THE U_{p}-OPERATOR OF ATKIN ON MODULAR FUNCTIONS OF LEVEL THREE

BY
Alan Adolphson

1. Introduction

In [7] Dwork determines the number of p-adic unit eigenvalues of Atkin's U_{p}-operator on modular functions of level 2. He applies these techniques in [8] to modular functions of level 3. After lengthy calculation, he obtains an answer when $p \equiv 1(\bmod 3)$ but leaves unsettled the case $p \equiv-1(\bmod 3)$. In [2], we gave a new proof of Dwork's result in the level 2 case. In this work, we extend this method to the level 3 case. We determine the number of unit eigenvalues when $p \equiv 1(\bmod 3)$ (Corollary 1 to the main theorem) and give an upper bound for this number when $p \equiv-1(\bmod 3)($ Corollary 1 to Proposition 1$)$.

In Section 2, we discuss the Hasse invariant and compute its values at certain points. The computation is based on the fact that after a change of variable the Hasse invariant satisfies a hypergeometric differential equation (see [8]). Theorem 1 is in [8], but we offer a different proof based on Lemma 1 and the infinite product for det $\left(I-t U_{p}\right)$. This avoids the need for an a priori upper bound on the degree of $\operatorname{det}\left(I-t U_{p}\right)(\bmod p)$. Our Main Theorem (the principal result of [8]) is deduced as a corollary of Theorem 2, rather than by a computation involving differential operators as in [8]. For the final step, however, we still rely on a result of Dwork (Lemma 3). In fact, we feel our approach reveals the significance of Dwork's lemma.

I am indebted to B. Dwork for providing me with a copy of his manuscript [8] and for suggesting improvements to the original version of this work. I would also like to thank B. Dwork and S. Sperber for pointing out errors in the original version.

Throughout this paper, p is a prime $p \geq 5$. We let \mathbf{F}_{p} denote the prime field of p elements, $\overline{\mathbf{F}}_{p}$ its algebraic closure, \mathbf{Q}_{p} the field of p-adic numbers, \mathbf{Z}_{p} the ring of p-adic integers. If f is a polynomial with coefficients in \mathbf{Z}_{p}, we write \bar{f} for the polynomial with coefficients in \mathbf{F}_{p} which are the reductions $\bmod p \mathbf{Z}_{p}$ of the coefficients of f. If $\alpha, \beta \in \mathbf{Z}_{p}[[t]]$ are such that $(\alpha-\beta) \in p \mathbf{Z}_{p}[[t]]$ we will write $\alpha \equiv \beta(\bmod p)$. We use the standard notation for hypergeometric functions [9, p. 162]:

$$
F(a, b ; c ; \lambda)=\sum_{j=0}^{\infty}\left((a)_{j}(b)_{j} /(c)_{j} j!\right) \lambda^{j}
$$

Received May 31, 1977.
where for any non-negative integer j and $a \in \mathbf{Q}_{p},(a)_{0}=1,(a)_{j}=\prod_{s=0}^{j-1}(a+s)$ for $j>0$.

2. The level three Hasse invariant

Consider the family of elliptic curves given by the projective equation

$$
\begin{equation*}
X_{1}^{3}+X_{2}^{3}+X_{3}^{3}-3 \mu X_{1} X_{2} X_{3}=0 \tag{2.1}
\end{equation*}
$$

where $\mu \in \overline{\mathbf{F}}_{p}, \mu^{3} \neq 1$. An explicit formula for the Hasse invariant of this family has been given by Katz [11, equ. (2.3.7.20)]. Define $h(\mu) \in \mathbf{Z}_{p}(\mu)$ by

$$
\begin{equation*}
h(\mu)=\mu^{p-1} \sum_{j=0}^{[(p-1) / 3]}\left((1 / 3)_{j}(2 / 3)_{j} / j!j!\right) \mu^{-3 j} \tag{2.2}
\end{equation*}
$$

where [] denotes the greatest integer function. Then $\bar{h}(\mu)$ is the Hasse invariant of (2.1). We have

$$
h(\mu)= \begin{cases}\sum_{j=0}^{(p-1) / 3}\left((1 / 3)_{j}(2 / 3)_{j} / j!j!\right) \mu^{p-1-3 j} & \text { if } p \equiv 1(\bmod 3) \tag{2.3}\\ (p-2) / 3 \\ \sum_{j=0}\left((1 / 3)_{j}(2 / 3)_{j} / j!j!\right) \mu^{p-1-3 j} & \text { if } p \equiv-1(\bmod 3)\end{cases}
$$

Thus in either case $\operatorname{deg} h(\mu)=p-1$, and $\mu \mid h(\mu)$ iff $p \equiv-1(\bmod 3)$.
For later use, we calculate $\bar{h}(\omega)$, where $\omega^{3}=1$. From [5, (8.4)], it follows that the periods of the differential of the first kind on (2.1) satisfy the differential equation

$$
\begin{equation*}
\left(\mu^{3}-1\right) y^{\prime \prime}+3 \mu^{2} y^{\prime}+\mu y=0 \tag{2.4}
\end{equation*}
$$

By [13], the polynomial $h(\mu)$ satisfies eq. (2.4). Making the change of variable $\lambda=\mu^{3}$ and multiplying by a constant transforms (2.4) into

$$
\begin{equation*}
\lambda(1-\lambda) y^{\prime \prime}+((2-5 \lambda) / 3) y^{\prime}-y / 9=0 \tag{2.5}
\end{equation*}
$$

(where $y^{\prime}, y^{\prime \prime}$ now denote derivatives with respect to λ). The point is that (2.5) is a classical hypergeometric equation [9, p. 161] and its properties are well known. It is satisfied by $F(1 / 3,1 / 3 ; 1 ; 1-\lambda)$.

