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SPHERICAL FIBRATIONS IN ALGEBRAIC GEOMETRY

BY

DAVID A. Cox

Introduction

An important step in Quillen’s proof of the Adams conjecture is the use
of 6tale homotopy theory to construct spherical fibrations from vector
bundles over schemes. The specific result needed is the following theorem of
Friedlander (proved in [9, 5.3] and [8, 3.7]):

(0.1) THEOREM. Let V be a vector bundle of rank r over a connected
scheme X (and X will also denote the zero section of V). Let L be a set of
primes invertible on X.

(1) Let F be the homotopy fiber of the map {V-X}^-- {X} ({X} is the
prolinite completion of the tale homotopy type of X). Then (F) (CL is the
class of L-primary finite groups and )_ means C.-completion) is weakly
homotopy equivalent .to ($2"-).

(2) If r(X) is CL-complete and r> 1, then the homotopy fiber of
{V-X}--{X} is weakly homotopy equivalent to ($2-).
While the second statement of (0.1) is sufficient to prove the Adams

conjecture (see [9, 6] for details), there are still several questions one can
ask:

(1) Is the restriction r > 1 necessary?
(2) Is the restriction that rl(X) be CL-complete necessary?

This paper answers these questions completely (see (7.1)). While the
answer to the first one is simply "no", the full answer to the second is quite
interesting. There is a quotient /ZL(X, r) of rl(X)^, canonically determined
by the roots of unity in H(X, *x), so that the homotopy fiber of
{V-X}/----{X}/_ is weakly equivalent to (s2r-l)i if and only if I.(X,r)
is C-complete.
Another way to formulate this is to ask when the fibration (where F is as

in the first statement of (0.1))

(0.2) F {v-x) {x)

remains a fibration after Cry-completion. From the above, we see that this
happens precisely when /zr(X, r) is Cry-complete (see (7.2)).

In many cases it is possible to compute r.(X, r). If X is a variety over any
algebraically closed field, t(X, r)= 0. If X is geometrically connected over
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an arbitrary field k and L consists of one prime l, then txt (X, r) is Ct-complete
if and only if [k(h)" k][r, where h is a primitive l-th root of unity.

/r(X, r) also describes the action of 7rl(X) on 7r2r_l((F)) coming from
(0.2). In (7.5) we see that this has some surprising consequences.

In [8] and [9], Theorem (0.1) is proved by comparing the Leray spectral
sequence of 7r" V-X--> X to the Serre spectral sequence for (0.2). Our
methods are quite different" we start from the inclusion V-X- V. But
before going any further, let us generalize the situation. Instead of the zero
section of a vector bundle, we will work with a closed subscheme Y of a
connected scheme X which is some over a base S. Also, Theorem (0.1)
shows that we need to take homotopy fibers with respect to both profinite
and CL-completion. To treat both cases in a unified manner, let L K be
two sets of primes (where the primes in L are invertible on X), and let F be
the homotopy fiber of the map

(0.3) {x- {x}.
Our goal is to prove things about (F)[.
The main tool we use comes from SGA4. Assume that Y is smooth over

S of relative codimension c in X, and let F be a locally constant sheaf of
Z/nZ-modules on X (where n is invertible on X). Then

H_(X, F(c)) 0 for q# 2c,
(0.4)

2c_/_Hy(X, F(c)) F I (canonical isomorphism)

where ,.x, tZ,.x the sheaf of n.th roots of unity on X. See
[1, XVIII and XIX.3] and [7, cycle 2]. From this the spectral sequence
H (X, _H,].(X, F(c)) HPv+q(X, F(c)) gives us canonical isomorphisms

(0.5) r_rq+2tv F(c)) Hq (Y, FI ).
2cAlso, if Ux Hy(X, Z/nZ(c)) corresponds to 1 H(Y, Z/nZ), then the cup

product structure on the above spectral sequence gives us a commutative
diagram

Hq(X, Z/nZ)
ttx r_r,+z:y Z/nZ(c))

(0.6)
Hq(Y,Z/nZ).

The basic idea is that (F)L being a completed sphere is equivalent to Ux
being an isomorphism (this is the Thom isomorphism theorem and its
converse due to Spivak), yet by (0.6), this is equivalent to Hq(X, Z/nZ)--
H’(Y,Z/nZ) being an isomorphism (and this last condition is certainly
satisfied for the zero section of a vector bundle). Of course, the presence of
the twisting Z/nZ(c) complicates matters and accounts for the role of

(x, c).
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We now give more details as we summarize the paper. 1 relates local
cohomology H,(X, F) to the relative cohomology of the map (0.3). To
prove this, we must show how local cohomology is computed using hyper-
coverings. In 2 we show that rq((F)[)= 1 for q-<2c-2. A technical tool
used often is the fibration (see (2.9))

(0.7) (F)[ ---> lim {W- WXx Y} ---> lim {W} B

where W runs over all pointed connected CK-torseurs over X (note that
7rl(B) 1, so that the tools of algebraic topology apply easily). (By lim we
mean inverse limit and by colim we will mean direct limit.) Then the
vanishing of local cohomology in dimensions below 2c (SGA4) translates
(using 1) into the desired result.
3 defines the L-cyclomotic fundamental group IL(X, C), computes it in

some cases, and gives criteria (some of which are mentioned above) for it to
be CL-complete. From 4 on, Y is assumed to be connected and smooth
over S. From (0.7) we get an isomorphism

Hom (Tr2c_((F);), Z/nZ)= colim H2,xv(W, Z/nZ)

and then (0.5), with F=Z/nZ(-c), tells us that an isomorphism
r2c-l((F)[) r is equivalent to the Wx Y being connected and (eventu-
ally) trivializing the sheaves Z/nZ(c). Here the L-cydotomic fundamental
group enters--this last condition means an isomorphism tr.(Y, c)--
/xL(X, C)! (4.2) gives the precise result, and, as shown by example (4.7),
we must assume c> 1. In (4.8) we show that the action of 7rx(X) on
r2c-((F)r:) is determined by the action of /zr.(X, c) on r(c).
Theorem (5.2) gives necessary and sufficient conditions for (F)[ to be a

complete sphere when c>l. We certainly must have txt.(Y, c)---
tzr(X, c)r. Then, using the W’s of (0.7) in the diagram (0.5), we can ignore
the twistings, and we get (using 1) a commutative diagram (all coefficients
are Z/nZ and E denotes the middle term of (0.7)):

(0.8)

I._Ju

colim Hq(W)= Hq(B) ; colim r_rq+zc tuz Hq+Z(B, E).aWxxY

colim Hq W x Y)

Now the Thom isomorphism theorem (and Spivak’s converse to it) apply to
the top line of (0.8): U is an isomorphism if and only if (F)L is a
completed sphere. This is equivalent to r* being an isomorphism, and with a
little care, we see that this means that each Hq(W)---> H"(WxY) is an
isomorphism. This is what we call a strong cohomological L-isomorphism
(the definition given in (5.1) is in terms of the cohomology of certain sheaves
on X). 5 ends with some examples and useful special cases of (5.2).
6 deals with the case c 1, which is much harder because of the

fundamental group of (F)[. We assume that K L and give only sufficient
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conditions for F to be a completed circle. A new phenomena in this case is
the existence of locally constant sheaves F on X-Y which don’t extend to
X. The cohomological condition required involves the sheaves j,F and is
stronger than the conditions found in 5 (see (6.1) and (6.3)). it implies that
certain branched covers V of X (with Y as branch locus) give strong
cohomological L-isomorphisms VxY V (see 6.4) and (6.7)). These give
us a map

(0.9) lim {Q- IS"xY} -- lim {Q}
which is weakly equivalent to the map E-- B, where E is the universal
cover of the middle term of (0.7). The fiber of (0.9) is a simple space, so that
5 implies it is a completed circle. Then the result for F follows easily.
The results of 7 are summarized above.
All schemes that appear are assumed to be locally noetherian, and point

always means geometric point. Sheaf means sheaf in the 6tale topology, and
cohomology means 6tale cohomology.
We would like to thank E. Friedlander for many useful conversations.

Also, thanks go to the referee for suggesting numerous improvements in
style and organization.

1. Local cohomology and relative cohomology

If X is a pointed scheme, HR(X) is the category of pointed hypercover-
ings V. of X, where morphisms are homotopy classes of special maps
V.-- V. between them (see [2, 8] and [9, 1] for the definitions of hyper-
covering and special map). The etale homotopy type of X, {X}e,, is the object
of Pro- ( is the pointed homotopy category) defined by

{X}e {,W(Vo)}V.HR(X)
(where r is the connected component functor). A locally constant sheaf F
on X gives a local system (denoted F) on {X}e,, and there is an isomorphism

(1.1) H’(X, F)= Hq ({X},,, F)
because Hq(X, F) can be computed using hypercoverings (see [2, 8-10]).
We want to generalize this to local cohomology. Thus, assume that we

have a closed subscheme Y of a scheme X, and that X has a geometric point
d which lies in U= X-Y. Let be the category of simplicial maps
F.- W.--, V. between pointed hypercoverings W. of U and V. of X, where a
morphism of Y is a commutative square
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(where the top and bottom maps are special). A simplification of the proof
of Lemma 1.4 of [9] yields the following:

(1.2) LEMMA. Let J be the homotopy category of .
(!) J is filtering.
(2) The functor (f.: W.---> V.)--> W. from J to HR(U) is cofinal.
(3) The functor (f.: W. V.) V. from J to HR(X) is cofinal.

Given an abelian sheaf F on X, we need to associate to each f.: W.-- V.
in J a complex whose cohomology (in the limit) is H}(X, F). This is the first
step in generalizing (1.1). We start with the mapping cylinder M(f.) of f.,
which is defined by the push-out diagram

(1.3)

Wo Oto

M(f.) W.

where A[1] is the usual 1-simplex and ao, al: W.--* W.xA[1] are the two
inclusions. The map r of (1.3) exists by the universal property of M(f.), and
it is well known that r is a homotopy inverse of i. Let
W.--- M(f.). Then /3 is a monomorphism and we have a commutative
diagram

Any 6tale map X’ X gives a sheaf Zx, on X which is the constant sheaf
Z on X’ and zero elsewhere (recall that Extq (Zx,, F)-H’(X’, F)). Going
from X’ to Zx, is functorial, so that f." W.-- V. in gives us simplicial
abelian sheaves Zw., Zv. and ZM(f.. Using the map /3 from (1.4), we define
another simplicial abelian sheaf

K(f.) coker (Z: Zw. ZM(f.).

Let F be an abelian sheaf on X. Then each f. in - gives us a cosimplicial
abelian group Hom (K(f.), F), which becomes a chain complex in the usual
way. For q >--0, the functor f.- H(Hom (K(f.), F)) factors through J.
The chain complexes Hom (K(f.),F), built out of hypercoverings, are
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what we want:

(1.6) PROPOSrrION. There is a canonical isomorphism

HX, F)- colim Hq(Hom (K(f.), F))
f/o

[or any abelian sheaf on X.

Proof. Let Zy denote the sheaf i,i*Zx on X (i: Y-- X is the inclusion).
Then, for f.: W.-- V. in if, (1.4), (1.5) and the injectivity of Za give us a
commutative diagram

0 Zw. z, Z(f. K(f.) 0

"’ V’o

0 Z Zx Zy .,0

where the rows are exact (which says that the dotted arrow c exists). The
map a is a quasi-isomorphism because W. is a hypercovering of U, and
similarly for b. Also Zr is a quasi-isomorphism since r is a homotopy
equivalence. Thus, by the 5-1emma, c is a quasi-isomorphism.
Thus Extq (K(f.), F) Ext (Zy, F) H,(X, F) (see [2, V.6]), so that the

usual hyperext spectral sequence becomes a spectral sequence E’q(f.):

E’q(f.) Ext" (K(f.)p, F) ::> Hey/q(X, F).

This is functorial with respect to 5 and, from E). on, with respect to J.
Since E’(f.)= Hom (K(f.)o, F), we see that

E’(f.) n(Hom (K(f.), F)).

Thus, the proposition reduces to proving that colim.jo Ez’"(fo)= 0 for q > 0.
This will be true if we can prove the following:

P,q(1.7) For q >0 and x E1 (.),, there is a map f.-- f. in ff such that x
goes to 0 in E"(f.).

Let’s analyze K(f.)o. Since (W.A[1])o consists of n +2 copies of Wp, it
follows from (1.4) and (1.5) that we have a functorial isomorphism K(f.)
ZvoY, Zwo. This gives us isomorphisms (also functorial)

p

E’q(f.) Extq (K(f.)o, F)’" Extq (Zvo, F) Y. Extq (Zwp, F)

p

rr Y. F),
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so we need only prove the two analogs of (1.7) in which E’q is replaced first
by H’(Vp, F) and then by H’(Wp, F).
For x H’(Vo, F), the local vanishing of cohomology and Lemma 2.3 of

[9] give us a special map V.-- V. in HR(X) so that x goes to zero in
Hq(V,, F). Then statement 3 of (1.2) gives us the desired map in ft. The
proof for x H’(Wo, F) is similar.

The next step in generalizing (1.1) is to interpret Hom (K(f.), F), for F
locally constant on X, as a complex used to compute (again in the limit) the
relative cohomology of the map let: {U}et--* {X}et induced by the inclusion
j" U=X-Y-">X.
We recall the definition of relative cohomology. The crucial fact is that Jet

is in Pro-’ps, i.e., iet is represented by the maps r(f.): r(W.)---> r(V.)
indexed by f.: W-- Vo in J (this is true by (1.2)). We form the mapping
cylinder of each r(f.), getting a commutative diagram (which is functorial in
5)

’rr(W.) M(’n’(f.))

(v.)

where /3 is an inclusion and r is a homotopy equivalence. Note that
M(Tr(f.)) 7r(M(f.)) (see (1.4)).
Let F be a locally constant sheaf on X, and let JF be the full subcategory

of J consisting of those fo" W.--, V. for which F becomes trivial on Vo. JF is
cofinal in J. Then F gives a local system (called F) on {X}et which consists of
the local systems r(V. F) on r(V.) for f." W.--> V. in J (see [2, 10]). For
relative cohomology, F gives the local system 7r(M(f.) F) on r(M(f.)), and
relative cohomology itself is defined to be

Hq ({X}et, {X- Y}et; F) colim H" (Tr(M(f.)), ,r(W.); ,r(M(f.) F)).
f.J

Our generalization of (1.1) is

(1.8) PROPOSITION. For a locally constant abelian sheaf F on X, there is a
canonical isomorphism H(X, F)-H ({X}et, {X- Y}et; F).

Proof. Let F(f.) denote the local system r(M(f.) F). By (1.6), all we
have to do is find a canonical isomorphism H(Hom(K(f.),F))
H(r(M(f.)), 7r(W.); F(f.)) for f. in J.
From [2, 10] we see that the chain complex

F(M(f.)) =Hom (ZM.), F)
is isomorphic to the complex C*(r(M(f.)), F(f.)) used to compute

H’ (,n’(M(f.)), F(f.)).
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Similarly F(W.) Hom (Zw., F) C*(Tr(W.), F(f.)[(w.)). The complex used
to compute Hq (Tr(M(f.)), 7r(W.); F(f.)) is the kernel of the map

C*(Tr(M(f.)), F(f.)) C*(7r(W.), Fff.)l(w.))
(see [11, 4.2]) which by the above is the kernel of the map

Hom (ZM(.), F) -- Hom (Zw., F).

By (1.5), this kernel is Hom (K(f.), F). I-I

This proposition is true in other contexts as well. For example, if Y is a
closed subset of a topological space X and F is a locally constant sheaf on X,
then there is an isomorphism

H’ (X, X- Y;F)-H(X, F)

(see [3, 11.12]). There is also a version of (1.8) for simplicial schemes:

(1.9) ProPosrrior. Let Y X be as in (1.8), and let V. be a simplicial
scheme in Xet. Then, for any locally constant sheaf F. on V., there is a
canonical isomorphism

H.xv(V., F.) H" ({V.}et, {V.- V.x V}et; F.).

The relevant definitions can be found in [6, Chapters I-II], and the proof
is identical to the proof of (1.8). We use (1.9) often in [5].

2. The connectivity of the fiber

We need some notation for the various kinds of completions we deal with.
If K is a set of primes, Cr denotes the class of finite K-groups, and )r is
the CK-completion of a group or space. When X is a scheme, ({X}t) is
written {X} (we also write rl(X, ) instead of rl({X}t, j)).
The basic situation we consider is a commutative diagram

S

where X is pointed and connected, is a closed immersion (where the point
of X misses Y), and f is smooth. Y has relative codimensi0n ->c in X if

for every s S, Y has codimension ->c in X.
Our main object of study is the homotopy fiber F of the map

{x-
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In this section we translate the following facts about (2.1) into information
about F:

(2.2) If the relative codimension of Y in X is ->1 (resp. >1), then the
map ’I(X-Y, )-- "rrl(X, ) is surjective (resp. bijective).

(2.3) If Y has relative codimension ->c in X and n is invertible on X,
then H,,(X, Z/nZ) 0 for q < 2c.

Statement (2.2) follows easily from [1, XVI 3.2.1 and 3.3], and (2.3)
follows from [1, XVIII 3.1.7] or [7, Cycle 2.2].
The result we get is the following:
(2.4) PROPOSITION. Let Y c_X be as in (2.1), where Y has relative

codimension >_c in X. Let L
_
K be two sets of primes, and let F denote the

homotopy fiber of the map {X- Y} -- {X}. Then r((F)) 0 for q <-- 2c 2
if every prime of L is invertible on X.

Proof. We first step up some machinery to avoid rl(X) (which also will
be useful later on). Recall that a map X--Xa in Pro-N0 is a #-
isomorphism if the induced maps wq(X1)- rq (X2) are isomorphisms for all
q>-0.

Let J be the inverse system of pointed connected G-torseurs W X, as
G ranges over C: (thus J is the category of surjective maps
: r(X) Gsee [2, 10]). Given such a G-torseur W-- X, Lemma 4.4
of [9] shows that {W}t is #-isomorphic to the covering space of {X}t
determined by ker (4) cry(X). Since G is in C:, [2,,$.11] says that {W} is
#-isomorphic to the covering space of {X} determined by ker (&), i.e., we
have a fibration

(2.5) {W} .. {X} s(,:, K(G, 1)

where S(b) is the map determined by 4" rx(X) G. Since the maps S(4)
describe the map {X}-K(r(X), 1), we see that lim,{W} is #-
isomorphic to the universal cover of {X}: (lim {W} means organizing all
of the inverse systems {V} into one large inverse systemsee [2, A.4.4]
for details).
Given 4: w(X) G in J, we see by (2.2) that the composition

rx(X- Y) r(X)-- a
(which classifies the G-torseur W-WxY over X-Y) is surjective. The
argument used for (2.5) then gives us a fibration

(2.6) {W- WxY} -- {X- Y} K(G, 1).

From (2.5) and (2.6) one shows (using the 3 3 lemma of [2, 1]) that we
have a fibration

{w- w
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Since this is true for any W-+ X in J, we can put all of these together to get
a fibration

(2.8) F -+ limj {W- WXxY}r -+ limj {W}r,
and since limj {W} is simply connected, (2.8) remains a fibration after
CL-completion (see [8, 4.1]). Thus we get a fibration

(F) -- lima {W- WxY} lim {W}
which we will write as

(2.9) (F) -- E -- B.

The relative cohomology of the map E -- B is easy to compute. Let G be
an abelian group in CL. Then

H’(B, E; O)=colim H’({W}[, {W- WXxY}[; G)
jo

(2.10)
--colim Hq({W}t, {W- WY},; G) (since Ge C)

o

-colim H,x(W, G) (by (1.8)).
jo

Since each W-- X is 6tale, W is smooth over S and WxY has relative
codimension >--c in W. Thus, by (2.2), H’(B, E; G)= 0 for q-<2c- l. We
can relate this to (F) by the relative Serre spectral sequence

(2.11) E"q= Hv’q H’(B, gd’(P, (F)/; G)) == H’+q(B, E; G)

(where P is the cone over (F)[). Since rq(B)= 1, the local system
Y(q(1, (F)/; G) is just the constant group Hq-X((F)/, G). Then the vanishing
of H’(B,E; G) for q-<2c-1 and (2.11) tell us that

Hq((F)/, G) 0 for q -< 2c 2,
(2.12) H2c-((F);, G) H2c (B, E; G).

Now (2.4) is easy. The case c 1 follows from (2.12). When c > 1, (2.2)
tells us that rl(E)= rl(B)-1, so that rrl((F)) is abelian (being a quotient
of rr2(B)). Thus, to show rl((F)[)=0, we need only show that
Hom (rrl((F)/), G)- HI((F)/, G) is zero for any abelian group G e C.. This
is true by (2.12).
Assume that 7rl((F)) rrq_l((F)) 0 for some q <-- 2c 2. Then

the Hurewicz theorem and the universal coefficient theorem imply that for
G in CL,

(2.13) Hom (%((F)/), G)-Hq((F)[, G)

and the latter group is zero by (2.12). Since %((F)[) is CL-complete, it must
be zero. Vq
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3. The L-cyclotomic fundamental group

Let : Spec (fl) X be a point of a connected scheme X. If n is invertible
on X, the locally constant sheaf Z/nZ(c) is described by an action of
r(X, ) on /x,(f/)(R).
Let L be a set of primes invertible on X. A number n is called an

L-number if every prime divisor of n lies in L, and let ,L(C) denote the
pro-group {n(’)(R)C}nanL.number Then we get an action of rl(X,) on
Z,(c), i.e., a map

(3.1) 7rl(X, )-- Aut (L(C))-- L*-
(3.2) DEFINITION. -I,L(X c), the L-cyclotomic fundamental group of X, is

the pro-group which is the image of the map 7rl(X, )-- Z*.
One sees easily that tZL (X, c) is just the image of IL (X, 1) under the map

Also IZL(X, 1) is trivial if and only if H(X, *x) has a primitive nth root of
unity for every L-number n.

/L(X, C) gets its name from the following result.

(3.3) LEMMA. Let X be a pointed scheme which is geometrically connected
over a field k. The point j: Spec (lI) --> X gives an embedding k -- lI, and we
set K k(all nth roots of unity in lI, n any L-number). Then Ixr(X, 1)---
Gal (K/k) (and so txr(X, c) depends only on k).

Proof. The sheaf /x..k is classified by the obvious map

rl(Spec k ), )-= Gal (I/k Gal k (/x. (lI))/k) G Aut (/x. (lI)).

Set G. =Gal (k(tx.(lI))/k). Since tX..x is the pullback of tz..k via the map
X-- Spec (k), /X..x is classified by the composed map

b,, h(X, ) -* G. Aut (Ix. (1))).

We need only show that each tk. is onto.
Spec(k(/x.(l))) is the G.-torseur over Spec(k) classified by the above

map Gal (fl/k) --- G.. Thus, Xkk(lz.(l))) is the G.-torseur classified by b..
Since X is geometrically connected, Xk(tx.(fl)) is connected and 4. is
onto. V1

Later on we will need to know when IXL (X, c) is Cr.-complete. Here are
some cases when this is true:

(3.4) LEMMA. (1) Suppose that (1-1)/(/-1, c) is an L-number for every
e L. Then Id,L (X, c) is CL-complete.
(2) Suppose that X is geometrically connected over a field k and that L

consists of one prime I. Then gL(X C) is CL-complete if and only if
[k(): k] c, where , is a primitive /th root of unity.
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Proof. If is an odd prime, then we have

(3.5) tz(X, 1) c--> ,*=’,Z/(1-1)Z.

Since/x(X, c) is the image of this under multiplication by ,/(X, c))
(the subgroup of Z/(1-1)Z generated by c), and this cyclic group has order
(l-1)/(l-l,c). Then the first statement follows from the inclusion,(x, c) rl,, m(x, c).
To prove the second statement, note that (X, 1) Gal (KJk), K k (all

l-th roots of 1) by (3.3). Then Galois theory says that the image o/z(X, 1)
in Z](l- 1)Z in (3.5) is Gal (k()t)Jk). This is a y1i group of order [k(): k].
Then try(X, c) is C-omplete ff and only if multiplication by c kills this, i.e.,
[(x): ]1 c. r

If L {/}, then the first condition reduces to (l- 1)]c. Also, if l-1 is an
L-number for every l L, then /L(X, C) is CL-complete for every c (for
example, L {2, 3, 7}). Some other examples where the first condition is
satisfied are L {3, 7}, c 2; L {3, 5, 7}, c 4.

