_1 = \sigma/f^s$ such that $\rho'_1 = \rho', \sigma \in \mathbf{F}_p[\mu]$, and either $p \nmid s$ or s = 0. Since we are really concerned with $\eta = f^n \rho'$, we may then replace ρ by ρ_1 .

Case 2. Assume r > n - 1. We have $\eta = f^n \rho' = (f\tau' - rf'\tau)/f^{r+1-n}$ with r + 1 - n > 0. For η to be a polynomial f must divide $f'\tau$ (since $r \neq 0 \pmod{p}$). But (f, f') = 1 so $f \mid \tau$, contradicting the assumption made after case 1. Thus η cannot be a polynomial in this case.

Taking n = 1 in the theorem, this shows that $\psi \circ f^{p-1}$ has trivial kernel on \overline{V}_k , since r > n-1 is the only case that occurs. As already observed, ψ has trivial kernel on \overline{V}_{-1} . This proves the theorem when n = 1 and when n = p (since n = p determines the same pair of operators ψ and $\psi \circ f^{p-1}$). From now on, we assume 1 < n < p.

Case 3. Assume r < n-1. Then $\eta = f^{n-r-1}(f\tau' - rf'\tau)$. Since n-r-1 > 0, it follows that either $\eta = 0$ or deg $\eta \ge k > k - \alpha - 1$.

Thus none of the first three cases produces an η with deg $\eta \le k - \alpha - 1$ (other than $\eta = 0$).

Case 4. Assume r = n - 1. Then $\eta = f\tau' - (n - 1)f'\tau$. Put $l(\tau) = f\tau' - (n - 1)f'\tau$. If deg $\tau = j$, it follows that (since n > 1 implies $\alpha \ge 1$) deg $\eta = j + k - 1 > k - \alpha - 1$ unless $j \equiv k(n - 1)$ (mod p).

Suppose $\alpha = 1$. From the definition of α (Lemma 2) this implies

(5.5)
$$\deg f^{n-1} = k(n-1) < p.$$

In this case, $\psi \circ f^{p-n}$ has non-trivial kernel on $\overline{V}_{k-\alpha}$ if and only if there exists a polynomial τ with deg $\tau \equiv k(n-1) \pmod{p}$ such that $\eta = l(\tau)$ is non-trivial and satisfies deg $\eta \leq k-2$. Let τ_0 be the polynomial of least degree having

these properties. By (5.5), there exist $c \in \mathbf{F}_p$ and a non-negative integer *m* such that deg $(\tau_0 - c\mu^{mp}f^{n-1}) < \deg \tau_0$. But $l(f^{n-1}) = 0$ implies

$$l(\tau_0 - c\mu^{mp} f^{n-1}) = l(\tau_0),$$

contradicting the minimality of deg τ_0 . Hence $\psi \circ f^{p-n}$ has trivial kernel on \overline{V}_{k-1} . Since we are assuming $f(0) \neq 0$, $\psi \circ f^{n-1}$ has trivial kernel on \overline{V}_0 . This proves the theorem when $\alpha = 1$. From now on, we assume $\alpha \ge 2$.

By (5.1), $k(n-1)/p = \alpha - 1 + (\varepsilon(n-1) - (\alpha - 1))/p$. Using (5.2) and our hypothesis that $\varepsilon(n-1) \ge \alpha - 1$ we see that $[k(n-1)/p] = \alpha - 1$. Thus we can write

$$f^{n-1} = f_0 + \mu^p f_1 + \mu^{2p} f_2 + \dots + \mu^{(\alpha-1)p} f_{\alpha-1}, \quad f_{\alpha-1} \neq 0,$$

where $f_0, f_1, ..., f_{\alpha-1} \in \mathbf{F}_p[\mu]$, deg $f_0, \text{ deg } f_1, ..., \text{ deg } f_{\alpha-2} \le p-1$, and deg $f_{\alpha-1} \equiv k(n-1) \pmod{p}$. For $m = 1, 2, ..., \alpha - 1$ set

$$B_{m} = \mu^{-mp} \left(f^{n-1} - \sum_{i=0}^{m-1} \mu^{ip} f_{i} \right).$$

Then $B_m \in \mathbf{F}_p[\mu]$ and deg $B_m = k(n-1) - mp$. Since $l(f^{n-1}) = 0$, the degree of $l(B_m)$ is $\leq k - 2$. The operator $\psi \circ f^{p-n}$ on $\overline{V}_{k-\alpha}$ has a non-trivial kernel if and only if there exists $\tau \in \mathbf{F}_p[\mu]$ with deg $\tau \equiv k(n-1) \pmod{p}$ such that $\eta = l(\tau)$ is non-trivial and satisfies deg $\eta \leq k - \alpha - 1$.

