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1. Introduction

Let S be a semigroup, and m(S) the Banach space of bounded real-valued
functions on S with the sup norm. For each s S, let l [r] be the left [right]
translation linear operator on re(S) defined by l f(t) f(st) [r f(t) f(ts)] for
f m(S) and t 6 S. A mean on m(S) is a non-negative element of norm one in
the dual space m(S)*. We say that a mean p is left [right] invariant if l*/ --/
[r*p=/] for every s 6S, i.e. for any fern(S) we have /(/f)=/(f)
[#(r f) #(f)]. Let MI(S) [Mr(S)] be the set of left [right] invariant means on
re(S), and let M(S) Ml(S) c Mr(S). When S has a left [right] invariant mean
we say that S is left [right] amenable;moreover, if S has a mean which is both
left and right invariant, we say S is amenable. For any X re(S)* we denote its
linear span by (X.
The purpose of this paper is to exactly determine the dimension of Ml(S)

for left amenable semigroups, and similarly the dimension of (M(S) for amen-
able semigroups. The problem has already been settled for left amenable semi-
groups with a finite dimensional set of left invariant means by the following two
theorems" Theorem A. If S is left amenable, then dim (Ml(S) is finite if and
only if S has a finite (two-sided) ideal’. Theorem B. If S is left amenable then
dim (Ml(S) n do if and only if S contains exactly n disjoint left ideas
which are finite groups. Theorem A was proved by Luthar [10] for abelian
semigroups. Theorems A and B were proved by Granirer in [5] and [6] for
countable semigroups and left cancellative semigroups respectively, and by the
author [8] in general.
For left amenable semigroups which have an infinite dimensional set of left

invariant means, i.e. which contain no finite ideals, the only exact result known
is the following theorem due to Chou [2]" If S is an infinite amenable group
then dim (MI(S)) dim (M(S)) 221sl. Lower bounds for dim (MI(S)) were
also obtained by Chou in [1] for cancellative semigroups, and by the author in
[8] for arbitrary semigroups.
Our main result for left amenable semigroups is the following theorem" If$ is

a left amenable semigroup containing no finite ideals, then

dim (MI(S)) 22’(s)
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where xl(S)= min {IBI (x)- 1 for every p Ml(S)}. As a corollary we
show that if S is an infinite left amenable semigroup with either left or right
cancellation then dim (MI(S)) 221sl, which extends Chou’s result for infinite
amenable groups. The proof of this theorem depends heavily on the results on
the structure of left thick subsets in left amenable semigroups contained in [8].
For amenable semigroups we prove an analogous theorem: Let S be an

amenable semigroup. Then S contains a finite ideal if and only if S has exactly
one invariant mean. If S does not contain a finite ideal, then
dim (M(S))= 22’s’ where x(S)= min {[sSsl’s S}. The proof closely fol-
lows the one for left amenable semigroups, using the structure of the thick
subsets of S, which play a role analogous to that of the left thick subsets of a left
amenable semigroup. In addition we also give a nicer characterization of
dim (MI(S)) for amenable semigroups. In fact if S is an amenable semigroup
with no finite ideals then dim (Ml(S)) 22 where x is the minimum of the
eardinalities of the right ideals of S.

Section 2 is devoted to the proof of our main result for left amenable semi-
groups, and some of its corollaries. In Section 3 we show that the cardinal xl(S)
defined above is actually the minimum of the cardinalities of the right ideals of
S if S has the finite intersection property of left ideals. This provides the nicer
characterization of dim (Ml(S)) when S is amenable; we also show that this
characterization holds when S has a finitely supported left invariant mean. We
conclude this section by showing that a semigroup has a finitely supported left
invariant mean if and only if its right thick subsets form a filter. This answers a
question of Rajagopalan and Ramakrishnan [12, Problem 6, p. 19].

In Section 4 we introduce thick subsets of semigroups and show that a subset
A of an amenable semigroup S is thick if and only if there exists an (two-sided)
invariant mean p on m(S) with (ga)--" 1. We also include an example of a
cancellative right amenable semigroup which is not left amenable (answering a
question of Granirer [7, p. 109]), which we use to show that a subset of an
amenable group which is both left and right thick, need not be thick.

Section 5 begins with an outline of results on the structure of thick subsets,
which correspond to those already established for left thick subsets. We then
prove the results determining the dimension of the set of invariant means ofan
amenable semigroup. We close with some open problems concerning the rela-
tionship between dim (MI(S)), dim (Mr(S)) and dim (M(S)) for an amen-
able semigroup S.

2. The exact dimension of (Ml(S))
Let S be a discrete semigroup. For each A c S let Za denote the characteristic

function of A, that is ZA(S)= 1 if S A and Za(s)= 0 if s q A. We say that a
subset A = S is left [right] thick if for every finite F = S there exists s S with
Fs A [sF A]. A subset A S is strongly left thick if for every B = S with

nl < A I, the set A B is left thick in S.



SETS OF INVARIANT MEANS OF SEMIGROUPS 235

Remark 2.1. The concept of left thick subsets is due to Mitchell [11], who
showed that if$ is a left amenable semigroup then A S is left thick if and only
if there exists p Ml(S) with/(Z) 1. The importance of strong left thickness
lies in the fact that a subset A is strongly left thick if and only if there exists a
collection (A" , F) of pairwise disjoint subsets of A, which are left thick in S,
such that FI 1.4[ [8, Theorem 2.2]. Another fact which we will require is
that if S is a left amenable semigroup containing no finite ideals, then any left
thick subsemigroup of minimal cardinality is strongly left thick (see the proof
of Theorem 4.1 in [8]). Finally, notice that if X m(S)* with IX > 2 where
c 2 then dim (X) sl since sl -< 2 dim (X). Thus to obtain the
results in this section it will suffice to determine Ml(S)l.
We begin with a lemma which establishes lower bounds for dim (MI(S))

using ultrafilters and collections of disjoint subsets of S.

LEMMA 2.2. Suppose {Dr: F} is an infinite collection ofdisjoint subsets ofa
left amenable semigroup S such that there exists {p: F} MI(S)with
inf {P(Zo): ’ F} > 0. Then dim (MI(S)) > 22’’.

Proof. As noted in the remark above, it suffices to show that
]MI(S)I _>2=n. Let e= inf{p(Zo)’7F}. We first show that for any
ultrafilter q/on F, there exists p Ml(S) such that

for every F q/. Clearly for any F ’, we can choose #r Ml(S) with
tr(Z {o:r r}) > e. Since Ml(S) is weak*-compact, there exists a weak*-limit
point, say t,, of the net {#r,: F q/}, where as usual the partial order on q/is

backwards inclusion. It is easy to check that has the desired property.
We now consider the cardinality of {/: ’ an ultrafilter on F}. For any

p MI(S) we must have 1{’: p p}[ _< 1/e. To see this, suppose that q/,...,

’ are distinct ultrafilters with p, p for 1, n. Using induction on n, it
is straightforward to prove that since the q/ are distinct, there exist disjoint
subsets F, F off such that F ’ for 1, n. It follows that the sets

are also disjoint, and so we have

i=1 i=1

and hence n < 1/e. Thus

I{/: q/an ultrafilter on r}l _> an ultrafilter on r}l.
Since F is infinite there are 22 ultrafilters on F so

IMI(S)I > e(22’r’) 22’r’.
From this lemma we immediately obtain the following theorem.
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THEOREM 2.3. If S is an infinite strongly left thick left amenable semigroup
then dim (MI(S)) 221sl.

Proof. As Ira(S)*[ 22’s’, clearly dim (MI(S))_<22.L’. However, there
exists a collection {D: , F} of disjoint left thick subsets of S with rl sl
since S is strongly left thick (see Remark 2.1). Thus by Lemma 2.2, we also have
dim (MI(S)) >_ 22s.

COROLLARY 2.4. IfS is an infinite left amenable semigroup with either left or
right cancellation, then dim (MI(S))- 221sl.

Proof. This follows directly from Theorem 2.3 since any infinite left amen-
able semigroup with either left or right cancellation is strongly left thick [8, 2.6
and 6.3].

After proving one more lemma, we will be ready to prove the main result of
this section (Theorem 2.6). First we define

zl(S) min {I A I: A left thick in S}.

LEMMA 2.5. IfD is a subset ofa left amenable semigroup S and 1 Ml(S) with
lt(Zo) > O, then there exists D’ D and !’ Ml(S) such that D’I < zl(S) and
K(zo,)> o.

Proof. If zl(S) is finite then o(Xt,) > 0 for some S and/o e Ml(S). Fur-
thermore/(go) > 0 implies that tS c D # O, and hence we can pick ts D. Let
D’= {ts} and let if= ro. It is easy to check that g’ e Ml(S), and we have

’(Z’) o(rZ{ts) 0(Z{t})> 0.

Now suppose that rl(S) is infinite. The proof depends on the following result
of Mitchell [11, Theorem 4]: For any subset D = S there exists MI(S) with
(Zo) if and only if there exists a net {T} of finite averages of right transla-
tions such that Z converges pointwise to Zs. Thus let ()= > 0 and
{} such that Z converges pointwise to Zs. We will construct a subset
D’ = D with ]D’] rl(S), and a net {T’} of finite averages of right translations
such that T’, also converges pointwise to aZs. First we choose a left thick
subset A of S with A vl(S). For each finite F S choose tv S such that
Fry A, and for each finite H = A and n N choose 6(H, n) so that

(H,n)ZD(S) < 1/n for every s e H.

Now define Tv, n) tF,,)rt for each finite F S and n e N. Notice that each
TF,,) is a finite average of right translations. Next, observe that for any
there is a finite subset D(H, n) of D such that T6tn,.)Zotn,.)(s)= T6tn,.)go(s) for
each s e H, because H is finite and T6t,.) is a finite average of right translations.
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Thus we define O’= {D(H, n)" H a finite subset of A, and n 6 N). Since A is
infinite, D’I hl (s); moreover

Tn,n)Zo’(s) Tt-l,,,)7.o(s) for every s H

since Ttn,,,) Zml,,,)(s) tn,.) Zo,(s) tn,.) Zo(s). Finally consider the net

{TF,n)’F a finite subset of S, and n 6 N} directed by the partial order
(F, n) (F, n:) if F = F and na g n2. For any s 6 S and m N, if
(F, n)2 ({s}, m)we have

Te,,)Xo’(s) I(,,,)rtxo’(s)
xo,(st )

< 1In

Thus TF,n)D, converges pointwise to Zs.

For a left amenable semigroup S we define

x,l(S) min {1B (ZB)= 1 for every # MI(S)}.

THEOREM 2.6. IfS is a left amenable semigroup which contains nofinite ideals,
then dim (MI(S)) 22"/.

Proof Since S contains no finite ideals, dim (MI(S)> is infinite, and hence
tel(S) must be infinite. Thus choosing B S with IB xl(S)and (Zn)= 1 for

2every / MI(S), it follows that dim (MI(S)> < IMl(S)l
2 By TheoremNow by Remark 2.1 it will suffice to show that Ml(S)l >_

2.3 this is clear if rl(S)= xl(S), since any left thick subsemigroup in $ of mini-
mal cardinality must be strongly left thick, infinite, and left amenable (see
Remark 2.1). Hence we may assume that rl(S) < xI(S). First suppose that d(S)
is finite. In this case S contains a left ideal which is a finite group [8, Lemma
4.3]. This implies that S has a right ideal A which is the union of disjoint finite
left ideals which are groups (the proof is identical to that of Lemma 3.1 in
Granirer [5]). Since AI -> tel(S) >_ No, clearly A is strongly left thick, so again
by Theorem 2.3 we have [MI(S)[ >_ IMI(A)I 22’’ > 22"’.