Suppose first $p \equiv 1(\bmod 3)$. Put

$$
B(\lambda)=\sum_{j=0}^{p-1}\left((1 / 3)_{j} / j!\right)^{2} \lambda^{j} \in \mathbf{Z}_{p}[\lambda] .
$$

Then by [6, Cor. 1 to Lemma 1 and (3.2')],

$$
B(\lambda) \equiv F(1 / 3,1 / 3 ; 1 ; \lambda) / F\left(1 / 3,1 / 3 ; 1 ; \lambda^{p}\right) \quad(\bmod p) .
$$

Hence $\bar{B}(1-\lambda)$ satisfies (2.5). It is easily seen that $\operatorname{deg} \bar{B}=(p-1) / 3$. Thus $\bar{B}\left(1-\mu^{3}\right)$ satisfies (2.4) and has degree $p-1$ in μ. Since $\bar{h}(\mu)$ has these same properties, and since -1 is the unique root of the indicial equation of
equ. (2.4), it follows that $\bar{B}\left(1-\mu^{3}\right)$ is a constant multiple of $\bar{h}(\mu)$. Comparing coefficients of μ^{p-1} we conclude (since $(-1)^{(p-1) / 3}=1$) that $\bar{h}(\mu)=\bar{B}\left(1-\mu^{3}\right)$, hence if $\omega^{3}=1, \bar{h}(\omega)=\bar{B}(0)=1$.

Now suppose $p \equiv-1(\bmod 3)$. Put

$$
C(\lambda)=\lambda^{(2 p-1) / 3} \sum_{j=0}^{p-1}\left((1 / 3)_{j}(2 / 3)_{j} / j!j!\right) \lambda^{-j}
$$

Note that $(1 / 3)_{j}(2 / 3)_{j} / j!j$! is a p-adic integer and is divisible by p for $(p-2) / 3<j \leq p-1$. Hence $\bar{C}(\lambda)$ is a polynomial of degree $(2 p-1) / 3$. By [6, Cor. 2 to Lemma 1 and equ. (3.2') with $s=0$],

$$
C(\lambda) / \lambda^{(2 p-1) / 3} \equiv F\left(1 / 3,2 / 3 ; 1 ; \lambda^{-1}\right) / F\left(1 / 3,2 / 3 ; 1 ; \lambda^{-p}\right) \quad(\bmod p)
$$

Thus $\bar{C}(\lambda)$ is a solution of (2.5), since it is well known that $\lambda^{-1 / 3} F(1 / 3,2 / 3 ; 1$; λ^{-1}) satisfies (2.5). Again applying [6], we have

$$
\sum_{j=0}^{(2 p-1) / 3}\left((1 / 3)_{j} / j!\right)^{2} \lambda^{j} \equiv F(1 / 3,1 / 3 ; 1 ; \lambda) / F\left(2 / 3,2 / 3 ; 1 ; \lambda^{p}\right) \quad(\bmod p)
$$

Thus the polynomial $\bar{D}(\lambda) \in \mathbf{F}_{p}[\lambda]$ defined by

$$
\bar{D}(\lambda)=\sum_{j=0}^{(2 p-1) / 3}\left((1 / 3)_{j} / j!\right)^{2}(1-\lambda)^{j}
$$

is a solution of (2.5) (since $F(1 / 3,1 / 3 ; 1 ; 1-\lambda)$ is). Since $-1 / 3$ is the unique root of the indicial equation of (2.5), it follows that $\bar{D}(\lambda)$ is a constant multiple of $\bar{C}(\lambda)$. Comparing coefficients of $\lambda^{(2 p-1) / 3}$ we conclude (since $\left.(-1)^{(2 p-1) / 3}=-1\right)$ that $\bar{D}(\lambda)=-\bar{C}(\lambda)$. It is clear from the definitions of $h(\mu)$ and $C(\mu)$ that $\bar{h}(\mu)=\mu^{-p} \bar{C}\left(\mu^{3}\right)$, hence $\bar{h}(\mu)=-\mu^{-p} \bar{D}\left(\mu^{3}\right)$. Thus if $\omega^{3}=1$, we have $\bar{h}(\omega)=-\omega^{-p} \bar{D}(1)=-\omega^{-p}$.

3. Reduction mod p of characteristic polynomial of Atkin's operator

For the definition of Atkin's operator, denoted here by U_{p}, we refer the reader to [3], [7], or [10]. We recall the identity [10, A3. 1.5].

$$
\begin{equation*}
\operatorname{det}\left(I-t U_{p}\right)=\prod_{r=0}^{\infty} \prod_{\{\mu\}}^{\prime}\left(1-\pi_{1}(\mu)^{-2(r+1)}\left(p^{r} t\right)^{\operatorname{deg} \mu}\right)^{-1} \tag{3.1}
\end{equation*}
$$

where $\prod_{\{\mu\}}^{\prime}$ indicates the product is taken over all \mathbf{F}_{p}-conjugacy classes of elements of $\overline{\mathbf{F}}_{p}$, excluding the supersingular classes and the cube roots of unity, and $\pi_{1}(\mu)$ is the unit reciprocal root of the numerator of the zeta function of (2.1).

For any field K, define an endomorphism ψ of $K[\mu]$ by linearity and the condition

$$
\psi\left(\mu^{n}\right)= \begin{cases}\mu^{n / p} & \text { if } p \mid n \\ 0 & \text { if } p \nmid n\end{cases}
$$

Let $A(\mu) \in K[\mu]$. For k a non-negative integer, $\xi \rightarrow \psi\left(A^{k} \xi\right)$ is an endomorphism of $K[\mu]$, denoted $\psi \circ A^{k}$. Let V_{n} be the subspace of $K[\mu]$ of polynomials of degree $\leq n$. As observed in [4], if we put $n=\left[\operatorname{deg} A^{k} /(p-1)\right]$, then $\psi \circ A^{k}$ is stable on V_{n} and the eigenspaces corresponding to non-zero eigenvalues are contained in V_{n}.