Suppose $\tau \in \mathbf{F}_p[\mu]$ is such that deg $\tau \equiv k(n-1) \pmod{p}$ and deg $l(\tau) \leq k-2$. Then

$$\operatorname{deg} \tau \equiv \operatorname{deg} f^{n-1} \equiv \operatorname{deg} B_m \pmod{p} \quad \text{for } m = 1, 2, \dots, \alpha - 1,$$

and since $(\alpha - 1 - m)p \le \deg B_m \le (\alpha - m)p$, we see that τ can be expressed in the form

$$\tau = g(\mu^{p})f^{n-1} + \sum_{m=1}^{\alpha-1} c_{m}B_{m},$$

where $g(\mu) \in \mathbf{F}_p[\mu], c_1, c_2, \dots, c_{\alpha-1} \in \mathbf{F}_p$. Hence

(5.6)
$$l(\tau) = l\left(\sum_{m=1}^{\alpha-1} c_m B_m\right).$$

Put

$$\sigma_1 = \left(\sum_{m=1}^{\alpha-1} c_m \mu^{-mp}\right) f^{n-1}.$$

For $i = 0, 1, ..., \alpha - 2$, put $f_i = \sum_{j=0}^{p-1} a_{i,j} \mu^j$. Set

$$\sigma_2 = \sum_{m=1}^{\alpha-1} c_m \mu^{-p} \left(\sum_{j=p+1-\alpha}^{p-1} a_{m-1,j} \mu^j \right)$$

Define σ_3 by

$$\sigma_3 = \left(\sum_{m=1}^{\alpha-1} c_m B_m\right) - \sigma_1 - \sigma_2.$$

From the definition of B_m it is clear that σ_3 consists of terms of degree $\leq -\alpha$. Hence deg $l(\sigma_3) \leq k - \alpha - 1$. Furthermore, $l(\sigma_1) = 0$. Thus

$$\deg l\left(\sum_{m=1}^{\alpha-1} c_m B_m\right) \le k - \alpha - 1 \leftrightarrow \deg l(\sigma_2) \le k - \alpha - 1$$

Write $\sigma_2 = \sum_{j=1}^{\alpha-1} d_j / \mu^j$. From (5.1), we have

$$k(n-1) = (\alpha - 1)(p-1) + \varepsilon(n-1),$$

which implies $k(n-1) \equiv \varepsilon(n-1) - (\alpha - 1) \pmod{p}$. By (5.2) and hypothesis (iv), $p-1 \ge \varepsilon(n-1) \ge \alpha - 1$; hence k(n-1) is congruent modulo p to one of the numbers 0, 1, ..., $p - \alpha$. Thus for $j = 1, 2, ..., \alpha - 1$,

deg
$$l(1/\mu^j) = k - j - 1 > k - \alpha - 1$$
.

Therefore,

$$\deg l(\sigma_2) \leq k - \alpha - 1 \leftrightarrow d_1 = d_2 = \cdots = d_{\alpha-1} = 0.$$

In matrix terms, if we put

$$b_{ij} = a_{j-1,p-i}, \quad i, j = 1, 2, \dots, \alpha - 1,$$

then $(b_{ij})(c_1, \ldots, c_{\alpha-1})^t = (d_1, \ldots, d_{\alpha-1})^t$. Hence

$$\deg l(\sigma_2) \leq k - \alpha - 1 \leftrightarrow (c_1, \ldots, c_{\alpha-1})^t \in \ker (b_{ij}),$$

where (b_{ij}) is considered as acting on $\mathbf{F}_p^{\alpha-1}$.