Finally we are left with the case No < rl(S) < xl(S). Choose a maximal col-
lection {D: e F} of disjoint subsets of S such that for each y F there exists

la Ml(S) with P(;to)> 0 and D < zl(S). Let B {D’ F}. By the
maximality of the collection {D: F} we must have ,t(;ts)= 1 for every
la MI(S), since otherwise by Lemma 2.5 there exists D c S\B and t Ml(S)
such that P(l.o)> 0 and DI < zl(S). Now FI B[ > xl(S) because
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]D <_ zl(S) < l(S) for each 7 e F. Furthermore, noting that l(S) > No, there
must exist F’ F such that F’I rl and

inf {P,(Zo,): 7 e F’} > 0.

Therefore by Lemma 2.2, we have MI(S)I > 22’r’ > 22’’*’.

3. Another characterization of cl(S)
It is well known that if A is a right ideal of a left amenable semigroup S, then

#()a) 1 for every t e Ml(S). Thus it is natural to ask whether l(S)equals the
minimum of the cardinalities of the right ideals of S, i.e. does l(S)=
min {I sSl: s e S}? In general we have been unable to answer this question,
though it is obviously true if S is finite or if S is strongly left thick. In this
section we show that it also holds if S has the finite intersection property of left
ideals (f.i.p.l.i.) or if S has a finitely supported left invariant mean. In these cases
(and in particular when S is amenable), this yields a somewhat nicer characteri-
zation of dim (ml(S)).

LEMMA 3.1. IfS is an infinite semigroup with f.i.p.l.i, which is not strongly left
thick, then there exists S with ItS < SI.

Proof Since S is not strongly left thick there exist subsets F and B ofS such
that F is finite, BI < IS I, and Fs B 4: for each s e S. Thus if F {t ,...,
t,} we can write S J,".= S, where t, S, c B for 1, n. Now since S has
f.i.p.l.i, we can pick e 0’=1 St,, and we have ItS Q)= tS < n BI <

PROPOSITION 3.2. If S is a left amenable semigroup with fi.p.l.i, then
cl(S)- min {IsS[: s S}.

Proof Let tS be a right ideal of minimal cardinality in S. Clearly l(S) <_

ItS I, so we need only show tSI < l(S). It is easy to check that tS must also
have f.i.p.l.i., thus by Lemma 3.1 tS is either finite or strongly left thick. If tS is
finite then trivially l(S) > ItS I, since in this case tS is a finite group, and hence
for every s tS there exists/ e MI(S) with (Xs) > 0. On the other hand if tS is
strongly left thick then for any B = S with BI < !tS there exists e Ml(S)
with/(Z,) 0, which shows that I(S)> tSI.
COROLLARY 3.3. IfS is an amenable semigroup, then either S has a unique left

invariant mean, or S contains no finite ideals and dim (MI(S))= 22 where
min {IsS[: s S}.

Proof If S contains a finite ideal then dim (Ml(S)) is finite and hence S has
a unique invariant mean [8, Cor. 4.6]. The rest of the theorem follows directly
from Proposition 3.2 and Theorem 2.6 since every amenable semigroup has
f.i.p.l.i.
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We say that a mean p on m(S)is finitely supported if P(ZA) 1 for some finite
subset A of S.

PROPOSITION 3.4. If S has a finitely supported left invariant mean, then
l(S) min {IsS[: s S}.

Proof. Obviously S has a finite left thick subset, and this implies (as
described in the proof of Theorem 2.6) that S has a right ideal A which is the
union of left ideals which are finite groups. Now as before, for each s A there
exists # Ml(S) with #(Z) > 0, and hence l(S) > [A 1.
We now present a theorem giving some equivalent properties satisfied by

semigroups which have finitely supported left invariant means. In particular
the theorem characterizes the semigroups whose right thick subsets form a
filter. This answers a question of Rajagopalan and Ramakrishnan [12, p. 19,
Problem 6] who showed that the right thick subsets form an ultrafilter if and
only if the semigroup has a unique extremely right invariant mean.