Theorem 1. Let $h(\mu)$ be defined by (2.3) and consider $\psi \circ h^{p-3}$ as endomorphism of $\mathbf{Q}_{p}[\mu]$. If $p \equiv 1(\bmod 3)$, then

$$
\operatorname{det}\left(I-t U_{p}\right) \equiv(1-t)^{3} \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right) /\left(1-h(0)^{p-3} t\right) \quad(\bmod p)
$$

If $p \equiv-1(\bmod 3)$, then

$$
\operatorname{det}\left(I-t U_{p}\right) \equiv(1-t)\left(1-t^{2}\right) \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right) \quad(\bmod p)
$$

Before beginning the proof, we need a lemma. If $\mu \in \overline{\mathbf{F}}_{p}$ let μ_{T} denote its Teichmüller representative, i.e. μ_{T} is the unique lifting of μ to characteristic zero satisfying $\mu_{T}^{p^{N-1}}=1$, where $N=\left[\mathbf{F}_{p}(\mu): \mathbf{F}_{p}\right]$. (We take $0_{T}=0$. Let A be a polynomial with coefficients in \mathbf{Q}_{p} and put

$$
\pi_{A}(\mu)=\prod_{i=0}^{N-1} A\left(\mu_{T}^{p^{i}}\right)
$$

Note that $\pi_{A}(\mu) \in \mathbf{Q}_{p}\left(\right.$ since $\left.\pi_{A}(\mu)=\operatorname{Norm}_{\mathbf{Q}_{p}\left(\mu_{T}\right) / \mathbf{Q}_{p}} A\left(\mu_{T}\right)\right)$ and depends only on the \mathbf{F}_{p}-conjugacy class of μ.

Lemma 1. Considering $\psi \circ A^{k}$ as endomorphism of the space of polynomials with coefficients in \mathbf{Q}_{p}, we have

$$
\operatorname{det}\left(I-t\left(\psi \circ A^{k}\right) \mid V_{n}\right)=\prod_{r=0}^{\infty} \prod_{\{\mu\}}^{\prime \prime}\left(1-\pi_{A}(\mu)^{k}\left(p^{r} t\right)^{\operatorname{deg} \mu}\right)^{-1}
$$

where $n=\left[\operatorname{deg} A^{k} /(p-1)\right]$ and $\prod_{\{\mu\}}^{\prime \prime}$ indicates a product extended over all \mathbf{F}_{p}-conjugacy classes of elements of $\overline{\mathbf{F}}_{p}$ excluding $\bar{\mu}=0$.

Proof. This follows easily from the trace formula [4]

$$
\operatorname{Tr}\left(\psi \circ A^{k}\right)^{n}=\left(p^{n}-1\right)^{-1} \sum_{\mu_{T} p^{p-1}=1} A\left(\mu_{T}\right)^{k} A\left(\mu_{T}^{p}\right)^{k} \cdots A\left(\mu_{T}^{p n-1}\right)^{k}
$$

We obtain

$$
\begin{align*}
-\sum_{n=1}^{\infty} \operatorname{Tr}\left(\psi \circ A^{k}\right)^{n} t^{n} / n & =\sum_{n=1}^{\infty}\left(t^{n} / n\right) \sum_{r=0}^{\infty} p^{n r} \sum_{\mu \mathrm{pn}-1=1} \pi_{A}(\mu)^{n k / \operatorname{deg} \mu} \tag{3.2}\\
& =\sum_{r=0}^{\infty} \sum_{\{\mu\}}^{\prime \prime} \sum_{s=1}^{\infty}\left(\pi_{A}(\mu)^{k}\left(p^{r} t\right)^{\operatorname{deg} \mu}\right)^{s} / s
\end{align*}
$$

where $\sum_{\{\mu\}}^{\prime \prime}$ denotes a sum over all \mathbf{F}_{p}-conjugacy classes of elements of $\overline{\mathbf{F}}_{p}$ excluding $\mu=0$. Taking exponentials in (3.2) gives the lemma. Q.E.D.

Proof of Theorem 1. From (3.1) we deduce

$$
\begin{align*}
\operatorname{det}\left(I-t U_{p}\right) & \equiv \prod_{\{\mu\}}^{\prime}\left(1-\pi_{1}(\mu)^{-2} t^{\operatorname{deg} \mu}\right)^{-1} \quad(\bmod p) \tag{3.3}\\
& \equiv \prod_{\{\mu\}}^{\prime}\left(1-\pi_{1}(\mu)^{p-3} t^{\operatorname{deg} \mu}\right)^{-1} \quad(\bmod p),
\end{align*}
$$

since $\pi_{1}(\mu)$ is a unit in \mathbf{Z}_{p} hence satisfies $\pi_{1}(\mu)^{p-1} \equiv 1(\bmod p)$. From Lemma 1 , taking for A the Hasse invariant h of equ. (2.3), we get

$$
\begin{equation*}
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right) \equiv \prod_{\{\mu\}}^{\prime \prime}\left(1-\pi_{h}(\mu)^{p-3} t^{\operatorname{deg} \mu}\right)^{-1} \quad(\bmod p) \tag{3.4}
\end{equation*}
$$

But it follows from [13] that if μ is not supersingular, then $\pi_{h}(\mu) \equiv \pi_{1}(\mu)$ $(\bmod p)$. If μ is supersingular, then $\pi_{h}(\mu) \equiv 0(\bmod p)$. Thus modulo p, $\operatorname{det}\left(I-t U_{p}\right)$

$$
\equiv\left(1-\pi_{h}(0)^{p-3} t\right)^{-1} \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right) \prod_{\mu^{3}=1}\left(1-\pi_{h}(\mu)^{p-3} t^{\operatorname{deg} \mu}\right)^{1 / \operatorname{deg} \mu}
$$