Summarizing, we have shown that the map

$$(c_1,\ldots,c_{\alpha-1})^t\mapsto \mu l\left(\sum_{m=1}^{\alpha-1}c_m B_m\right)$$

is a surjection of ker (b_{ij}) onto ker $(\psi \circ f^{p-n})$. It is easy to see that this map is actually an isomorphism: if it were not injective, l would have a polynomial solution of degree < k(n-1), which is impossible.

The kernel of $\psi \circ f^{n-1}$ on $\vec{V_{\alpha-1}}$ is contained in the space spanned by $\{\mu, \mu^2, \ldots, \mu^{\alpha-1}\}$ (since f has a non-zero constant term). Its matrix in this basis in (b_{ji}) . Thus ker $(\psi \circ f^{n-1})$ and ker $(\psi \circ f^{p-n})$ have the same dimension. Q.E.D.

Proof of Main Theorem. The Hasse invariant $\bar{h}(\mu)$ satisfies the hypotheses of Theorem 2: that $\bar{h}(0) \neq 0$ follows from (2.3), and \bar{h} is relatively prime to its derivative since it is a non-trivial solution of a second order differential equation. Hypotheses (iii) and (iv) are easily checked. Note that $\alpha = n - 1$. Further-

58

more, letting \overline{W} denote the space of polynomials in $\mathbf{F}_p[\mu]$ of degree $\leq p - 4$ which are divisible by μ , we have

$$\det \left(I - t(\psi \circ h^{p-3}) \middle| W\right) \equiv \det \left(I - t(\psi \circ \overline{h}^{p-3}) \middle| \overline{W}\right) \pmod{p}.$$

Thus the Main Theorem asserts that $\psi \circ \bar{h}^{p-3}$ has trivial kernel on \bar{W} . Applying Theorem 2 with n = 3 (and hence $\alpha = 2$), we see that this will be the case provided $\psi \circ \bar{h}^2$ has trivial kernel on \bar{V}_1 . Since \bar{h} has non-zero constant term, it is clear that $\psi \circ \bar{h}^2$ has non-trivial kernel if and only if $\psi(\mu \bar{h}^2) = 0$, i.e. if and only if the coefficient of μ^{p-1} in \bar{h}^2 is zero. The proof is concluded by the following:

LEMMA 3 (Dwork [8]). For $p \equiv 1 \pmod{3}$, the coefficient of μ^{p-1} in \overline{h}^2 is non-zero.

Proof. The Hasse invariant \overline{h} satisfies the differential equation (2.4). Its square \overline{h}^2 satisfies the second symmetric power L of (2.4). A straightforward calculation shows that

$$(\mu^3 - 1)^2 L = (\mu^3 - 1)^2 (d/d\mu)^3 + 9\mu^2 (\mu^3 - 1)(d/d\mu)^2 + (19\mu^4 - 10\mu)(d/d\mu) + (8\mu^3 - 2).$$

Writing $\overline{h^2} = \sum_{n=0}^{2p-2} a_n \mu^n$ and putting $a_n = 0$ for n < 0 or n > 2p - 2, we have

(5.7)
$$0 = (\mu^{3} - 1)^{2} L(\bar{h}^{2})$$
$$= \sum_{n=0}^{2p+1} [(n-1)^{3} a_{n-3} + (-2n^{3} - 3n^{2} - 5n - 2)a_{n} + (n+3)(n+2)(n+1)a_{n+3}]\mu^{n}.$$

Putting n = p - 1 in this sum gives $(p - 2)^3 a_{p-4} + 2a_{p-1} = 0$. If $a_{p-1} = 0$, then $a_{p-4} = 0$. Putting n = p - 4 in this sum now gives $(p - 5)^3 a_{p-7} = 0$. Hence $a_{p-7} = 0$. Continuing this procedure we arrive at $a_0 = 0$. But as already observed $\overline{h}(0) \neq 0$. This contradiction shows $a_{p-1} \neq 0$. Q.E.D.