4. The first non-vanishing homotopy group

To get results stronger than Proposition (2.4), we must strengthen our
hypotheses. For the rest of the paper we will deal with a commutative
diagram

yc X

S

where now both X and Y are connected and smooth over S (we say that
Y -- X is a smooth connected couple). We also assume that X has a point ,
missing Y, which specializes to a point rl o Y. Thus, we have pointed
immersions i" Y-- X and ]" X- Y X.
Now we can say something about r2c-l((F)):
(4.2) PROPOSITION. Let Y X be a smooth connected couple of relative

codimension c > 1, and let L K be two sets o primes where every prime in L
is invertible on X. I]: F is the homotopy fiber of the map {X-Y’} {X},
then the following are equivalent:

(1) There is an isomorphism 7r2c_l((F)d)--;L(c).
(2) 7r(Y) 7r(X); is sur]ective and the map tr(Y, c)--- Ir(X, c) in-

duces an isomorphism tXL Y, c) --% tc (X, c).
Proof. The second statement can be interpreted as follows. To say that

rx(Y) 7rx(X)r is surjective means that for every connected C:-torseur
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W over X, WxY is also connected. And the isomorphism Id,L(V, C)..7__)
IXL(X, C)r means that for every L-number n, there is a connected Cr-
torseur W over X such that Z/nZ(c) becomes trivial over WxY.
We will use the notation of the proof of (2.4), specifically the category J

and (2.9)-(2.13). Let n be an L-number. Then we have isomorphisms

Hom (7r2c-l((F)), Z/nZ)- H2c-I((F)Z/nZ) by (2.13)
H2C(B, E; Z/nZ) by (2.12)
colim 2HwxY(W, Z/nZ). by (2.10)

r

For W in J, WxY-- W is a smooth couple over S, so that by (0.5) (with
F-Z/nZ(-c)), we have an isomorphism

(4.3) 2cHwxv(W, Z/nZ) H(WxY, Z/nZ(-c)).

Thus we have a canonical isomorphism

(4.4) Hom (7r2c_((F)), Z/nZ)-colim H(Wxx Y, Z/nZ(-c)).
jo

Now we prove (1) implies (2). If "rr2c_l((F)Z)’.,L(C (’L, non-
canonically), then the right hand side of (4.4) has n elements. Then one can
find a cofinal family {W’} of J for which each

H(W xY, Z/nZ(-c))
has n elements.

Since W’xY is a torseur over W’, all of its connected components are
isomorphic. Thus the order n of H(W’xY, Z/nZ(-c)) is some number
raised to the power #7r(W’xY). If we let n be a prime in L, this says that
W’xY must be connected. Since the W’ are cofinal in J, all of the WxY
are connected. Thus 7r(Y)/-- 7r(X)r is onto.
But then, since W’xY is connected and Z/nZ(-c) is locally constant,

H(W’xY, Z/nZ(-c)) can have n elements only when Z/nZ(-c) (and
hence Z/nZ(c)) is trivial on W’ xY. Thus we have found a C/-torseur X
on X with Z/nZ(c) trivial on WxY.

Next, we prove (2) implies (1). The specialization -- ! says for h: W
X in J, there is a bijection h-(rl)-- h-l(). Since W has a point lying over

(it’s a pointed torseur), W acquires a point rl’ lying over rl, and there is an
isomorphism between the stalk of Z/nZ(-c) on WxY at rl’ and
Hom (g,(f)(R)c, Z/nZ). This gives us a homomorphism

(4.5) H(WxY, Z/nZ(-c)) ---> Hom (/x, (f/)(R), Z/nZ)

which is compatible with morphisms in J. Thus from (4.4) we get a
homomorphism

(4.6) nom (r2_l((F)), Z/nZ)-- Hom (/, ()(R), Z/nZ) Hom (r. (c), Z/nZ)
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Our hypothesis tells us that the WXxY are connected and Z/nZ(-c)
trivializes on some WXxY. Thus, (4.5) is an isomorphism for a cofinal
family of W’s, so that (4.6) is an isomorphism. Since c > 1, r2c-l((F)) is
abelian, and so (4.6) implies that q’r2c_l((F);)-’L(C). [-]

The proposition is not true when c 1. Here is an example.
(4.7) Example. Let C be the curve in l2(C) defined by

(X2 d- y2)3
__
(y3

__
Z3)2 0.

Zariski (12) has shown that "n’l(P2- C)-(Z/2Z),(Z/3Z) (this is the topologi-
cal fundamental group). Let Co be the singular points of C, and set
X p2_ Co, Y C- Co. Since r(X) 1, YX satisfies the conditions of
(4.2) for K=L={all primes}. Since ,rrl(X-Y)^-((Z/2Z)*(Z/3Z)) is a
non-abelian quotient of Try(F)^, we cannot have 7rl(F)^-.
When 7ra_l((F))---L(C), wL(X, C) has a further role to play: it describes

how 7rl(X) acts on homotopy. Recall that the fibration

gives an action of 7r(X) on the fiber F, so that by functorality it acts on
(F) and hence on 7r2c_l((F);). But r(X) has a canonical action on L(C),
described as follows. Since /xL(X, C) is abelian, we have a splitting
/xr(X, c)=/XL(X, c)lt.(X, c), (where K’={all primes not in K}). Then
the action of /XL(X, C) on r.(c) gives an action of /L(X, C) (and hence of
I(X)) on (c).
These actions are the same"

(4.8) PROPOSITION. With the same hypotheses as (4.2), assume that

(c).

Then the two actions described above agree via the isomorphism constructed in
(4.6).

Proof. It suffices to show that the two actions on

(4.9) Hom (’trZc_((F);), Z/nZ)--Hom (L(C), Z/nZ)

agree for every L-number n. The left hand side is H2-I((F).,Z/nZ) by
(2.13), which is isomorphic to H2-I(F, Z/nZ). The action of 7ra(X) is the
usual one from the Serre spectral sequence.

Let W be the torseur over X whose group G is the Crc completion of the
image of the map Try(X)- Aut (/,(fD(R)) which describes Z/nZ(c) (see 3).
Since tXL (Y, c) -/XL(X, c) by (4.2), Z/nZ(c) becomes trivial on WxY
(which is connected). Applying the spectral sequence (2.11) to the fibration
(2.7) gives us an isomorphism

H({W}, 2c (P, F; ZInZ))-H2({W}, {W- WxY}; Z/nZ)
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which we can rewrite as

.H2c [ix/Z]nZ)(4.10) H2C-1(F, Z/nZ)lCw)K Wx ,,,
where we use the action induced by rl(W) rl(X). From (4.3) and the
construction of W we see that the right hand side of (4.10) has n elements,
so that 7r(W) acts trivially on H2c-I(F, Z/nZ). Thus, the action of 7r(X)r
factors through G.

Furthermore, the action of G and

H2c [XX/Z/nZ)H2-(F, Z/nZ)- WxW,,,

gives the action of G (on 2cHwv(W, Z/nZ)) induced by the action of G on
W. Under the isomorphisms (4.3) and (4.5), this gives the action of G on
Hom (L(C), Z/nZ) induced by /r.(X, c) (this was how W was defined).
Thus, the two actions of r(X) on (4.9) agree.

This proposition has some unexpected consequencesmsee (7.5).

5. When the fiber is a sphere

Below we give necessary and sufficient conditions for (F) to be a
completed sphere. This happens quite rarelymit requires a very strong
cohomological condition on the embedding Y--* X. To make this precise,
we need a definition.

(5.1) DEFINrrION. A map h: X1 ---> X2 in Pro-o is a strong cohomologi-
cal L-isomorphism if for every local system F on X2 whose fiber M is in
the map Hq(X2, F)---> Hq(XI, h’F) is an isomorphism for q->0.

Note that the map 7rl(X2)--* Aut (M) describing F need not factor through
7r(X2), so that F might not come from a local system on (X2). This is why
we use the word "strong" in (5.1). See (5.6) for more information.
Now, one of the main results of this paper"

(5.2) THEOREM. Let Y_X be a connected smooth couple of relative
codimension c > 1 (4.1), and let L

_
K be two sets of primes where every prime

in L is invertible on X. If F is the homotopy fiber of the map {X- Y} ---> {X},
then the following are equivalent:

(1) There is a #-isomorphism (F)[. ($2-1)[.
(2) {Y}--* {X}r is a strong cohomological L-isomorphism and the map

/J,L(Y, C) /J,L(X, C)

induces an isomorphism tL(Y, c) - IXL (X, c).
Remark. We will see in (5.8) that a strong cohomological L-

isomorphism {Y} {X}r induces a surjection 7r(Y)r 7r(X). Thus the
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hypotheses of (4.2) and (5.2) fit together nicely. And when (F) =($2c-1),
we can use (4.8) to describe the action of 7rl(X)K on (F).

Proof of (5.2). We will need an "untwisted" version of (0.6). Assume
that we have a trivialization a" Z/nZ(c)-Z/nZ on Y. Then we get
isomohisms

q+2c[ H HHv .., Z/nZ(c))= (Y, Z/nZ)= (Y, Z/nZ(-c)) H+(X, Z/nZ)

(where the middle isomohism is induced by ). e element

Ux H(X, Z/nZ(c))

of (0.6) gives us an element Ox H(X, Z/nZ), and rom (0.6) we get a
commutative diagram

(5.3)

I..lq +2c(yH’(X,Z/nZ) o > --y ,--,Z/nZ)

\ /
Nq(Y, ZlnZ)

We now prove (1) implies (2). If (F) is a completed sphere, then from
(4.1) we can conclude that /r_(Y, c)-/z_(X, c):. Let n be an L-number,
and let W be the CK-torseur constructed in the proo of (4.8). Then Z/nZ(c)
is trivial on WxY and r(W)_ rl(X) acts trivially on H2c-(F, Z]nZ).
An argument similar to the proof of (0.6) (this time using the spectral
sequence (2.11) for the fibration (2.7)) gives us a Thom isomorphism

(5.4) U U: Hq({W}[c,Z/nZ)- Hq+({W},{W WxY};Z/nZ)
where Ue H2({W}/, {W- WxY}; Z/nZ= Z/nZ is any generator. Using
(1.1) and (1.8) we can identify (5.4) as the top line of the commuative
diagram

H’(W, Z/nZ) uu,. r_rq+2c_W. Z/nZ)WXxYk

\ /
H’(WXx, ZInZ)

that we get from (5.3). Thus, we see that the map

(5.5) H’(W, Z/nZ)----> H’(WxY, Z/nZ)

is an isomorphism for all q--> 0. Note that if W is any connected CK-torseur
over X for which Z/nZ(c) trivializes on WxY, (5.5) is still an
isomorphism.
Now, let F be a local system on {X} whose stalk M is in Cr_. Then F is a

locally constant sheaf on X, which becomes the constant sheaf M on some
connected CK-torseur W over X. We can also assume that the sheaves
Z/n,Z(c) are trivial on WxY, where M=Z/nZ. Then (5.5) gives us
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isomorphisms

H’(W, M) --> H’(WxY, M) for q>--O.

If G is the group of W over X, then we have a map of spectral sequences

H (G, H’(W, M)) H (G, Hq(WxY, M))

H+q (X, F) -- H+q (Y, FI).
Since we have an isomorphism on the E2-1evel, the map Hq(X, F)---
Hq(Y, Fly) is an isomorphism for q->0. Thus, {Y}-- {X} is a strong
cohomological L-isomorphism.
To prove (2) implies (1), we first need:

(5.6) LEMMA. Let h: X1- X2 in Pro-9o is a strong cohomological L-
isomorphism.

(1) 7r1(X1)^- r2(X2) is surjective.
(2) Let WE be a finite regular covering space of X2 and let W1 be the

induced covering space of X1. Then the map WI -- W2 is a strong cohomolog-
ical L-isomorphism.

Proof. To prove the first statement, we must show that the composition

7]71(X1) ---) "/]’1(X2) -.--) O

is onto whenever we have a surjection 7rl(X2)-- G with G finite. Let M be
any non-zero group in CL. Then Hom (G, M) is in Cr and has an obvious G
action. This gives us a local system F on X2 with

H(X2, F) =Hom (G, M) {all constant functions from G to M}.

But then H(X, h’F) Hom (G, M),(x) {all functions G -- M which are
constant on the cosets of im (T/’I(XI)’--- a)}. Since the two groups are
isomorphic, 7rl(X) -- G must be surjective.
The map u" Wa X2 gives us the commutative diagram

(5.7)

If F is a local system on W2 given by a representation of Try(W2) on M in
CL, then u,F is the local system on X2 obtained from the representation
induced by rl(W2) 7rl(X2) (note that the stalk of u,F is in CL). Since
7rl(X1)^-- 7r1(X2) is onto, one sees easily that the natural map

h*u,F u’h’*F
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is an isomorphism. Thus, from (5.7) we get a commutative diagram

H’(W:z, F) n’(Wl, h’*f)

H’(X,, u.F)-- H"(X, h*u.F)- H’(X1, uh’*F)
which proves that W W is a strong cohomological Lisomohism.
We will use the notation of the proof of (2.4) (especially the category J

and (2.9)). Let n be an L-number. Since L(Z c) L(X, C), we get Wo
in J which trivializes Z/nZ(c) on WoXxY. Pick a specific isomohism
a" Z/nZ(c) Z/nZ on Wo xx Y. Set J’ J/Wo, and note that for any W in
J’, a induces a trivialization of Z/nZ(c) on WxxY.

ua Z/nZ), which fit together toFrom (5.3) we get elements Uw e**w
give an element Oecolimj,oH _1 H2wW, Z/nZ)= (B, E; Z/nZ) (see
(2.10)). Then from (5.3) we get a commutative diagram

colimH(W,Z/nZ)
u u+> colim Z/nZ)

colim Hq(WXx Y, /n)

where the map r is an isomohism by (5.6). us (using 2.10)) we have an

isomohism
U: Hq(B, ln) Hq+(B, ; /n) for all q.

Since B is simply connected, Spivak’s converse to the Thorn isomohism
theorem (see [4, 1.4.3]) says that Hq((F), /n) 0 for q 0, 2c-1. Since
(F)[ is simply connected (c > 1) and _((F)) (by (5.6) and (4.8)),
one easily proves that (F) is #-isomohic to (S-) (see [2,4.15]).

In 6 we will treat the case c 1.
Most applications of (5.2) have either K ={all primes} or K L. An

example of the former is:

(5.8) Cooa. Let YX be a smooth connected couple of relative
codimension c > 1, and let L be a set of primes invertible on X. If {" {X}
and F is the homotopy ber of the map {X-{X}", then (F)c

2c--1isomohic m (S )L.

Over a field k, here is an application of the case K L which uses (3.3)
and (3.4)"

(5.9) COROLLARY. Let Y c_ X be a smooth couple of relative codimension
c > 1, and assume X and Y are geometrically connected over k. Let L be a set

of primes invertible on X, and suppose that {Y} -- {X} is a #-isomorphism.
Then the homotopy fiber of the map {X-Y}-- {X}r is #-isomorphic to
(S:Z-l)r if and only if txL(X, C) is C-complete. In particular, if L {/}, this
happens if and only if [k()t): k] c, where is a primitive /th root of unity.
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Finally, we give some examples where (F)[ is not a completed sphere. Let
X A, n > 1 (where k is a field of characteristic p >0), and let Y be the
origin. Set L {all primes but p}.

(5.10) Example. If k is finite, then the homotopy fiber of {X-}[--)
{X}[ is not a completed sphere. This is b.ecause txL(X, 1) Gal (k-/k)- (by
(3.3)) so that txL(X, n) is not CL-complete (see (5.9).

(5.13) Example. Now assume that k is algebraically dosed. Then the
homotopy fiber of {X- Y}] -- {X} is a completed sphere by (5.9). But the
homotopy fiber of {X- Y}et ---> {X}et is not a completed sphere. The reason is
that {Y}t --) {X}t cannot be a strong cohomological L-isomorphism because
7rl(Y)--)’trl(X) is not surjective--Trl(Y)= 1 but 7rl(X) is non-trivial by
Artin-Schrier theory. (We used (5.2) and (5.6).)

6. The codimension one case

When Y has relative codimension one in X, showing that (F) ($1)[ is
fairly difficult. We only give sufficient conditions for this to happen, and we
treat only the case K L. As in (5.2) we will put a strong condition on the
embedding i" Y--) X, but now it will involve the sheaves ].F (]: X- Y--) X
is the inclusion) where F is Cr.-complete, defined as follows.

(6.1) DEFINITION. Let L be a set of primes. A sheaf F on X- Y is called
C-complete if F is locally constant, its fiber M is in CL, and the map
r (X- Y) ---) Aut (M) (which determines F) factors through r(X- Y)L-

This is equivalent to a local system on {X-Y}. Note that if Y has
relative codimension >--2 in X (and X is smooth over S as in (2.1)) then (6.1)
is equivalent to a local system on {X}.
Now we state the codimension one version of Theorem (5.2).

(6.2) THEOREM. Let YX be a smooth, connected couple of relative
codimension one (4.1), and let L be a set of primes invertible on X. Assume
that the following condition is satisfied.

(6.3) For every abelian CL-complete sheaf F on X-Y, the map
Hq(X, ].F)---> Hq(Y, i*].F) is an isomorphism for q >-0.

Then the following are equivalent:
(1) The homotopy fiber F of {X- Y} ---> {X} is #-isomorphic to (S).
(2) L(Y, 1)--%’ tx(X, 1).

Proof. That (1) implies (2) follows immediately from the proof of (4.2).
But before we can start proving (2) implies (1), we need to develop some
machinery. Recall from 4 that we have points of X- Y and rl of Y, and
that specializes to r). Let X (resp. Y) be the strict henselization of X
(resp. Y) at rl. Then X-Y is the inverse image of X-Y in X, and the
specialization 5-- r) gives us a point of X- Y..
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Here is a global version of the relative Abhyankar lemma (in this and the
other lemmas below, Y___ X is as in (6.2)):

(6.4) LEMMA. Let f: V--X-Y be a torseur classified by a map
rl(X-Y)-- G, where the order of G is invertible on X. Then there is a
commutative diagram

(6.5)

X-Y ,X

where f is flat and finite and V is smooth over S.
Furthermore, if the composition 7rl(X, Y.) -- 7r(X- Y) G is surjective,

then VxY-- Y is radical and has a section.

Proof. If : W-X is any map, set W’= -I(X-Y).
Let / be a point of Y, and let X and Yv be the corresponding strict

henselizations. Then V(/)= VXx_yX’ is a G-torseur over X. Let W be a
connected component of V(/), and let H be its stabilizer subgroup. Then W
is an H-torseur and V(/)-WXHG. It follows easily from the relative
Abhyankar lemma [1, XVI 3.5] that H Z/nZ and W
Spec (6x,,[z]/(zn- t)), where Y is defined by 0 in Xu.
By descent we get a collection 0// of etale neighborhoods of X with

y c_ Utou im (U X), and each U 07/has the following property: there is
a subgroup H_ G with H-Z/nZ such that

V Xx_y Spec (u,[Z]/(z" t)) xnG,

where UxY is defined by 0 in U, and H acts via powers of a primitive
nth root of unity h. For U oR, set Vlu, Vx-Y U’, and then define

Spec (u[z]/(z" t)) xrG.
Note that Qlt is finite and flat over U, and smooth over S. If we can
construct descent data for the Qlt compatible with the obvious descent data
for the QIt, V[t,, then we will be done by [10, VIII 2.7].

Let Ua. and U2 be in 0//. Then there is a unit u on U Xx Uz so that tl ut2
(both tl and tz define the inverse image of Y). Let U -- Ua Xx Uz be an etale
map where u has an na-th root v and U is connected. If we can show that
every G-torseur map

extends uniquely to a map 4S" 9[Ul1U 9[U2[U, then we easily get the desired
descent data. Set W =Spec (6u[z]/(z"’- t)), i= 1, 2, so that
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Note that W is connected because U is (see [10, XIII 5.4]). Since q gives
an isomorphism q)" W] rlG --* Wr:G, q(W]) and W are connected
components of VIt,, so that there is g G with gq)(W)= W. We need only
show that gq" W] W extends to an equivariant map gq" W1--* Wz.
Since gHlg-=Hz, we see that na=n2, and the only equivariant maps
between W] and W are those which send z to hvz, where h is an n-th root
of unity. These maps obviously extend.

Finally, if "/rl(X Yn)- 7rl(X- Y)-- G is onto, then V() is connected.
This, plus the fact that Y is connected, easily imply that for U,
H G Z/nZ and QItJ Spec (cr[z]/(z t)). Then

QlVxV Spec (VXxV[Z]/(z"))
(this shows that VXxY is radical over Y) and the subscheme defined by
z 0 is just UxY. These subschemes patch to give the desired section of
V Xx Y--> Y. l-’q

Our first application of (6.4) deals with the fundamental group:

(6.6) LEMMA. Let L be a set of primes invertible on X. Assume that VxY
is connected whenever V is a connected CL-torseur over X- Y. Then we have
an exact sequence

Y,);. Y);.
Proof. There is an exact sequence of pointed sets

1 H(X, G) HI(X Y, G) ---> H(X, R

for any group G (see [1, XII 3.2]). But if G is in CL, Rlj.G is locally
constant on Y [1, XVI 3.6], so that

H(X, Rj.G) -- (Rj.G)n H(X. Yn, G)
is injective because Y is connected. Then we easily get an exact sequence

: -- Hom (rl(X), G)-- Hom (r:(X- Y), G)-- Hom (/’l(Xn- r/);, G).

So we need only prove that im (rl(X,- Y,)[ -- r:(X- Y)[) is a normal
subgroup of rl(X-Y)L- This means showing that for any finite quotient G
of rl(X-Y), the image of rl(X- Y)L, which we call G,, is a normal
subgroup of G.
The map r(X-Y)[ classifies a connected G torseur V. Let T be a point

of VxY; it lies above a point T of Y. Since

r(VxX,) r(VxX,)
(see the proof of (6.4)), /gives us a connected component of VxX,. Let
G(/) be its stabilizer. Let 6 be a point of V which specializes to % Then 6
lies above a point 6’ of X-Y, and G(/) is the image of the map

TI(X.v,-- Y,, 6’)[ -- r(X- Y, 69[ - G

(where 4 classifies V with the point 6). From this, we see two things: first, if
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]/1 specializes to ]/2 in VxY, then G(]/1) G(]/2), and second, there is a
point ]/ of VxY with G(]/)- G,.

Since VxY is connected, G(]/)= G, for any point of VxY- Thus, for
g G, G. G(]/)= G(g]/)= gG(]/)g-1= gG.g-1, so that G is normal in G.

Next we show how condition (6.3) relates to the V’s. This will show us
how to translate (6.3) into information about 7rl via (6.6).

(6.7) LEMMA. Condition (6.3) holds for Y
_
X if and only if for every

connected CL-torseur V over X- Y and every abelian group M in Cr., the map

(6.8) Hq(V, M) H’(VxY, M)

is an isomorphism for q >_ O.
Furthermore, if Y

_
X satisfies condition (6.3), then so do the embeddings

VxY V for V any connected CL-torseur over X-Y.

Let V be a connected CL-torseur over X-Y. Then we have aProof.
diagram i’V J’ V VXxY

X-Y ,X, Y.

For any torsion sheaf F on V, the finiteness of f (see (6.4)) gives us
isomorphisms

(6.9) Hq(X, j.f.F) Hq(X, f-.jV)- Hq(9, jF)
H’(Y, i*j.f.F)- Hq(Y, i*f.j:F)- Hq(Y, fi’*jF)-Hq(Qx Y, i’*jF).
Assume that (6.3) holds. An abelian group M in CL gives a constant sheaf

on V where f.M is CL-complete and J,M-M, so that (6..8) follows from
(6.9) (with F M). Also, if F is CL-complete on V, then f.F is CL-complete
on X-Y. So (6.9) also shows that VXx Y-- V satisfies condition (6.3).
Next, assume that (6.8) holds for every connected CL-torseur f" V- X-

Y. Then (6.9) shows that we have isomorphisms

(6.10) H(X, j.f.M) -- H’(Y, i*j.f.M) for q ->0

for any M C. Given any CL-complete sheaf F on X-Y, choose f: V-+
X-Y as above so that f*F is the constant sheaf M. Set

V,= VxVx XxV (p+ltimes)

and let fp" Vp -+ X be the projection; similarly define Vo and fo" V, - X-Y. Then we get a map of spectral sequences

E’q= Hq (X, fp "*" E’q= Hq.f,l,F) -- (Y, i*fp.*pj,F)

Hr’+’(X, j,F) , H+q(Y, i*j,F).
We need to show that the map on the El-level is an isomorphism.
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The Cartesian diagram

X-Y ,X

gives us a base change map f*o].F---> ],.f*oF which is an isomorphism over
Vo. Applying fo. to this map, and using the equality f,.]o. ].fo., we get an
exact sequence of sheaves on X

(6.11) 0 .--> i.A ----> fp.f*o].F ----> j.f,.fp.F ----> i.B ----> 0

where A and B are sheaves supported on Y. Now Vp is a disjoint sum of
copies of V, so that fp.f*pF is a direct sum of copies of f.M. Then (6.10)
shows that the map H’(X, ].fo.f*oF) ----> H’(Y, i*].fp.f*oF) is an isomorph-
ism. From this and (6.11) we easily get the desired isomorphism on El.
Now we prove (2) implies (1) for (6.2). Condition (6.3) says then in

particular {Y}[--->{X} is a strong cohomological L-isomorphism (since
].]*F F for F locally constant on X). Thus, for every L-number n, we
have isomorphisms

Hom (Trl(F), Z/nZ)Hom (L(1), Z/nZ),

(4.6) Hq(F, Z/nZ)- Z/nZ for q 0, 1, (the proof of (5.2)).
0 for q > 1

If we can show that Try(F) is abelian, the first line of (6.12) will show that
(F)=().
"We use the notation of the proof of (2.4), especially the category J (with

K L) and the fibration (2.9). Each W in J has a point over , so that the
specialization - l gives us a point l’ of W over l. Thus we get a pointed
map X W which carries X.-Y. to W-Wxx Y. These are compatible
with the maps of J, so that we get a map of fibrations

{X, Y}i {X, Y}i ---> {X}[

F E ,.B.