Note that $\pi_{h}(0)=h(0)$, which is zero when $p \equiv-1(\bmod 3)$.
Suppose that $p \equiv 1(\bmod 3)$. In this case $\mu^{3}=1 \mathrm{implies} \operatorname{deg} \mu=1$. Thus

$$
\pi_{h}(\mu)=h\left(\mu_{T}\right) \equiv 1 \quad(\bmod p)
$$

by the discussion in Section 2.
Suppose that $p \equiv-1(\bmod 3)$. Let $1, \omega, \omega^{2}$ be the three cube roots of unity over \mathbf{Q}_{p}, and let $1, \bar{\omega}, \bar{\omega}^{2}$ be the their reductions $\bmod p$ in $\overline{\mathbf{F}}_{p}$. In this case, we have $\operatorname{deg} \bar{\omega}=\operatorname{deg} \bar{\omega}^{2}=2$. Then

$$
\begin{aligned}
\pi_{h}(1) & =h(1) \equiv-1 \quad(\bmod p) \\
\pi_{h}(\bar{\omega}) & =h(\omega) h\left(\omega^{p}\right) \equiv\left(-\bar{\omega}^{-p}\right)\left(-\bar{\omega}^{-p^{2}}\right) \equiv 1 \quad(\bmod p) \\
\pi_{h}\left(\bar{\omega}^{2}\right) & =h\left(\omega^{2}\right) h\left(\omega^{2 p}\right) \equiv\left(-\bar{\omega}^{-2 p}\right)\left(-\bar{\omega}^{-2 p^{2}}\right) \equiv 1 \quad(\bmod p)
\end{aligned}
$$

by the results of Section 2. Q.E.D.

4. Main theorem and corollaries

Suppose $p \equiv 1(\bmod 3)$. Consider the matrix (in the usual monomial basis) of $\psi \circ h^{p-3}$ on V_{p-3}. The first entry of the first row is $h(0)^{p-3}$, the other entries in the first row are zero. The last entry in the last row is 1 , the other entries in the last row are zero. Thus

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right)=\left(1-h(0)^{p-3} t\right)(1-t) \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right),
$$

where W is the space of polynomials with coefficients in \mathbf{Q}_{p} of degree $\leq p-4$ with no constant term. From Theorem 1, we obtain

$$
\begin{equation*}
\operatorname{det}\left(I-t U_{p}\right) \equiv(1-t)^{4} \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) \quad(\bmod p) \tag{4.1}
\end{equation*}
$$

Main Theorem. Suppose $p \equiv 1(\bmod 3)$. Then

$$
\operatorname{deg}\left[\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right)(\bmod p)\right]=p-4
$$

i.e., as an operator on $W, \psi \circ h^{p-3}$ has no eigenvalues divisible by p.

The proof of the Main Theorem will be given in Section 5. By (4.1), we have:
Corollary 1. For $p \equiv 1(\bmod 3)$, Atkin's operator U_{p} has p eigenvalues (counting multiplicities) which are p-adic units.

Comparing (4.1) with [10, (A3.3.3)], we see that

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) \equiv \operatorname{det}\left(I-t T_{p-1}(p)\right) \quad(\bmod p)
$$

where $T_{p-1}(p)$ is the pth Hecke operator acting on cusp forms of weight $p-1$ and level three. But the dimension of the space of cusp forms of weight $p-1$ and level three is $p-4$ [12], so by the Main Theorem we have:

Corollary 2. For $p \equiv 1(\bmod 3)$, all eigenvalues of the Hecke operator $T_{p-1}(p)$ are p-adic units.

For the connection with the Cartier operator, see [10, (A3.3.3)].
Now suppose $p \equiv-1(\bmod 3)$. Examining the matrix of $\psi \circ h^{p-3}$ as before (and keeping in mind that h has no constant term in this case) we see that

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid V_{p-3}\right)=(1-t) \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) .
$$

Comparing this with Theorem 1, we obtain

$$
\begin{equation*}
\operatorname{det}\left(I-t U_{p}\right) \equiv(1-t)^{2}\left(1-t^{2}\right) \operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) \quad(\bmod p) \tag{4.2}
\end{equation*}
$$

The conclusion of the Main Theorem is false when $p \equiv-1(\bmod 3)$. One has instead:

Proposition 1. If $p \equiv-1(\bmod 3)$, then

$$
\operatorname{deg}\left[\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right)(\bmod p)\right] \leq p-5
$$

The proof of Proposition 1 will be given in Section 6. By (4.2), we have:
Corollary 1. For $p \equiv-1(\bmod 3)$, Atkin's operator U_{p} has no more than $p-1$ eigenvalues which are p-adic units.

Combining (4.2) with [10, A3.3.3] gives

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) \equiv \operatorname{det}\left(I-t T_{p-1}(p)\right) \quad(\bmod p)
$$

hence by Proposition 1:
Corollary 2. For $p \equiv-1(\bmod 3)$, the Hecke operator $T_{p-1}(p)$ has at least one eigenvalue which is a p-adic non-unit.

5. Proof of main theorem

Lemma 2. Let k and n be positive integers. If $n>1$, let α be the unique positive integer such that

$$
(\alpha-1)(p-1) /(n-1)<k \leq \alpha(p-1) /(n-1) .
$$

If $n=1$, let $\alpha=0$. Then $[k(p-n) /(p-1)]=k-\alpha$.
Proof. The assertion is clear if $n=1$. If $n>1$ define ε by the equation

$$
\begin{equation*}
k=((\alpha-1)(p-1) /(n-1))+\varepsilon \tag{5.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
0<\varepsilon \leq(p-1) /(n-1) \tag{5.2}
\end{equation*}
$$

Using (5.1) to express k we compute

$$
(k(p-n) /(p-1)-(k-\alpha)=1-\varepsilon(n-1) /(p-1)
$$

and by $(5.2), 0 \leq 1-\varepsilon(n-1) /(p-1)<1$. Q.E.D.
Denote by \bar{V}_{m} the space of polynomials in $\mathbf{F}_{p}[\mu]$ of degree $\leq m$.
Corollary. Let $f \in \mathbf{F}_{p}[\mu]$ and put $k=\operatorname{deg} f$. Let n be an integer, $1 \leq n \leq p$. Then $\psi \circ f^{p-n}$ is stable on $\bar{V}_{k-\alpha}$

Consider now the operator $\psi \circ f^{n-1}$ on $\mathbf{F}_{p}[\mu]$, where f and n are as defined in the corollary. From (5.1) and (5.2), we have

$$
[k(n-1) /(p-1)]= \begin{cases}\alpha & \text { if } \varepsilon=(p-1) /(n-1) \text { or } n=1 \tag{5.3}\\ \alpha-1 & \text { if } \varepsilon \neq(p-1) /(n-1),\end{cases}
$$

where α is defined in Lemma 2. If $\varepsilon=(p-1) /(n-1)$, we have $k=\alpha(p-1) /(n-1)$ and

$$
\begin{equation*}
\psi\left(f^{n-1} \mu^{\alpha}\right)=c \mu^{\alpha}+\text { lower order terms } \tag{5.4}
\end{equation*}
$$

where $c \in \mathbf{F}_{p}^{x}$ is the coefficient of $\mu^{k(n-1)}$ in f^{n-1}. Thus by (5.3), $\psi \circ f^{n-1}$ is stable on either \bar{V}_{α} or $\bar{V}_{\alpha-1}$, and by (5.4) the kernel of $\psi \circ f^{n-1}$ is contained in $\bar{V}_{\alpha-1}$ in either case (in particular, taking $n=1$, $\operatorname{ker}(\psi)=\{0\}=V_{-1}$).

The Main Theorem will be a corollary of the next theorem.
Theorem 2. Let $f \in \mathbf{F}_{p}[\mu]$ and put $k=\operatorname{deg} f$. Suppose n is integral, $1 \leq n \leq p$, and let α, ε be defined by lemma 2 and equ. (5.1) (thus ε is defined only if $n>1$). We assume the following:
(i) $f(0) \neq 0$,
(ii) f is relatively prime to its derivative,
(iii) $k \leq p(p-1) /(n-1)($ if $n>1)$,
(iv) $\varepsilon(n-1) \geq \alpha-1$ (if $n>1$).

Then the kernel of $\psi \circ f^{p-n}$ on $\bar{V}_{k-\alpha}$ is isomorphic to the kernel of $\psi \circ f^{n-1}$ on $\bar{V}_{\alpha-1}$.

Proof. The theorem is trivial if $k=0$, so we suppose $k \geq 1$. Let $\xi \in \mathbf{F}_{p}[\mu]$ be such that $\psi\left(\xi f^{p-n}\right)=0$. Then we must have $\xi=\mu \eta$ with $\eta \in \mathbf{F}_{p}[\mu]$, so

$$
\psi\left(\mu \eta f^{p-n}\right)=f \psi\left(\mu \eta / f^{n}\right)=0 .
$$

Thus $\psi\left(\mu \eta / f^{n}\right)=0$. This implies $\eta / f^{n} \in d / d \mu\left(\mathbf{F}_{p}(\mu)\right)$. We can then write $\eta=f^{n} \rho^{\prime}$ with $\rho \in \mathbf{F}_{p}(\mu)$ where $\left.\rho^{\prime}=d \rho / d \mu\right)$, and can assume without loss of generality that ρ has poles only at zeros of f. We will have $\xi \in \bar{V}_{k-\alpha}$ if and only if ρ produces a polynomial η with $\operatorname{deg} \eta \leq k-\alpha-1$. The proof is divided into several cases.

Case 1. Assume $\rho \in \mathbf{F}_{p}[\mu]$. Then $\eta=f^{n} \rho^{\prime}$ implies $\eta=0$ or $\operatorname{deg} \eta \geq n k>$ $k-\alpha-1$. Hence $\xi \notin \bar{V}_{k-\alpha}$.

If $\rho \notin \mathbf{F}_{p}[\mu]$ we may write $\rho=\tau / f^{r}$ where $r>0$ and $\tau \in \mathbf{F}_{p}[\mu]$. We assume $f \nmid \tau$, which determines r uniquely. Further, we can assume without loss of generality that $p \nmid r$: for if $p \mid r$ (by looking at the principal part expansion of $\rho=\tau / f^{r}$) one can find $\rho_{1}=\sigma / f^{s}$ such that $\rho_{1}^{\prime}=\rho^{\prime}, \sigma \in \mathbf{F}_{p}[\mu]$, and either $p \nmid s$ or $s=0$. Since we are really concerned with $\eta=f^{n} \rho^{\prime}$, we may then replace ρ by ρ_{1}.

Case 2. Assume $r>n-1$. We have $\eta=f^{n} \rho^{\prime}=\left(f \tau^{\prime}-r f^{\prime} \tau\right) / f^{r+1-n}$ with $r+1-n>0$. For η to be a polynomial f must divide $f^{\prime} \tau($ since $r \not \equiv 0(\bmod p))$. But $\left(f, f^{\prime}\right)=1$ so $f \mid \tau$, contradicting the assumption made after case 1 . Thus η cannot be a polynomial in this case.

Taking $n=1$ in the theorem, this shows that $\psi \circ f^{p-1}$ has trivial kernel on \bar{V}_{k}, since $r>n-1$ is the only case that occurs. As already observed, ψ has trivial kernel on \bar{V}_{-1}. This proves the theorem when $n=1$ and when $n=p$ (since $n=p$ determines the same pair of operators ψ and $\psi \circ f^{p-1}$). From now on, we assume $1<n<p$.

Case 3. Assume $r<n-1$. Then $\eta=f^{n-r-1}\left(f \tau^{\prime}-r f^{\prime} \tau\right)$. Since $n-r-$ $1>0$, it follows that either $\eta=0$ or $\operatorname{deg} \eta \geq k>k-\alpha-1$.

Thus none of the first three cases produces an η with $\operatorname{deg} \eta \leq k-\alpha-1$ (other than $\eta=0$).

Case 4. Assume $r=n-1$. Then $\eta=f \tau^{\prime}-(n-1) f^{\prime} \tau$. Put $l(\tau)=f \tau^{\prime}-$ $(n-1) f^{\prime} \tau$. If $\operatorname{deg} \tau=j$, it follows that (since $n>1$ implies $\alpha \geq 1$) $\operatorname{deg} \eta=j+$ $k-1>k-\alpha-1$ unless $j \equiv k(n-1)(\bmod p)$.

Suppose $\alpha=1$. From the definition of α (Lemma 2) this implies

$$
\begin{equation*}
\operatorname{deg} f^{n-1}=k(n-1)<p \tag{5.5}
\end{equation*}
$$

In this case, $\psi \circ f^{p-n}$ has non-trivial kernel on $\bar{V}_{k-\alpha}$ if and only if there exists a polynomial τ with $\operatorname{deg} \tau \equiv k(n-1)(\bmod p)$ such that $\eta=l(\tau)$ is non-trivial and satisfies $\operatorname{deg} \eta \leq k-2$. Let τ_{0} be the polynomial of least degree having
these properties. By (5.5), there exist $c \in \mathbf{F}_{p}$ and a non-negative integer m such that $\operatorname{deg}\left(\tau_{0}-c \mu^{m p} f^{n-1}\right)<\operatorname{deg} \tau_{0}$. But $l\left(f^{n-1}\right)=0$ implies

$$
l\left(\tau_{0}-c \mu^{m p} f^{n-1}\right)=l\left(\tau_{0}\right)
$$

contradicting the minimality of $\operatorname{deg} \tau_{0}$. Hence $\psi \circ f^{p-n}$ has trivial kernel on \bar{V}_{k-1}. Since we are assuming $f(0) \neq 0, \psi \circ f^{n-1}$ has trivial kernel on \bar{V}_{0}. This proves the theorem when $\alpha=1$. From now on, we assume $\alpha \geq 2$.

By (5.1), $k(n-1) / p=\alpha-1+(\varepsilon(n-1)-(\alpha-1)) / p$. Using (5.2) and our hypothesis that $\varepsilon(n-1) \geq \alpha-1$ we see that $[k(n-1) / p]=\alpha-1$. Thus we can write

$$
f^{n-1}=f_{0}+\mu^{p} f_{1}+\mu^{2 p} f_{2}+\cdots+\mu^{(\alpha-1) p} f_{\alpha-1}, \quad f_{\alpha-1} \neq 0
$$

where $f_{0}, f_{1}, \ldots, f_{\alpha-1} \in \mathbf{F}_{p}[\mu], \operatorname{deg} f_{0}, \operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{\alpha-2} \leq p-1$, and $\operatorname{deg} f_{\alpha-1} \equiv k(n-1)(\bmod p)$. For $m=1,2, \ldots, \alpha-1$ set

$$
B_{m}=\mu^{-m p}\left(f^{n-1}-\sum_{i=0}^{m-1} \mu^{i p} f_{i}\right) .
$$

Then $B_{m} \in \mathbf{F}_{p}[\mu]$ and $\operatorname{deg} B_{m}=k(n-1)-m p$. Since $l\left(f^{n-1}\right)=0$, the degree of $l\left(B_{m}\right)$ is $\leq k-2$. The operator $\psi \circ f^{p-n}$ on $\bar{V}_{k-\alpha}$ has a non-trivial kernel if and only if there exists $\tau \in \mathbf{F}_{p}[\mu]$ with $\operatorname{deg} \tau \equiv k(n-1)(\bmod p)$ such that $\eta=l(\tau)$ is non-trivial and satisfies deg $\eta \leq k-\alpha-1$.

Suppose $\tau \in \mathbf{F}_{p}[\mu]$ is such that $\operatorname{deg} \tau \equiv k(n-1)(\bmod p)$ and $\operatorname{deg} l(\tau) \leq$ $k-2$. Then

$$
\operatorname{deg} \tau \equiv \operatorname{deg} f^{n-1} \equiv \operatorname{deg} B_{m}(\bmod p) \quad \text { for } m=1,2, \ldots, \alpha-1
$$

and since $(\alpha-1-m) p \leq \operatorname{deg} B_{m} \leq(\alpha-m) p$, we see that τ can be expressed in the form

$$
\tau=g\left(\mu^{p}\right) f^{n-1}+\sum_{m=1}^{\alpha-1} c_{m} B_{m}
$$

where $g(\mu) \in \mathbf{F}_{p}[\mu], c_{1}, c_{2}, \ldots, c_{\alpha-1} \in \mathbf{F}_{p}$. Hence

$$
\begin{equation*}
l(\tau)=l\left(\sum_{m=1}^{\alpha-1} c_{m} B_{m}\right) \tag{5.6}
\end{equation*}
$$

Put

$$
\sigma_{1}=\left(\sum_{m=1}^{\alpha-1} c_{m} \mu^{-m p}\right) f^{n-1}
$$

For $i=0,1, \ldots, \alpha-2$, put $f_{i}=\sum_{j=0}^{p-1} a_{i, j} \mu^{j}$. Set

$$
\sigma_{2}=\sum_{m=1}^{\alpha-1} c_{m} \mu^{-p}\left(\sum_{j=p+1-\alpha}^{p-1} a_{m-1, j} \mu^{j}\right) .
$$