6. Proof of Proposition 1

LEMMA 4. Let
$$f \in \mathbf{F}_p[\mu]$$
 with deg $f = p - 1$ and $f(0) = 0$. Write
(6.1) $\mu f^2 = f_0 + \mu^p f_1$

(where deg $f_1 = p - 1$, deg $f_0 \le p - 1$) and put $\sigma = \mu f^3(f_1/\mu f^2)'$. Then $\sigma \in \mathbf{F}_p[\mu]$, deg $\sigma \le p - 4$, and $\sigma \in \ker(\psi \circ f^{p-3})$

Proof. An easy calculation shows $\sigma = ff'_1 - 2f_1f' - \mu^{-1}f_1f$. Hence $\sigma \in \mathbf{F}_p[\mu]$ since $\mu \mid f$. Next we have $\psi(f^{p-3}\sigma) = f\psi(\mu(f_1/\mu f^2)') = 0$ since

 $(f_1/\mu f^2)'$ has no terms of degree congruent to -1 modulo p. Finally, using (6.1), we can write

(6.2)
$$\sigma = (\mu f)^{-1} (f_0 f'_1 - f_1 f'_0)$$

Hence deg $\sigma \leq p - 4$. Q.E.D.

Proof of Proposition 1. Let \overline{W} again denote the space of polynomials in $\mathbf{F}_p[\mu]$ of degree $\leq p - 4$ which are divisible by μ . Then

 $\det (I - t(\psi \circ h^{p-3})W) \equiv \det (I - t(\psi \circ \overline{h}^{p-3}) | \overline{W}) \pmod{p}$

Thus Proposition 1 is equivalent to the assertion that $\psi \circ \overline{h}^{p-3}$ has non-trivial kernel on \overline{W} .

Write $\mu \bar{h}^2 = h_0 + \mu^p h_1$. Then by Lemma 4, $\sigma = \mu \bar{h}^3 (h_1 / \bar{h}^2)'$ lies in the kernel of $\psi \circ \bar{h}^{p-3}$ on \bar{W} . Furthermore, $\sigma \neq 0$: if not, then by (6.2), we have $h_0 = \alpha h_1$ for some constant α ; so $\bar{h}^2 = (\alpha + \mu^p)h_1$. But this implies \bar{h} has a multiple root, contradicting the fact that \bar{h} is a non-trivial solution of a second order linear differential equation. Q.E.D.

Added in proof. Hypothesis (iii) of Theorem 2 is implied by hypothesis (iv). The proof can be streamlined somewhat by replacing (iii) and (iv) by the equivalent hypothesis that $[k(n-1)/p] = \alpha - 1$.

REFERENCES

- 1. A. ADOLPHSON, A p-adic theory of Hecke polynomials, Duke Math. J., vol. 43 (1976), pp. 115-145.
- 2. ——, On the mod p eigenvalues of Hecke operators, Duke Math. J., vol. 43 (1976), pp. 109–114.
- 3. A. O. ATKIN, Congruence Hecke operators, Proc. Symp. Pure Math., vol. 12 (1969), pp. 33-40.
- B. DWORK, On the rationality of the zeta function of an algebraic variety, Amer. J. Math., vol. 82 (1960), pp. 631–647.
- 5. , On the zeta function of a hypersurface II, Ann. of Math., vol. 80 (1964), pp. 227–299.
- 6. , p-adic cycles, Publ. Math. IHES, vol. 37 (1969), pp. 327-415.
- 7. ——, The U_p-operator of Atkin on modular functions of level two with growth conditions, Lecture Notes in Mathematics, No. 350, Springer-Verlag, New York, 1973, pp. 57-67.
- 8. , The action of Atkin's U_p -operator on modular functions of level three, (unpublished manuscript).
- 9. E. L. INCE, Ordinary differential equations, Dover, New York, 1956.
- 10. N. KATZ, *p-adic properties of modular schemes and modular forms*, Lecture Notes in Mathematics, No. 350, Springer-Verlag, New York, 1973, pp. 69–190.
- 11. ——, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., vol. 18 (1972), pp. 1–118.
- 12. R. GUNNING, Lectures on modular forms, Ann. of Math. Studies, No. 48, Princeton University Press, Princeton, 1962.
- 13. J. MANIN, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Translations, ser. 2, vol. 45 (1965), pp. 245–264.
 - UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON