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ON ISOMETRIES OF THE BLOCH SPACE

BY
J. A. CiMA AND W. R. WOGEN

Introduction

Let A denote the open unit disc in the complex plane C and let I be the unit
circle. The (normalized) set # of Bloch functions is defined as follows:

% = {f: fis holomorphic on A, f(0) =0,
and 's,upl [ f'(2)|(1— |z |*)=M(f)< oo}.

With pointwise operations and M(f)=||f|, # becomes a nonseparable
Banach space. Let 4, denote the closed subspace of % spanned by the polyno-
mials. For many general properties of 4, see [1]. In [2], some function theoretic
properties of the extreme points of the unit balls of # and 4, are investigated.

In this paper we characterize the (linear) isometries of %, and the onto
isometries of #. Our description of these isometries closely parallels descrip-
tions of isometries of many other spaces of analytic functions. See, for instance,
[3], [4), [6], and [7]. Our work is patterned after a proof in [5, p. 141] of a
theorem describing the isometries of function algebras. Thus as a first step we
identify # with a subspace of C,(A), the bounded continuous functions on A.

2. The Isometries of 4.

Let C(A) denote the continuous functions on A, and let
€= CA):|f]e= sup [fE](1 = |2) < 0}
z|<1

Let 2 = {f € %: fis holomorphic on A}. Then Z is a closed subspace of ¥ and
the derivative mapping D:f—f’ is a linear isometry of # onto 2. Let
20 = D(%,).

Now define a mapping ®: C,(A) - € by (®f )(z) = f(z)(1 — |z|*)~*. Clearly
® is an onto linear isometry. We denote ®~! by ¥. Let ¥(2)= o,
¥Y(2,) = o,. We then have

o ={f'(z2)1 - |z|?): fe B}, Ao={f ()1~ |z|*): fe By

with o/ = .o/ = Cy(A)and D, = 2 < C.Indeed, 2, = C,(A) = all continuous
functions on A which vanish on I'.
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LEMMA 1. Suppose that 1: A — A is analytic. Then there is an analytic func-
tion f on A with

[ f@@)] =1 = |t@) )= |z))"" forallzeA
if and only if ©(z) = Az — a)(1 — &z)~ ! for some « € A and A € T.

Proof. If t is a conformal automorphism of A, then by the Schwarz-Pick
lemma, we can take f(z)=1'(z). Conversely, if such an f exists, then
log | f(z)| =1log (1 — |(z)|*) — log (1 — |z|*) is harmonic on A. Now an
elementary computation shows that the equation

Alog (1 — |(z)[*) = Alog (1 — |z|?)
(here A denotes the Laplacian) reduces to
7@ _ 1
(1= 1=@P)y - |z

Thus |7'(z)] = (1 = |=(z)[]*)(1 — |z|*)"* and by the Schwarz-Pick lemma 1
must be of the desired form.

LEMMA 2. Every a € A is a peak point of /.
Proof. Letf(z)=(1— |z]*)(1 — &z)~2. Then f, € &/, and f, peaks at .

THEOREM 1. Let S: 24— D, be an isometry. Then there is a conformal auto-
morphism ¢ of A and a A € T so that Sf= (A¢’)(f > ¢) for every f€ D,.

Proof. If X is a Banach space, E(X) will denote the extreme points of the
unit ball of X. The mapping T = ¥S®|,,, is an isometry of o/ o. If T.of o = R,
we view the adjoint T* as a mapping from #§ to &/%. Thus T* is an onto
isometry. Then T* maps E(#}¥) injectively onto E(«/%). We now use the idea in
[5] to show that each point y of E(#¥) or E(«/%) extends to an evaluation
functional on Cy(A). Let U = all norm preserving extensions of y to C(A). U is
weak* compact, and we let A be an extreme point of U. Then A is extreme in
E(Cy(A)) and thus A = pe, (e, is evaluation at z) for some z € A, u e I'. By
Lemma 2, z is unique. Of course e, |,,, € E(<¥).