THEOREM 3.5. For a semigroup S the followin9 are equivalent:

(a) S has a finitely supported left invariant mean.
(b) S has a finite left ideal which is a group.
(c) S has a right ideal which is contained in every right thick subset.
(d) The right thick subsets of S form a filter.
(e) The intersection of any pair of right thick subsets is non-empty.

Proof (b) (a) and (c)= (d) (e) are obvious. Also we already noted that
(a) = (b) in the proof of Proposition 3.4. To prove (b)= (c), let A DS where
D is a finite left ideal of S which is a group, and let B be any right thick subset of
S. Clearly A is a right ideal; moreover A B since for every s S there exists

S with tDs B, but tD D since D is a left ideal and a group.
We complete the proof by showing that (e) (b). Let A $a be a left ideal

of minimal cardinality, and let B and C be right thick subsets of A. Then
B C 4: since Ba- and Ca- are right thick in S and

(Ba- Ca-)a B c C

(as usual Xa- {s S: sa X} for any X S). Thus A has the finite intersec-
tion property of right ideals and except for the trivial case that a[ 1, A
cannot be strongly right thick (see Remark 2.1). By a symmetric version of
Lemma 3.1 we see that A cannot be infinite since it had minimal cardinality as a
left ideal of S. Thus A is a finite right cancellative semigroup with the finite
intersection property of right ideals, and hence is a group.

4. Thick sets and amenable semigroups

A subset A of S is said to be thick if for every finite subset F of S there exists
s S such that FsF A. It is easy to see that any thick subset is both left thick



240 MARIA M. KLAWE

and right thick, but we will show that the converse is false (Example 4.4). Thick
subsets in an amenable semigroup play the same role as left thick subsets do in
a left amenable semigroup, i.e., a subset of an amenable semigroup is thick if
and only if there is an (two-sided) invariant mean which takes value one on the
characteristic function of the subset (Theorem 4.2). We begin with an easy
lemma which gives a useful equivalent definition of thickness. As usual for
A S and S we use the notation

t-lA {s S: ts A}.

LEMMA 4.1. A subset A of a semigroup S is thick if and only if
O{t-lA: 6 F}

is right thick for every finite F S.

Proof Simply notice that for any F S and s S we have FsF A if and
only ifsF ( {t-lA: V}.

THEOREM 4.2. IfS is an amenable semigroup then A c S is thick ifand only if
there exists M(S) such that P(ZA)= 1.

Proof Suppose A c S and/ + M(S) with/(ZA) 1. For any finite F S
we have/t(;tt-,A) 1 for each 6 F, and hence

kt(Z ,-’A:,.F) 1

also. Thus ( {t- 1A: F} is right thick which shows that A is thick by Lemma
4.1. Now let A be a thick subset of S. For every finite F S choose OF Mr(S)
such that VF(Z /,-1A:,F) 1. Since Mr(S)is weak*-compact we can find

o2 Mr(S) such that 02 is a weak*-limit point of the net {VF: F finite in S}
directed by inclusion. Note that for every e S we must have O2(Zt-lA)= 1.
Choose any ol Ml(S) and let t ol 02, where C) denotes the Arens pro-
duct (i.e. for any/ re(S) the function 02 Oft re(S) is defined by 02 Of(t)=
02(/t f) for each S, and ol ( 02 G m(S)* is defined by
v C) o2(f)= va(v2 f)). It is easy to check that e M(S) because Ml(S)
and 02 Mr(S). Moreover

I(ZA) 01 (02 ( ZA) 01 (Ks) 1

since 02 C)/.A(t) OZ(I,ZA)= 02(;,-,A)= 1 for each + S.