Then any abelian group G in CL gives us a commutative diagram

Hom (r(F), G) :" Hom (r(X- Y. )., G)

Horn (r(E), G)
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where the top line is an isomorphism because each one is isomorphic to
Hom (Z(1), G) by (6.12) (and the isomorphism (6.12) is functorial with
respect to the map of couples (Yn X,) -- (Y--- X)). Since 7rl(X,- Yn)
is isomorphic to Zr.(1) (see [10, XIII 5.3]), it is abelian. If we let G run over
the finite quotients of rx(X- Yn), the isomorphism a. of (6.13) gives us a
map s" rx(F)--- r(X-Yn)r- where s a.= 1, and we have

(6.14)

Since condition (6.3) holds for Y
_
X, (6.7) says that it also holds for the

embeddings WxxY-- W for W J (because W- WxY= W). Then (6.8)
(for q 0) and (6.6) gives us an exact sequence

71"1(X- Yl)i -) lim 7rl(W-- WXx Y); lim 7r(W) 1.

(using the fact that Wn,= X). Thus Try(E), being a quotient of
Y)L, is abelian, so that from (6.13) and (6.14) we conclude that

i,-- b, s" qrl(F -- 7rx(E).

In particular, we see that ker s_ ker i.. Since ker i. lies in the center of
7rx(F), so does ker s. Thus we have a map s" rx(F)---* rx(X- Yn) which
has a section a. and whose kernel is central. From this we easily see that
7rx(F) is abelian.
But knowing 7rl(F)=r,(1) is not enough to prove that F-(SX).
We need to construct the universal cover of E limj {W-WxY}. Let

H be the category of pairs (W, V) where W is in J and V W-WxY is
a connected G-torseur classified by b: rl(W-WxY) G where G is in
Cr, and the composition

Try(E) -- 7rx(W- WxY) - O

is surjective. In the proof of (2.4) we showed that limj {W} is the universal
cover of {X}; a similar proof, slightly more complicated, shows that
/ lima {V} is # isomorphic to the universal cover of E. If i# is the
homotopy fiber of/-- B, then the diagram

F E ,B

K(zrl(E), 1)= K(’rr(E), 1)
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and the 3 3 lemma (see [2, 1]) give us a fibration

(6.15) F F-- K(Trl(E), 1).

Since 7r1(’)_ 7rl(F), we see that Try(F)-’-L,(1) for some set of primes L’ L
(L’ could be empty).
Each (W, V) in H gives us a map V W by (6.4). This construction is

functorial, so that we can set/) lim {Q}, and then we get a commutative
diagram

(6.16)

/ limr {V} / limH {

E B limj {W}2.
We claim that the map /)-- B is a #-isomorphism. Note that "/rl(/)----)
7r1(/) is surjective (this follows from (2.2)), so that ()= (B)= 1. Thus,
we need only compare cohomology with constant coefficients.
Take (W, V) in H. As we have already observed, WXxY W satisfies

condition (6.3), so that from (6.7) we have isomohisms
(6.17) H(W, M) H(WxY, M), H(V, M)=H(Vxx Y, M).

The definition of H says that the map

I(E) l(W WxxY) * a

is onto (where 6 classifies W). In proving that wx(F) was abelian we used
the fact that I(Xn Yn) x(Wn’- Wn’ XxY) I(E) is onto. Combin-
ing these shows that the last condition of (6.4) is fulfilled, so that

VXxY WXxY
is radical (and has a section). Thus we have an isomohism

H"(WXx Y, M) H"(VxY, M),

and then from (6.17) we conclude that H (W, M) Hq (V, M) is- an
isomorphism. Thus the map B B is a #-isomohism, so that F is the
homotopy fiber of the top line of (6.16) (up to #-isomohism).

is easy to analyze. For (W, V) in H, the section

s" WXxY VXxY
noted above gives us a smooth connected couple WxxY V of relative
codimension one. By (6.7) we see that {WXx { is a strong
cohomological L-isomohism, and the condition on the L-cyclotomic fun-
damental group is satisfied. Thus, the proof of Theorem (5.2) implies that
Hq(Fv, M)= 0 for q > 1 and M C, where Fv is the homotopy fiber of
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{V}L-- {Q}. Since P-- limr Fv, Hq(", M)= 0 for q > 1. Note that P is a
simple space because the action of r(/) on r,(P) factors through rx(/)= 1
(see [8, Appendix]). Thus the map I--K(;L,(1),I) (coming from
r(F)=Z[(1)) between simple spaces induces isomorphisms on the funda-
mental group and constant cohomology. Thus F is #-isomorphic to
K(,,(), ).
The homotopy sequence for the fibration (6.15) then shows that r, (F)= 0

for n -> 2. Thus, we have F K(Trl(F), 1) K(L, L) K(Z, 1)L ($1)
(since Z is Cr-good---see [2, 6]). 1-]

When L consists of one prime l, the relation between a strong cohomolog-
ical L-isomorphism and condition (6.3) is easy to state.

(6.18) PRoPosrrIoN. Let Y X be a smooth connected couple of relative
codimension one, and let be a prime invertible on X. The following are
equivalent:

(1) {Y} {X}t is a strong cohomological 1-isomorphism and there is an
exact sequence

(6.19) 7rl(X,- Y,)-- 7rl(X- Y)t -- r(X)t -- 1.

(2) {Y}--{X}[ is a strong cohomological 1-isomorphism and for every
abelian Ct-complete sheaf F on X- Y, H(X, .F) H(Y, i*.F).

(3) Y X satisfies (6.3) for L {/}.

Proof. (3) implies (2) is trivially, and (2) implies (1) by (6.6) and (6.9). So
we need only prove (1) implies (3).

Let V -- X- Y be a connected G-torseur classified by &" 7r(X- Y) G,
G C. By (6.7), we need only show that the map

Hq(V, Z//Z) -- Hq(VxY, Z//Z)

is an isomorphism for all q.

Case 1. Assume that the composition 7r(X Yn) -- 7r(X- Y) -- G is
onto. By (6.4), VxY-- Y is radical and has a section, so that we need
only prove that H’(X,Z/IZ)-- H’(V,Z/IZ) is an isomorphism for q->0
(Hq(X, Z//Z)-- Hq(Y, Z//Z) is an isomorphism by assumption).
From f" Q-- X we get a map of sheaves on X, Z/lZ-- f, f*Z//Z, which is

injective since f is onto. Taking the cokernel gives a short exact sequence

(6.20) 0 Z/lZ f.Z/lZ -- O O.

If T is a point of Y, there is only one point of V lying above it, so that
(f-,Z/1Z). Z/1Z. This shows that O O, so that O j,j*Q. On X- Y, j*Q
is described by the exact sequence

(6.21) 0 --> Z/1Z -- f.Z/IZ ---> ]*Q O.

Let R Z/1Z[G] be the group ring of G over Z/lZ. There is an equival-
ence of categories between R modules of finite length and locally constant
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sheaves F on X-Y whose fiber M is a finite Z/lZ module, and where the
map rl(X-Y)-- Aut(M) describing F factors through the above map
b" rl(X-Y) G. This equivalence preserves exact sequences, and from
(6.21), we see that j*Q is such a sheaf. Since G is an /-group, R is an
Artinian local ring, so that every finite R module has a composition series
whose successive quotients are Z/1Z with trivial G action. Translating this
into sheaves, l*O has a filtration whose successive quotients are the constant
sheaf Z/lZ.