Define σ_{3} by

$$
\sigma_{3}=\left(\sum_{m=1}^{\alpha-1} c_{m} B_{m}\right)-\sigma_{1}-\sigma_{2}
$$

From the definition of B_{m} it is clear that σ_{3} consists of terms of degree $\leq-\alpha$. Hence $\operatorname{deg} l\left(\sigma_{3}\right) \leq k-\alpha-1$. Furthermore, $l\left(\sigma_{1}\right)=0$. Thus

$$
\operatorname{deg} l\left(\sum_{m=1}^{\alpha-1} c_{m} B_{m}\right) \leq k-\alpha-1 \leftrightarrow \operatorname{deg} l\left(\sigma_{2}\right) \leq k-\alpha-1
$$

Write $\sigma_{2}=\sum_{j=1}^{\alpha-1} d_{j} / \mu^{j}$. From (5.1), we have

$$
k(n-1)=(\alpha-1)(p-1)+\varepsilon(n-1),
$$

which implies $k(n-1) \equiv \varepsilon(n-1)-(\alpha-1)(\bmod p)$. By (5.2) and hypothesis (iv), $p-1 \geq \varepsilon(n-1) \geq \alpha-1$; hence $k(n-1)$ is congruent modulo p to one of the numbers $0,1, \ldots, p-\alpha$. Thus for $j=1,2, \ldots, \alpha-1$,

$$
\operatorname{deg} l\left(1 / \mu^{j}\right)=k-j-1>k-\alpha-1
$$

Therefore,

$$
\operatorname{deg} l\left(\sigma_{2}\right) \leq k-\alpha-1 \leftrightarrow d_{1}=d_{2}=\cdots=d_{\alpha-1}=0
$$

In matrix terms, if we put

$$
b_{i j}=a_{j-1, p-i}, \quad i, j=1,2, \ldots, \alpha-1
$$

then $\left(b_{i j}\right)\left(c_{1}, \ldots, c_{\alpha-1}\right)^{t}=\left(d_{1}, \ldots, d_{\alpha-1}\right)^{t}$. Hence

$$
\operatorname{deg} l\left(\sigma_{2}\right) \leq k-\alpha-1 \leftrightarrow\left(c_{1}, \ldots, c_{\alpha-1}\right)^{t} \in \operatorname{ker}\left(b_{i j}\right)
$$

where $\left(b_{i j}\right)$ is considered as acting on $\mathbf{F}_{p}^{\alpha-1}$.
Summarizing, we have shown that the map

$$
\left(c_{1}, \ldots, c_{\alpha-1}\right)^{t} \mapsto \mu l\left(\sum_{m=1}^{\alpha-1} c_{m} B_{m}\right)
$$

is a surjection of $\operatorname{ker}\left(b_{i j}\right)$ onto $\operatorname{ker}\left(\psi \circ f^{p-n}\right)$. It is easy to see that this map is actually an isomorphism: if it were not injective, l would have a polynomial solution of degree $<k(n-1)$, which is impossible.

The kernel of $\psi \circ f^{n-1}$ on $\bar{V}_{\alpha-1}$ is contained in the space spanned by $\left\{\mu, \mu^{2}, \ldots\right.$, $\left.\mu^{\alpha-1}\right\}$ (since f has a non-zero constant term). Its matrix in this basis in ($b_{j i}$). Thus $\operatorname{ker}\left(\psi \circ f^{n-1}\right)$ and $\operatorname{ker}\left(\psi \circ f^{p-n}\right)$ have the same dimension. Q.E.D.

Proof of Main Theorem. The Hasse invariant $\bar{h}(\mu)$ satisfies the hypotheses of Theorem 2: that $\bar{h}(0) \neq 0$ follows from (2.3), and \bar{h} is relatively prime to its derivative since it is a non-trivial solution of a second order differential equation. Hypotheses (iii) and (iv) are easily checked. Note that $\alpha=n-1$. Further-
more, letting \bar{W} denote the space of polynomials in $\mathbf{F}_{p}[\mu]$ of degree $\leq p-4$ which are divisible by μ, we have

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) \mid W\right) \equiv \operatorname{det}\left(I-t\left(\psi \circ \bar{h}^{p-3}\right) \mid \bar{W}\right) \quad(\bmod p) .
$$

Thus the Main Theorem asserts that $\psi \circ \bar{h}^{p-3}$ has trivial kernel on \bar{W}. Applying Theorem 2 with $n=3$ (and hence $\alpha=2$), we see that this will be the case provided $\psi \circ \bar{h}^{2}$ has trivial kernel on \bar{V}_{1}. Since \bar{h} has non-zero constant term, it is clear that $\psi \circ \bar{h}^{2}$ has non-trivial kernel if and only if $\psi\left(\mu \bar{h}^{2}\right)=0$, i.e. if and only if the coefficient of μ^{p-1} in \bar{h}^{2} is zero. The proof is concluded by the following:

Lemma 3 (Dwork [8]). For $p \equiv 1(\bmod 3)$, the coefficient of μ^{p-1} in \bar{h}^{2} is non-zero.