In order to give an example of a set which is both left thick and right thick
but not thick, we first give an example of a cancellative semigroup which is
right amenable but not amenable. It is well known that any right amenable
cancellative semigroup can be embedded as a right thick subset of an amenable
group (see [13, Corollaries 3.2 and 3.6]). Thus this provides an example of a
right amenable subsemigroup of an amenable group which is not left amenable,
hence negatively answering the question of Granirer [7, p. 109].
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Example 4.3.
plication

Let B={(m,n) eZxZ:m_>0, n>l} with the multi-

(ma, n)(m2, nz)= (m + 2’mz, n + nz).
It can easily be verified that B is a cancellative semigroup, but B is not left
amenable since (0, 1)B (1, 1)B . To see that S is right amenable, notice
that B can be represented as the semidirect product U x o T, where U[T] is the
semigroup of non-negative [positive] integers under addition, and p: T
End (U)is defined by (p(n))(m)= 2"m. Now, because both U and T are right
amenable, B must be also [9, Prop. 3.10]. For more details about this semi-
group, see Remark 3.6.iii in [9].

Example 4.4. From the above example and the comments which precede it,
it follows that there exists an amenable group S with a subsemigroup B which is
right thick but not left amenable. Thus/()B) 0 for every/ M(S). Moreover,
the set B- {s S" s- e B} is left thick, but not right amenable, and hence
/(;(B-1) 0 for every/ M(S). Now we see that the set B w B-1 is both left
and right thick; however B w B-1 is not thick since ](BwB-1). (B)+
/(X,-1) 0 for every te M(S).

5. The dimension of (M(S))
In this section we will present results which completely determine the dimen-

sion of the set of invariant means of an amenable semigroup. Most of the
details of the proofs are omitted because of their similarity with those for the
analogous results on left amenable semigroups.
A set A S is said to be strongly thick if for every B S with BI < AI,

the set A B is thick.

THEOREM 5.1. A subset A S is strongly thick if and only if there exists a
collection {D: y e F} of disjoint subsets of A which are thick in S, such that

A proof using transfinite induction can easily be obtained by mimicking the
proof of Theorem 2.2 in [8].

LEMMA 5.2. If {D" 7 e F} is a collection of pairwise disjoint thick subsets of
an amenable semigroup S, then dim (M(S)) >_ 221rl.
The proof is identical to that of Lemma 2.2.
For any semigroup S we define x(S)= min {I sSs I’s S}.

THEOREM 5.3. If S is an amenable semigroup such that x(S) is infinite, then
dim (M(S))= 2EKes).

Proof. Choose a S so that aSal x(s). We will show that aSa is
strongly thick. If not, then there must exist subsets F and B of S such that F is
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finite, BI < [uSa l, and FsFCaSa B for each sS. Let F={s,,..., s,}.
Then we can write

S {Aij: 1 < i, j < n} where siAjs B for each i, j.

Since S is amenable there is some d {si Ssi: 1 < < n}. Now

dSd} {dAig d: 1 < i,j < n}] < nEIBI < ]uSa]
because ]aSa is infinite, which contradicts ]uSa (S). Thus combining the
fact that usa is strongly thick with Theorem 5.1 and Lemma 2.2, we obtain
dim (M(S)) > 22K’’. Furthermore, since /*(Zasa)- 1 for every # M(S), we
have dim (M(S)) <_ Im(aSa)*l 22’s’.

TI-IEOREM 5.4. For an amenable semioroup S, the followin9 are equivalent:

(a) dim (M(S)) is finite.
(b) S has a finite thick subset.
(c) S has a finite two-sided ideal.
(d) Iml(S) [mr(s) Im(s) 1.

Proof (a) (b). Choose s S so that sSs is finite, which is possible since
x(S) must be finite by Theorem 5.3. Now sSs is also thick since (s)= 1 for
any M(S).

(b) (c). For some a S and M(S)we must have ,(Zt,) > 0, but then
SaS is finite.
(c)= (d). Since (c) implies that dim (Ml(S)) is finite, this follows from

Corollary 4.6 in [8].
(d) = (a). Obvious.

We close with two problems concerning the relationship between
dim (Ml(S)) and dim (Mr(S)) for an amenable semigroup S.

Problem 1. Characterize the amenable semigroups S such that
dim (MI(S))= dim (Mr(S)).
We have been unable to find an example where the dimensions were

different.

Problem 2. If S is amenable, is it always true that

dim (M(S)) min {dim (MI(S)), dim (Mr(S))}?
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