Let (%) = {z € A: e, |, € E(#8)}. Hence there are functions

7: Z(#o) > A and o: E(%,)—-T
so that
7‘*(ez IQO) == Ot(Z)(et(z) Iﬂo) fOI‘ all zZ € E(‘@O)‘

Thus Tf(z) = a(z)f(z(z)) for all z e Z(%,), fe€ o,. In particular, for k =0,

1,2 ...,
T@E(1 - |z[*) = al2)(c(@)(1 = |2(2)[*)
= Gy(z)(1 — |z|?) for all z € Z(%R,),

where G, is a holomorphic function on A (G, € 9,).
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For z € 2(%,),
Go(z) = a(2)(1 — [€(@))(1 — |z")"* and <(z) = G4(z)/Gol2).
Thus 7 has a meromorphic extension from Z(Z,) to all of A. This extension is

unique since X(%,) is uncountable. If p,(z) = z", then for all n >0, Sp, is
holomorphic on A. Further it is easy to see that

(Sp2)(2) = Gof2) (GI‘Z’

f 2(R0),
Go(z)) or z € Z(A,)
and since extension from X(%,) is unique this equation holds for z € A.
It follows that G, /G, can have no poles, so that the meromorphic extension
of t is actually holomorphic.

Also
n \"{ 2
Pala = (n + 2) (n + 2) <l

$0 ||Sp,|lo <1 for n > 0. Thus
|Go(2)] |G1(2)/Go(2)]"(1 = |z|?) < |SPulla <1 forallze A, n>0.

Hence the range of G, /G, is contained in A. We apply Lemma 1 to G, to
conclude that G, /G, is a conformal automorphism ¢ of A and that G, = A¢’
for some A € I". Then for each polynomial g, we have Sq = (1¢')(q > ¢), and this
establishes the theorem.

COROLLARY 1. If'S: B, — B, is an isometry, then there is a conformal auto-
morphism ¢ of A and a A € T so that (Sf) = A(f ° ¢ —f(#(0))) for all f € B,.

COROLLARY 2. Every isometry of &, is onto.

There are other equivalent (but less natural) norms on 4. For example, one
could use [Ilf ll = sup; <5 | f'(z)|(1 — |z|). Then Lemma 1 can be modified as
follows.

LeMMA 1. Suppose that t: A — A is analytic. Then there is an analytic func-
tion fon A with | f(z)| = (1 — |t(z)| )1 — |z]|)~* for all z € A if and only if
1(z) = Az for some A € T

Minor modifications of the statements and proofs of Theorem 1 and Corol-
lary 1 lead to the following.

PROPOSITION.  If S is an isometry of (B, I |l), then there are A, p € T such
that (Sf)(z) = Af (uz) for all f € B,.

3. The onto isometries of #

The onto isometries of 4 turn out to be the natural ones appearing in
Corollary 1. The proof of this is similar to that given in Section 2, but it differs
in an essential way. We let BA denote the Stone-Cech compactification of A.
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THEOREM 2. Let S: 9 — 2 be an onto isometry. Then there is a conformal
automorphism ¢ of A and a A € T so that Sf= (A¢')(f - ¢) for all fe 2.

Proof. Now o/ = Cy(A) = C(BA). Let T = WS®, so that T is an isometry of
o/ onto /. Thus T* maps E(<«/*) injectively onto E(«/*). As before, each
y € E(o/*) has an extension to some e,, x € fA. Lemma 2 shows that for each
z€A, e,|4 is in E(/*). (ie., z € Z(=/).) Thus there are mappings t: A — A
and a: A - T such that T*e, |, = a(z)e,, |~ for every z € (/). Then

(Tf)z) = olz)f(r(z)) forallzeA, fe .

If f € o/, then f extends to be 0 on BA — A. Thus for hy(z) = — |z|*, we have
(Tho)z) = | XM = o)1 = [P () e A
> oe)e A A

But (Tho)(z)(1 — |z]*)~" is in @, and is not the zero function. Thus except
possibly for a sequence {z,} with |z,| »1 we have 7(z) € A. Let hy(z) =
z(1 — |z|?). If z # z,, then

(Thy)(z) = al2)e(2)(1 — [(2)[*) = <(2)(Tho)(2)-

Hence 7 is analytic on A — {z,} and 7 is bounded. Thus 7 has a unique analytic
extension to A. As in the proof of Theorem 1, apply Lemma 1 to show that risa
conformal automorphism and that S has the desired form.

COROLLARY 3. If' S: # — A is an onto isometry, then there is a conformal
automorphism ¢ of A and a A € T so that Sf= A(f > ¢ — f(¢(0))) for all fe B ,.

If the norm on % is modified as in Section 2, then S above has the form
(Sf)z) = Af (uz), where A, ueT.
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