MULTIPLIERS OF TENSOR PRODUCTS OF CMA'S AND RADON-NIKODYM DERIVATIVES

BY
David L. Johnson and Charles D. Lahr

I. Introduction

Throughout this paper, the expression (A, Γ) will denote a commutative semisimple convolution measure algebra (CMA) A with structure semigroup Γ. In particular, this means that A is a Banach algebra, Γ is a compact abelian topological semigroup, and there is an isometric algebra isomorphism of A into $M(\Gamma)$, the Banach algebra (under convolution product and total variation norm $\|\cdot\|$) of all complex-valued finite regular Borel measures on Γ. A multiplier of a CMA A is a linear operator $T: A \rightarrow A$ satisfying $T(a * b)=T(a) * b$, for all a, b in A. Each multiplier of A is a bounded operator on A, and, as a result the set $\mathscr{M}(A)$ of all multipliers of A is a Banach algebra with composition as product. It will be assumed that A has a weak approximate identity of norm one $[9,10]$. Hence, there is an isometric algebra isomorphism of $\mathscr{M}(A)$ into $M(\Gamma)$ which extends the aforementioned imbedding of A in $M(\Gamma)$. Thus, we can, and will, regard A and $\mathscr{M}(A)$ as norm-closed subalgebras of the measure algebra $M(\Gamma)$. So regarded, A, being a CMA, is a complex L-subspace (defined below) of $M(\Gamma)$. Although not true in general, it will be assumed that $\mathscr{M}(A)$ is also an L-subspace of $M(\Gamma)$; this is equivalent to assuming that $\mathscr{M}(A)$ is a CMA. These and other results about multipliers of CMA's can be found in [10], [17], while the comprehensive monograph [13] deals with CMA's in general.

If X is a compact Hausdorff space, then an L-subspace \mathscr{L} of the measure space $M(X)$ is a norm-closed complex linear subspace of $M(X)$ such that, if $v \in \mathscr{L}, \mu \in M(X)$, and μ is absolutely continuous with respect to v, written $\mu \ll v$, then $\mu \in \mathscr{L}$. Thus, a measure $\mu \in \mathscr{L}$ if and only if its total variation measure $|\mu| \in \mathscr{L}$. In all that follows, X_{1} and X_{2} denote compact Hausdorff spaces, and \mathscr{L}_{1} and \mathscr{L}_{2} denote L-subspaces of $M\left(X_{1}\right)$ and $M\left(X_{2}\right)$, respectively. Then the projective tensor product $\mathscr{L}_{1} \widehat{\otimes} \mathscr{L}_{2}$ of \mathscr{L}_{1} and \mathscr{L}_{2} may be regarded as the completion in $M\left(X_{1} \times X_{2}\right)$ of the usual algebraic tensor product $\mathscr{L}_{1} \otimes \mathscr{L}_{2}$ [13, Prop. 2.5.2]. Thus, since $M\left(X_{1}\right), M\left(X_{2}\right)$ are L-spaces, the inclusions

$$
\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2} \subseteq M\left(X_{1}\right) \hat{\otimes} M\left(X_{2}\right) \subseteq M\left(X_{1} \times X_{2}\right)
$$

always obtain.
Our interest is in the multipliers of the projective tensor product $A_{1} \widehat{\otimes} A_{2}$ of two semisimple commutative CMA's A_{1}, A_{2}. It has been shown [16] that, if
$\left(A_{1}, \Gamma_{1}\right)$ and $\left(A_{2}, \Gamma_{2}\right)$ are two such CMA's, then $A_{1} \hat{\otimes} A_{2}$ is a semisimple commutative CMA whose structure semigroup is $\Gamma_{1} \times \Gamma_{2}$. Our standing assumptions on $A_{2}, A_{2}, \mathscr{M}\left(A_{1}\right), \mathscr{M}\left(A_{2}\right)$ imply that $\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$ imbeds isometrically in $\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \subseteq M\left(\Gamma_{1} \times \Gamma_{2}\right)$. The main purpose of this paper is to characterize $\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$ as a multiplier-subspace of $\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right)$ and $M\left(\Gamma_{1} \times \Gamma_{2}\right)$.

Although the assumptions placed upon A_{1}, A_{2} and $\mathscr{M}\left(A_{1}\right), \mathscr{M}\left(A_{2}\right)$ may seem unduly restrictive, they are satisfied for the following classical example. Let G_{1}, G_{2} be arbitrary locally compact abelian groups, and let $L^{1}\left(G_{1}\right), L^{1}\left(G_{2}\right)$ be the usual group algebras of G_{1}, G_{2}, respectively. Then $L^{1}\left(G_{1}\right), L^{1}\left(G_{2}\right)$ are semisimple commutative CMA's with approximate identities of norm one, and the multiplier algebras $\mathscr{M}\left(L^{1}\left(G_{1}\right)\right)=M\left(G_{1}\right), \mathscr{M}\left(L^{1}\left(G_{2}\right)\right)=M\left(G_{2}\right)$ [15] are also CMA's. The structure semigroups of $L^{1}\left(G_{1}\right)$ and $L^{1}\left(G_{2}\right)$ are the Bohr compactifications \bar{G}_{1} and \bar{G}_{2} of G_{1} and G_{2}, respectively [12, Example 4(i), p. 163], while $L^{1}\left(G_{1}\right) \hat{\otimes} L^{1}\left(G_{2}\right)=L^{1}\left(G_{1} \times G_{2}\right)$ [5, Corollary 4, p. 61]. Thus,

$$
\mathscr{M}\left(L^{1}\left(G_{1}\right) \hat{\otimes} L^{1}\left(G_{2}\right)\right)=\mathscr{M}\left(L^{1}\left(G_{1} \times G_{2}\right)\right)=M\left(G_{1} \times G_{2}\right)
$$

and we seek to describe those measures in $M\left(G_{1} \times G_{2}\right)$, or more generally in $M\left(\bar{G}_{1} \times \bar{G}_{2}\right)$, which are contained in $M\left(G_{1}\right) \hat{\otimes} M\left(G_{2}\right)$. In the context of this example, it is shown that

$$
M\left(G_{1}\right) \hat{\otimes} M\left(G_{2}\right)=M\left(G_{1} \times G_{2}\right) \cap\left(M\left(\bar{G}_{1}\right) \hat{\otimes} M\left(\bar{G}_{2}\right)\right)
$$

In particular, if $G_{1}=G_{2}=\mathbf{R}$, then the space $M(\mathbf{R}) \hat{\otimes} M(\mathbf{R})$ is properly contained in $M(\mathbf{R} \times \mathbf{R})$ by [4, pp. 784-785]; however, the characterization $M(\mathbf{R}) \hat{\otimes} M(\mathbf{R})=M(\mathbf{R} \times \mathbf{R}) \cap(M(\overline{\mathbf{R}}) \hat{\otimes} M(\overline{\mathbf{R}}))$ appears to be new.

The major results of the paper appear in Section III. We open that section by giving characterizations (in Theorem 3.1, Corollary 3.2, and Corollary 3.3) of $\mathscr{L}_{1} \widehat{\otimes} \mathscr{L}_{2}$ in the general setting of arbitrary L-subspaces $\mathscr{L}_{1}, \mathscr{L}_{2}$ of measure spaces $M\left(X_{1}\right), M\left(X_{2}\right)$, respectively. These results are presented in terms of the well-known fact that $M\left(X_{1} \times X_{2}\right)$ is isometrically isomorphic to the Banach space $M\left(X_{1}, M\left(X_{2}\right)\right)$ of all countably-additive vector-valued measures of finite variation from the Borel field $\mathfrak{B}\left(X_{1}\right)$ of X_{1} into $M\left(X_{2}\right)$. Since each vectorvalued measure m_{1} in $M\left(X_{1}, M\left(X_{2}\right)\right)$ has an associated positive variation measure $\mu^{m_{1}}$ in $M\left(X_{1}\right)$, the idea of m_{1} possessing a (strong) Radon-Nikodym (RN) derivative with respect to $\mu^{m_{1}}$ is quite natural. These general L-space results are then applied to multiplier questions. For example, a multiplier m in $\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \subseteq M\left(\Gamma_{1} \times \Gamma_{2}\right)$ is shown to belong to $\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$ if and only if, as a vector-valued measure m_{1}, it has a strong RN derivative with respect to its variation measure $\mu^{m_{1}}$ (Theorem 3.4).

II. Preliminaries

A semicharacter χ on the structure semigroup Γ of the CMA A is a nonzero continuous function from Γ into the complex unit disc such that $\chi(s t)=\chi(s) \chi(t)$ for all s, t in Γ. The set $\hat{\Gamma}$ of all semicharacters on Γ can be identified with the
maximal ideal space of A. If $A_{\Gamma} \subset M(\Gamma)$ denotes the canonical image of A in $M(\Gamma)$, then each $\chi \in \hat{\Gamma}$ determines a complex homomorphism on A by the map

$$
\mu \mapsto\langle\chi, \mu\rangle=\int_{\Gamma} \chi(s) d \mu(s)
$$

for μ in A_{Γ}, and each complex homomorphism of A may be so expressed. Now, if $C(\Gamma)$ denotes the Banach space of all continuous complex-valued functions on Γ endowed with the sup norm $\|\cdot\|_{\infty}$, then it turns out that $C(\Gamma)$ is the closed linear span of $\hat{\Gamma}$ in $C(\Gamma)$. A measure μ in $M(\Gamma)$ will be regarded both as a countably additive set function on the Borel field $\mathfrak{B}(\Gamma)$ of Γ and as a linear functional on $C(\Gamma)$. Thus, we will use the symbols $\mu(E)$, for E in $\mathfrak{B}(\Gamma)$, and $\langle f, \mu\rangle$, for f in $C(\Gamma)$, where, as is customary,

$$
\langle f, \mu\rangle=\int_{\Gamma} f(s) d \mu(s)
$$

In general, the notation $\langle\cdot, \cdot\rangle$ will denote the action of a dual Banach space on its pre-dual Banach space. Of course, $M(\Gamma)$ becomes a CMA by defining a convolution product

$$
(\mu * v)(E)=\int_{\Gamma} \int_{\Gamma} K_{E}(s t) d \mu(s) d v(t)
$$

where $\mu, v \in M(\Gamma), E \in \mathfrak{B}(\Gamma)$, and K_{E} is the characteristic function of E.
A major portion of our analysis relies upon the interplay between vectorvalued measures and tensor products developed in [3], [4]. We begin with a result of Grothendieck. Let $v \in M\left(X_{1}\right)$ be a positive measure, and \mathscr{L} an L subspace of $M\left(X_{2}\right)$. If $L^{1}(v, \mathscr{L})$ denotes the Banach space of all strongly v measurable, Bochner-integrable functions from X_{1} to \mathscr{L}, then $L^{1}(v, \mathscr{L})=L^{1}(v) \hat{\otimes} \mathscr{L}$, the projective tensor product of $L^{1}(v)$ and \mathscr{L}, where $L^{1}(v)$ is the Banach space of all v-integrable scalar-valued functions on X_{1} [5, Theorem 2, p. 59]. Thus, $L^{1}(v, \mathscr{L})$ can be regarded as the Banach space of all \mathscr{L}-valued measures in $M\left(X_{1}, M\left(X_{2}\right)\right)=M\left(X_{1} \times X_{2}\right)$ [4, p. 784] that have strong RN derivatives with respect to v. For standard definitions and facts about the various kinds of measurability and integrability for vector-valued measures, consult [7, Sec. III, 1].

The isometric isomorphisms

$$
M\left(X_{1} \times X_{2}\right)=M\left(X_{1}, M\left(X_{2}\right)\right) \quad \text { and } \quad M\left(X_{1} \times X_{2}\right)=M\left(X_{2}, M\left(X_{1}\right)\right)
$$

are implemented via the mappings $m \mapsto m_{1}$ and $m \mapsto m_{2}, m \in M\left(X_{1} \times X_{2}\right)$, where $m_{1}: \mathfrak{B}\left(X_{1}\right) \rightarrow M\left(X_{2}\right)$ and $m_{2}: \mathfrak{B}\left(X_{2}\right) \rightarrow M\left(X_{1}\right)$ are defined by

$$
m_{1}(E)(F)=m(E \times F)=m_{2}(F)(E), \quad E \in \mathfrak{B}\left(X_{1}\right), F \in \mathfrak{B}\left(X_{2}\right) ;
$$

in terms of linear functionals,

$$
\left\langle g, m_{1}(E)\right\rangle=\int_{E \times X_{2}} g\left(x_{2}\right) d m\left(x_{1}, x_{2}\right), \quad g \in C\left(X_{2}\right), E \in \mathfrak{B}\left(X_{1}\right),
$$

and similarly for $m_{2}(F), F \in \mathfrak{B}\left(X_{2}\right)$. Associated with $m \in M\left(X_{1} \times X_{2}\right)$ are its variation measures $\mu^{m_{1}} \in M\left(X_{1}\right)$ and $\mu^{m_{2}} \in M\left(X_{2}\right)$ defined by

$$
\begin{array}{ll}
\mu^{m_{1}}(E)=|m|\left(E \times X_{2}\right)=|m|_{2}\left(X_{2}\right)(E), & E \in \mathfrak{B}\left(X_{1}\right), \\
\mu^{m_{2}}(F)=|m|\left(X_{1} \times F\right)=|m|_{1}\left(X_{1}\right)(F), & F \in \mathfrak{B}\left(X_{2}\right) .
\end{array}
$$

Clearly, $\left\|m_{1}(E)\right\| \leq \mu^{m_{1}}(E)$ for all $E \in \mathfrak{B}\left(X_{1}\right)$, and it turns out [2, p. 532] that $\mu^{m_{1}}$ is the least positive measure in $M\left(X_{1}\right)$ for which this is true. Now, the norm of $m_{1} \in M\left(X_{1}, M\left(X_{2}\right)\right)\left(m_{2} \in M\left(X_{2}, M\left(X_{1}\right)\right)\right)$ is $\left\|m_{1}\right\|=\left\|\mu^{m_{1}}\right\|=\|m\|\left(\left\|m_{2}\right\|=\right.$ $\left.\left\|\mu^{m_{2}}\right\|=\|m\|\right)$, establishing the isometry

$$
M\left(X_{1} \times X_{2}\right)=M\left(X_{1}, M\left(X_{2}\right)\right) \quad\left(=M\left(X_{2}, M\left(X_{1}\right)\right)\right)
$$

Also if $f \in L^{1}\left(X_{1}, \mu^{m_{1}}\right)$, then

$$
\int_{X_{1}} f\left(x_{1}\right) d \mu^{m_{1}}\left(x_{1}\right)=\int_{X_{1} \times X_{2}} f\left(x_{1}\right) d|m|\left(x_{1}, x_{2}\right)
$$

and similarly for $g \in L^{1}\left(X_{2}, \mu^{m_{2}}\right)$.
Each $m \in M\left(X_{1} \times X_{2}\right)$ determines a bounded linear transformation

$$
T_{m_{1}}: L^{1}\left(X_{1}, \mu^{m_{1}}\right) \rightarrow M\left(X_{2}\right)
$$

defined by

$$
T_{m_{1}}(f)(F)=\int_{X_{1} \times F} f\left(x_{1}\right) d m\left(x_{1}, x_{2}\right), \quad f \in L^{1}\left(X_{1}, \mu^{m_{1}}\right), F \in \mathfrak{B}\left(X_{2}\right) .
$$

This integral is well defined since $|m|_{2}(F) \leq|m|_{2}\left(X_{2}\right)=\mu^{m_{1}}$, for all $F \in \mathfrak{B}\left(X_{2}\right)$. As a linear functional, $T_{m_{1}}$ satisfies.

$$
\left\langle g, T_{m_{1}}(f)\right\rangle=\int_{X_{1} \times X_{2}} f\left(x_{1}\right) g\left(x_{2}\right) d m\left(x_{1}, x_{2}\right), \quad f \in L^{1}\left(X_{1}, \mu^{m_{1}}\right), g \in C\left(X_{2}\right) .
$$

Of course, there exists a map $T_{m_{2}}: L^{1}\left(X_{2}, \mu^{m_{2}}\right) \rightarrow M\left(X_{1}\right)$, defined analogously. For all $f \in C\left(X_{1}\right), g \in C\left(X_{2}\right)$, and $m \in M\left(X_{1} \times X_{2}\right), T_{m_{1}}$ and $T_{m_{2}}$ are related by $\left\langle g, T_{m_{1}}(f)\right\rangle=\langle f \otimes g, m\rangle=\left\langle f, T_{m_{2}}(g)\right\rangle$.

We conclude the preliminaries with certain key results about L-subspaces and $R N$ derivatives. Since \mathscr{L}_{1} and \mathscr{L}_{2} are L-subspaces of $M\left(X_{1}\right)$ and $M\left(X_{2}\right)$, respectively, $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$ imbeds in $M\left(X_{1} \times X_{2}\right)$. A straightforward generalization of [4, Theorem 6.3] yields the following characterization of $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$. Let $m \in M\left(X \times X_{2}\right)$. If $m \in \mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$, then $\mu^{m_{1}} \in \mathscr{L}_{1}, m_{1} \in M\left(X_{1}, \mathscr{L}_{2}\right)$ and m_{1} has a strong RN derivative with respect to $\mu^{m_{1}}$. Conversely, if $\mu^{m_{1}} \in \mathscr{L}_{1}$ and m_{1} has a strong \mathscr{L}_{2}-valued RN derivative with respect to $\mu^{m_{1}}$, then $m \in \mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$.

In particular, if \mathscr{L}_{2} has the RN property (see [1]), then $M\left(X_{1}, \mathscr{L}_{2}\right)=$ $M\left(X_{1}\right) \hat{\otimes} \mathscr{L}_{2}$. Moreover, it is a consequence of [5, Theorem 11, p. 141] that

$$
\mu^{m_{2}}=\vee\left\{\left|T_{m_{1}}(f)\right|: f \in C\left(X_{1}\right),\|f\|_{\infty} \leq 1\right\} .
$$

Further, $m_{1} \in M\left(X_{1}, \mathscr{L}_{2}\right)$ if and only if $\mu^{m_{2}} \in \mathscr{L}_{2}$ if and only if $|m|_{1} \in$ $M\left(X_{1}, \mathscr{L}_{2}\right)$. (Of course, analogous statements hold when the indices 1 and 2 are interchanged.)

III. Multipliers and Radon-Nikodym derivatives

We begin the section with some additional characterizations of $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$. The measure space $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$ is

$$
\left\{m \in M\left(X_{1} \times X_{2}\right): m \ll v \otimes \tau, v \in \mathscr{L}_{1}, \tau \in \mathscr{L}_{2}\right\} \quad[12, \text { pp. 155-6]. }
$$

The next theorem offers natural choices for v and τ.
Theorem 3.1. The subspace $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$ of $M\left(X_{1} \times X_{2}\right)$ consists precisely of those measures m in $M\left(X_{1} \times X_{2}\right)$ which satisfy the following three conditions:
(1) $m_{1} \in M\left(X_{1}, \mathscr{L}_{2}\right)$ or, equivalently, $\mu^{m_{2}} \in \mathscr{L}_{2}$.
(2) $m_{2} \in M\left(X_{2}, \mathscr{L}_{1}\right)$ or, equivalently, $\mu^{m_{1}} \in \mathscr{L}_{1}$.
(3) $m \in L^{1}\left(\mu^{m_{1}}\right) \hat{\otimes} L^{1}\left(\mu^{m_{2}}\right)$ or, equivalently, $m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}$.

Proof. First, for both conditions (1) and (2), results from Section II imply that the stated equivalences obtain, while the equivalence of the two statements in (3) follows from the fact that $L^{1}\left(\mu^{m_{1}}\right) \hat{\otimes} L^{1}\left(\mu^{m_{2}}\right)=L^{1}\left(\mu^{m_{1}} \otimes \mu^{m_{2}}\right)$ [5, Corollary 4, p. 61].

Now, suppose that $m \in \mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$. From the preliminaries, (1) and (2) are both clearly satisfied; in fact, since $m \in \mathscr{L}_{1} \widehat{\otimes} \mathscr{L}_{2}$, the vector-valued measure m_{1} has a strong RN derivative with respect to $\mu^{m_{1}}$. Thus, $m_{1} \in L^{1}\left(\mu^{m_{1}}, \mathscr{L}_{2}\right)$, or equivalently,

$$
m \in L^{1}\left(\mu^{m_{1}}\right) \hat{\otimes} \mathscr{L}_{2}
$$

Now by similar reasoning, the vector-valued measure m_{2} is in $M\left(X_{2}, L^{1}\left(\mu^{m_{1}}\right)\right)$, and has a strong RN derivative with respect to $\mu^{m_{2}}$. Thus,

$$
m_{2} \in L^{1}\left(\mu^{m_{2}}, L^{1}\left(\mu^{m_{1}}\right)\right)
$$

or, equivalently, $m \in L^{1}\left(\mu^{m_{1}}\right) \hat{\otimes} L^{1}\left(\mu^{m_{2}}\right)$; that is, (3) is satisfied.
Conversely, if m is a measure in $M\left(X_{1} \times X_{2}\right)$ for which (1), (2), and (3) are satisfied, then m is clearly contained in

$$
\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}=\left\{m \in M\left(X_{1} \times X_{2}\right): m \ll v \otimes \tau, v \in \mathscr{L}_{1}, \tau \in \mathscr{L}_{2}\right\}
$$

Theorem 3.1 may be restated simply as the identity

$$
\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}=\left\{m \in M\left(X_{1} \times X_{2}\right): m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}, \mu^{m_{1}} \in \mathscr{L}_{1}, \mu^{m_{2}} \in \mathscr{L}_{2}\right\}
$$

The next result shows that if $m \in \mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$, then $\mu^{m_{1}} \otimes \mu^{m_{2}}$ is the "least" product measure with respect to which m is absolutely continuous.

Corollary 3.2. If $m \in M\left(X_{1} \times X_{2}\right)$ and $m \ll v \otimes \tau$, where $v \in M\left(X_{1}\right)$ and $\tau \in M\left(X_{2}\right)$, then $\mu^{m_{1}} \ll v, \mu^{m_{2}} \ll \tau, \mu^{m_{1}} \otimes \mu^{m_{2}} \ll v \otimes \tau$, and $m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}$.

Proof. Let $\mathscr{L}_{1}=L^{1}(v)$ and $\mathscr{L}_{2}=L^{1}(\tau)$. Then, by hypothesis, $m \in L^{1}(v \otimes \tau)=\mathscr{L}_{1} \widehat{\otimes} \mathscr{L}_{2}$; hence, all of the conclusions follow immediately from Theorem 3.1.

Corollary 3.2 yields an alternate (equivalent) formulation of condition (3) in Theorem 3.1, which is often easier to apply.

Corollary 3.3. If $m \in M\left(X_{1} \times X_{2}\right)$, then $m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}$ if and only if $m \in M\left(X_{1}\right) \hat{\otimes} M\left(X_{2}\right)$.

We now apply the accumulated results on L-subspaces to multipliers. A consequence of our standing assumptions about the CMA-semigroup pairs $\left(A_{1}, \Gamma_{1}\right)$ and $\left(A_{2}, \Gamma_{2}\right)$ is that the inclusions

$$
\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right) \subseteq \mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \subseteq M\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

obtain, and that the results on L-spaces are applicable.
Our first multiplier theorem implies that a multiplier measure m in

$$
\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \subseteq M\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

belongs to $\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$ if and only if it possesses a strong RN derivative with respect to $\mu^{m_{1}}$.

Theorem 3.4. If a measure m in $M\left(\Gamma_{1} \times \Gamma_{2}\right)$ is a multiplier of $A_{1} \hat{\otimes} A_{2}$, then:
(1) $m_{1} \in M\left(\Gamma_{1}, \mathscr{M}\left(A_{2}\right)\right)$ or, equivalently, $\mu^{m_{2}} \in \mathscr{M}\left(A_{2}\right)$.
(2) $m_{2} \in M\left(\Gamma_{2}, \mathscr{M}\left(A_{1}\right)\right)$ or, equivalently, $\mu^{m_{1}} \in \mathscr{M}\left(A_{1}\right)$.