Proof. The Hasse invariant \bar{h} satisfies the differential equation (2.4). Its square \bar{h}^{2} satisfies the second symmetric power L of (2.4). A straightforward calculation shows that

$$
\begin{aligned}
\left(\mu^{3}-1\right)^{2} L= & \left(\mu^{3}-1\right)^{2}(d / d \mu)^{3}+9 \mu^{2}\left(\mu^{3}-1\right)(d / d \mu)^{2} \\
& +\left(19 \mu^{4}-10 \mu\right)(d / d \mu)+\left(8 \mu^{3}-2\right)
\end{aligned}
$$

Writing $\bar{h}^{2}=\sum_{n=0}^{2 p-2} a_{n} \mu^{n}$ and putting $a_{n}=0$ for $n<0$ or $n>2 p-2$, we have

$$
\begin{align*}
0= & \left(\mu^{3}-1\right)^{2} L\left(\bar{h}^{2}\right) \tag{5.7}\\
= & \sum_{n=0}^{2 p+1}\left[(n-1)^{3} a_{n-3}+\left(-2 n^{3}-3 n^{2}-5 n-2\right) a_{n}\right. \\
& \left.+(n+3)(n+2)(n+1) a_{n+3}\right] \mu^{n} .
\end{align*}
$$

Putting $n=p-1$ in this sum gives $(p-2)^{3} a_{p-4}+2 a_{p-1}=0$. If $a_{p-1}=0$, then $a_{p-4}=0$. Putting $n=p-4$ in this sum now gives $(p-5)^{3} a_{p-7}=0$. Hence $a_{p-7}=0$. Continuing this procedure we arrive at $a_{0}=0$. But as already observed $\bar{h}(0) \neq 0$. This contradiction shows $a_{p-1} \neq 0$. Q.E.D.

6. Proof of Proposition 1

Lemma 4. Let $f \in \mathbf{F}_{p}[\mu]$ with $\operatorname{deg} f=p-1$ and $f(0)=0$. Write

$$
\begin{equation*}
\mu f^{2}=f_{0}+\mu^{p} f_{1} \tag{6.1}
\end{equation*}
$$

(where $\left.\operatorname{deg} f_{1}=p-1, \quad \operatorname{deg} f_{0} \leq p-1\right)$ and put $\sigma=\mu f^{3}\left(f_{1} / \mu f^{2}\right)^{\prime}$. Then $\sigma \in \mathbf{F}_{p}[\mu], \operatorname{deg} \sigma \leq p-4$, and $\sigma \in \operatorname{ker}\left(\psi \circ f^{p-3}\right)$

Proof. An easy calculation shows $\sigma=f f_{1}^{\prime}-2 f_{1} f^{\prime}-\mu^{-1} f_{1} f$. Hence $\sigma \in \mathbf{F}_{p}[\mu]$ since $\mu \mid f$. Next we have $\psi\left(f^{p-3} \sigma\right)=f \psi\left(\mu\left(f_{1} / \mu f^{2}\right)^{\prime}\right)=0$ since
$\left(f_{1} / \mu f^{2}\right)^{\prime}$ has no terms of degree congruent to -1 modulo p. Finally, using (6.1), we can write

$$
\begin{equation*}
\sigma=(\mu f)^{-1}\left(f_{0} f_{1}^{\prime}-f_{1} f_{0}^{\prime}\right) \tag{6.2}
\end{equation*}
$$

Hence $\operatorname{deg} \sigma \leq p-4$. Q.E.D.
Proof of Proposition 1. Let \bar{W} again denote the space of polynomials in $\mathbf{F}_{p}[\mu]$ of degree $\leq p-4$ which are divisible by μ. Then

$$
\operatorname{det}\left(I-t\left(\psi \circ h^{p-3}\right) W\right) \equiv \operatorname{det}\left(I-t\left(\psi \circ \bar{h}^{p-3}\right) \mid \bar{W}\right) \quad(\bmod p)
$$

Thus Proposition 1 is equivalent to the assertion that $\psi \circ \overline{h^{p-3}}$ has non-trivial kernel on \bar{W}.

Write $\mu \bar{h}^{2}=h_{0}+\mu^{p} h_{1}$. Then by Lemma 4, $\sigma=\mu \bar{h}^{3}\left(h_{1} / \bar{h}^{2}\right)^{\prime}$ lies in the kernel of $\psi \circ \bar{h}^{p-3}$ on \bar{W}. Furthermore, $\sigma \neq 0$: if not, then by (6.2), we have $h_{0}=\alpha h_{1}$ for some constant α; so $\bar{h}^{2}=\left(\alpha+\mu^{p}\right) h_{1}$. But this implies \bar{h} has a multiple root, contradicting the fact that \bar{h} is a non-trivial solution of a second order linear differential equation. Q.E.D.

Added in proof. Hypothesis (iii) of Theorem 2 is implied by hypothesis (iv). The proof can be streamlined somewhat by replacing (iii) and (iv) by the equivalent hypothesis that $[k(n-1) / p]=\alpha-1$.

References

1. A. Adolphson, A p-adic theory of Hecke polynomials, Duke Math. J., vol. 43 (1976), pp. 115-145.
2. ——On the mod p eigenvalues of Hecke operators, Duke Math. J., vol. 43 (1976), pp. 109-114.
3. A. O. Atkin, Congruence Hecke operators, Proc. Symp. Pure Math., vol. 12 (1969), pp. 33-40.
4. B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math., vol. 82 (1960), pp. 631-647.
5. - On the zeta function of a hypersurface II, Ann. of Math., vol. 80 (1964), pp. 227-299.
6. -_, p-adic cycles, Publ. Math. IHES, vol. 37 (1969), pp. 327-415.
7. -, The U_{p}-operator of Atkin on modular functions of level two with growth conditions, Lecture Notes in Mathematics, No. 350, Springer-Verlag, New York, 1973, pp. 57-67.
8. -, The action of Atkin's U_{p}-operator on modular functions of level three, (unpublished manuscript).
9. E. L. Ince, Ordinary differential equations, Dover, New York, 1956.
10. N. Katz, p-adic properties of modular schemes and modular forms, Lecture Notes in Mathematics, No. 350, Springer-Verlag, New York, 1973, pp. 69-190.
11. -_, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., vol. 18 (1972), pp. 1-118.
12. R. Gunning, Lectures on modular forms, Ann. of Math. Studies, No. 48, Princeton University Press, Princeton, 1962.
13. J. Manin, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Translations, ser. 2, vol. 45 (1965), pp. 245-264.

University of Washington
Seattle, Washington