Since it is exact, Q ,j*Q has a filtration whose successive quotients are
j,.Z/lZ. The exact sequence 0 -- I,.Z/lZ --. Z/lZ -- i.i*Z/lZ 0 on X and
our assumption that H’(X, Z//Z) - H’(Y, Z/lZ) for q ->0 show that
H’(X, jtZ//Z)= 0 for q >-0. Then induction on the length of the filtration of
O shows that H’(X, Q)=0 for q>-0. This, together with (6.20), shows that
H’(X, Z//Z)--- H’(X, f.Z/lZ), which becomes H’(X, Z/lZ) H’(V, Z//Z)
because f is finite.

Case 2. The general case. Let G, be the image of 7rl(X- Y.) in G. The
exactness of (6.19) shows that G is normal in G and that V/Gn extends to a
G/G, torseur W= V/G,, over X. Then V is a Gn-torseur over W-Wxx Y,
’I(W,,-W,,xxY)=’rrl(X-Y,)---- Gn is onto (as usual, W acquires a
point 1’ above a), and, by (5.6), {WXxY} {W} is a strong cohomologi-
cal /-isomorphism. Thus, Case 1 applies, and we are done.

7. Applications to vector bundles

Vector bundles provide the most natural application of our results. They
fit into our framework as follows. If V is a vector bundle of rank r over a
scheme X, we also use X to denote the zero section of V-- X (so that
V-X is V minus the zero section). Then Xc_ V is a smooth couple over X
of relative codimension r.

(7.1) THEOREM. Let V be a vector bundle of rank r over a connected
scheme X, and let L be a set of primes invertible on X.

(1) If F is the homotopy fiber of the map {V-X}^-- {X}^, then (F) is
#-isomorphic to

(2) The homotopy fiber of the map {V-X}-- {X} is #-isomorphic to
(S-1);_ if and only if/zL(X, r) is CL-complete.

Furthermore, for the fiber F of {V-X}^-- {X}^, there is a canonical
isomorphism r_l((F))---L(r) SO that the action of rl(X) on
(see 4) is lust the usual action of/L(X, r) on ZL(r).

Proof. We first prove statement (2). Since we have maps i: X-- V and
or" V-- X with 7roi ix, we get an isomorphism txt(X, r) =: tzr(V, r). Thus,
the condition that /zL(X, r)---/xL(V, r)L be an isomorphism reduces to
/ZL(X, r) be CL-complete.
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[1, XV 2.2] shows that the projection map induces a #-isomorphism
{V} {X}{. Then F, defined above, is #-isomorphic to the homotopy fiber
of {V-X}t,--+{V}, and X--* V induces a strong cohomological L-
isomorphism {X}- {V}. Thus, when r > 1, the second statement follows
from Theorems (5.2) and (4,8) (applied to X--* V). And the case r= 1
follows from Theorem (6.2) once we verify that X-- V satisfies condition
(6.3).

First, assume that X Spec (A), where A is a strict hensel local ring.
Then V, being a line bundle over X, must be Spec(A[T]). The only
connected Cr-torseurs over V-X are the maps fn" W, V-X V-X
which take T to T" (here n is any L-number). This assertion follows easily
from the relative Abhyankar lemma [1, XVI 3.5] and the fact that rl(V)r
1 (see XV 2.2]). Since I V (where f," 1717n V takes T to T"),

Hq(W,,, M)- Hq(W,,, vX, M),

again by [1, XV 2.2]. Then, if F is any Ct,-complete sheaf on V-X, (6.7)
tells us that H(V, i.F)--H(X, i*i.F) and H’(V, i.F)=0 for q >0 (X is
strict hensel).
Now, let 7r" V-- X be a line bundle over any connected X. If F is a

CL-complete sheaf on V-X and / is a point of X, then

(R%r,(j.F)) H’(VxX, j,F).

The above calculation shows that (R’-,(j.F))r 0 for q >0 and

(’rr.j,F),,,, i*j.F)v,
so that Rq’rr.(j.F)=O for q>0 and ,’a’.j.F-i*j.F. The Leray spectral
sequence then shows that H’(V, j.F)-Hq(X, i*j.F) for all q>-0. Thus
condition (6.3) is satisfied, and so for r 1, we are done by Theorem (6.2).
Now, we prove the first statement. Since V-- X has a section, the map

,,/.l(V) .- ,.//.l(X)

is onto. Then (2.2) shows that the map r(V-X)^- r(X) is also onto.
Let J be the inverse system of pointed connected finite torseurs W-- X.
Then the argument used in the proof of (2.4) shows that F is #-isomorphic
to the homotopy fiber of the map colim {VxW- W}^- colim {W}^, and
we also see that lim {W} is #-isomorphic to the universal cover of {X}^.
Thus we can complete (see [8, 4.1]) to get a fibration

(F) lim {VXxW- W} lim {W}..

Since W ranges over all finite connected torseurs of X, we see that

lim tic(W, r) 0
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(so in particular, it is CL-complete). This is not quite the situation of the
second statement of (7.1) (which we proved above), but a close look at the
proofs of (5.2) and (6.2) shows that here we do have a #-isomorphism
(F) -($2r-1). Then an easy modification of the proof of (4.8) shows that
the action of rl(X) on "tr2r_l((F);) is as claimed.

This theorem is much stronger than Theorem (0.1) discussed in the
introduction. We can exploit the extra strength of (7.1) in several ways.
First, we analyze the relation between completion and taking homotopy
fiber.

(7.2) THEOREM. Let V, X and L be as in (7.1), and let F be the homotopy
fiber of {V-X}^- {X}^. The following are equivalent"

(1) The CL-completion of the fibration
(7.3) F- {V-X} {X}

is also a fibration (up to # isomorphism).
(2) The action of rl(X) on r2_((F)z) factors through ra(X);_.
(3) IL (X, r) is CL-complete.

Proof. It is obvious that (1) mplies (2), and (2) implies (3) by the
description of the action of rl(X) given in (7.1). To prove that (3) implies
(1), note that by (7.1), the homotopy fiber of {V-X};_--{X} is #-
isomorphic to (Sz-a). Furthermore, the isomorphisms (see (4.9))

Hom (Tr2_a(/), Z/nZ) Hom (r. (r), Z/nZ),
Hom (Tr2_l((F)), Z/nZ) =Hom (’,r (r), Z/nZ)

are canonical, which shows that the natural map r2r_((F)) r2_() is
an isomorphism. Thus the map (Fi-- is a #-isomorphism.

The naturality referred to above has other uses. For example, one can
easily prove the following result (a special case of [8, 3.7]):

(7.4) THEOREM. Let V, X and L be as in (7.1), and let F be as in (7.3).
For any geometric point rl of X, let Vfn be the fiber of V-X-- X above
Then there are #-isomorphisms (V;) (F) (S*-1).
A second instance of ,the power of Theorem (7.1) is the following unusual

example:

(7.5) Example. Let X be a geometrically connected scheme over Q, and
let V be a vector bundle of rank r over X. By (7.1) we get a completed
spherical fibration

(7.6) (SZ-a) -- {V-X} --* {X}^.
However, there is no spherical fibration over {X} whose completion is
(7.6). For if (7.6) came from a spherical fibration, the action of Try(X). on
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the cohomology of the fiber would factor through Z/2Z (since the cohomol-
ogy is Z before completing). By (3.3), /x.(X, r) (L ={all primes}) is much
larger than Z/2Z, so by (7.1) the action of 7rl(X) cannot factor through
Z/2Z.
For varieties over a field, (3.3) and (3.4) tell us a lot about/XL (X, r). From

(7.1) and (7.2) we get:

(7.7) COROLLARY. Let X be a geometrically connected scheme over a field
k, and let L be a set of primes not including the characteristic of k. For any
vector bundle V of rank r over X, let F be the homotopy fiber of {V-X}^---
{X}^, so that we get a fibration (where (F)-(S2-I)r)
(7.8) F (V-X)^---) (X}^.

(1) If k is algebraically closed, then (7.8) remains a fibration after
Cr. -completion.

(2) If L consists of one prime 1,. then the following are equivalent:
(A) The homotopy fiber of {V X} {X} is to ($2r-1)
(B) (7.8) remains a fibration after C-completion.
(C) [k(A): k]lr, where A is a primitive l-th root of unity.

In (7.7), when L consists of more than one prime, remember that/r. (X, r)
depends only on k, L and r.

Finally, recall that in (3.4) we give conditions on L and r which insure that
/xr.(X, r) is always CL-complete, independent of X.
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