Proof. By symmetry, it clearly suffices to show that (1) holds. The equivalence of the two assertions in (1) follows from Section II. Now, for each ϕ in $\hat{\Gamma}_{1}$, define $\theta_{\phi}: M\left(\Gamma_{1} \times \Gamma_{2}\right) \rightarrow M\left(\Gamma_{2}\right)$ by setting

$$
\left\langle\psi, \theta_{\phi}(\mu)\right\rangle=\langle\phi \otimes \psi, \mu\rangle, \quad \psi \in \hat{\Gamma}_{2},
$$

for μ in $M\left(\Gamma_{1} \times \Gamma_{2}\right)$. Then, since $m \in \mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right)$ by hypothesis,

$$
m *\left(a_{1} \otimes a_{2}\right) \in A_{1} \hat{\otimes} A_{2} \quad \text { for all } a_{i} \in A_{i}, i=1,2
$$

Hence, by [14, Lemma 2], $\theta_{\phi}\left(m *\left(a_{1} \otimes a_{2}\right)\right) \in A_{2}$, for every ϕ in $\hat{\Gamma}_{1}$. Now, if $\phi \in \hat{\Gamma}_{1}, a_{1} \in A_{1}$, and $a_{2} \in A_{2}$, then

$$
\theta_{\phi}\left(m *\left(a_{1} \otimes a_{2}\right)\right)=\left\langle\phi, a_{1}\right\rangle\left(T_{m_{1}}(\phi) * a_{2}\right)
$$

To see this, observe that, for $\psi \in \hat{\Gamma}_{2}$,

$$
\begin{aligned}
\left\langle\psi, \theta_{\phi}\left(m *\left(a_{1} \otimes a_{2}\right)\right)\right\rangle & =\left\langle\phi \otimes \psi, m *\left(a_{1} \otimes a_{2}\right)\right\rangle \\
& =\langle\phi \otimes \psi, m\rangle\left\langle\phi, a_{1}\right\rangle\left\langle\psi, a_{2}\right\rangle \\
& =\left\langle\phi, T_{m_{1}}(\phi)\right\rangle\left\langle\phi, a_{1}\right\rangle\left\langle\psi, a_{2}\right\rangle \\
& =\left\langle\phi, a_{1}\right\rangle\left\langle\psi, T_{m_{1}}(\phi) * a_{2}\right\rangle .
\end{aligned}
$$

From (\dagger) it follows that, for each ϕ in $\hat{\Gamma}_{1}, T_{m_{1}}(\phi) * a_{2} \in A_{2}$, for all a_{2} in A_{2}. Thus, $T_{m_{1}}$ maps $\hat{\Gamma}_{1}$ into $\mathscr{M}\left(A_{2}\right)$, and, as a result, $T_{m_{1}}$ maps $L^{1}\left(X_{1}, \mu^{m_{1}}\right)$ into $\mathscr{M}\left(A_{2}\right)$. Therefore, $m_{1}(E)=T_{m_{1}}\left(K_{E}\right) \in \mathscr{M}\left(A_{2}\right)$, for $E \in \mathfrak{B}\left(\Gamma_{1}\right)$.

Corollary 3.5. For a multiplier m in $\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \subset M\left(\Gamma_{1} \times \Gamma_{2}\right)$, the following statements are equivalent:
(1) $m \in \mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$.
(2) m_{1} has a strong $R N$ derivative with respect to $\mu^{m_{1}}$.
(3) $m \in M\left(\Gamma_{1}\right) \hat{\otimes} M\left(\Gamma_{2}\right)$.
(4) $m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}$.

Proof. Theorem 3.4 and Corollary 3.3 together yield the equivalence of (1) and (4), while the equivalence of (3) and (4) follows from Corollary 3.3. Finally the equivalence of (2) and (3) is proved in [4, Theorem 6.3].

The equivalence of statements (1) and (4) of Corollary 3.5 implies that the multiplier-subspace $\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)$ has the characterization

$$
\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)=\left\{m \in \mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right): m \ll \mu^{m_{1}} \otimes \mu^{m_{2}}\right\},
$$

while the equivalence of statements (1) and (3) yields the identity

$$
\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)=\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right) \cap\left(M\left(\Gamma_{1}\right) \hat{\otimes} M\left(\Gamma_{2}\right)\right) .
$$

It is natural to ask under what circumstances

$$
\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right)=\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right)
$$

This is the case, for example, if A_{1} and A_{2} are both L^{1}-algebras under order convolution [8]. Below, another sufficient condition to effect this decomposition is given in terms of the notion of an l_{1}-algebra. By an l_{1}-algebra, we mean a commutative semisimple CMA which, as a Banach space, is isometrically isomorphic to $l_{1}(W)$, for some set W.

Proposition 3.6. If either $\mathscr{M}\left(A_{1}\right)$ or $\mathscr{M}\left(A_{2}\right)$ is an l_{1}-algebra, then

$$
\mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right)=\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right) .
$$

Proof. Suppose that $\mathscr{M}\left(A_{2}\right)$ is an l_{1}-algebra; then $\mathscr{M}\left(A_{2}\right)$ has the RN property [1, p. 31]. Therefore, from Section II, $M\left(\Gamma_{1}, \mathscr{M}\left(A_{2}\right)\right)$ is isometrically isomorphic to

$$
M\left(\Gamma_{1}\right) \hat{\otimes} \mathscr{M}\left(A_{2}\right) \subseteq M\left(\Gamma_{1}\right) \hat{\otimes} M\left(\Gamma_{2}\right)
$$

Hence, if $m \in \mathscr{M}\left(A_{1} \hat{\otimes} A_{2}\right)$, then by Theorem $3.4, m_{1} \in M\left(\Gamma_{1}, \mathscr{M}\left(A_{2}\right)\right)$, so $m \in M\left(\Gamma_{1}\right) \otimes M\left(\Gamma_{2}\right)$, and the conclusion now follows from Corollary 3.5. Clearly, an analogous argument can be given when $\mathscr{M}\left(A_{1}\right)$ is an l_{1}-algebra.

If S is a commutative separative semigroup, then the Banach algebra $l_{1}(S)$ will be called a semigroup-algebra. Such algebras were among the first examples of commutative CMA's to be studied [6]. When $l_{1}(S)$ has a weak approximate identity of norm one, the multiplier algebra $\mathscr{M}\left(l_{1}(S)\right)$ is also a semigroup-algebra; more precisely, $\mathscr{M}\left(l_{1}(S)\right)=l_{1}(\Omega(S))$, where $\Omega(S)$ is the translational hull (or multiplier semigroup) of S [10, Theorem 4.9]. Thus, $\mathscr{M}\left(A_{1} \hat{\otimes} l_{1}(S)\right)=\mathscr{M}\left(A_{1}\right) \hat{\otimes} \mathscr{M}\left(l_{1}(S)\right)$ by Proposition 3.6.

It might seem possible for $\mathscr{M}(A)$ to be an l_{1}-algebra when A is not a semigroup-algebra. Our final proposition shows that this cannot occur.

Proposition 3.7. Let (A, Γ) be a commutative semisimple CM A, realized as an L-subalgebra of $M(\Gamma)$.
(1) Then A is an l_{1}-algebra if and only if A is the semigroup-algebra $l_{1}(S)$ for some separative subsemigroup S of Γ.
(2) If, in addition, A has a weak approximate identity of norm one, then A is an l_{1}-algebra (equivalently, a semigroup-algebra) if and only if $\mathscr{M}(A)$ is an l_{1}-algebra. Moreover, if $A=l_{1}(S)$, where S is a subsemigroup of Γ, then $\mathscr{M}(A)=$ $l_{1}(\Omega(S))$, and $\Omega(S)$, the translational hull of S, is also a subsemigroup of Γ.

Proof. (1) Suppose that A is an l_{1}-algebra. Then every measure in A is discrete; indeed, $A=l_{1}(S)$, where $S=\{x \in \Gamma: x \in$ support of $\mu, \mu \in A\}$. Since A is an algebra, $\delta_{x y}=\delta_{x} * \delta_{y} \in A$, for all x, y in S, and so S is a subsemigroup of the commutative semigroup Γ. Further, the subsemigroup S is separative, because A is semisimple. Thus, A is a semigroup-algebra. The converse is obvious.
(2) If A is an l_{1}-algebra, then, from (1), $A=l_{1}(S)$, for some subsemigroup S of Γ. Thus, $\mathscr{M}\left(l_{1}(S)\right)=l_{1}(\Omega(S)$), where $\Omega(S)$ is a subsemigroup of Γ (containing S as an ideal) [10], and so, in particular, $\mathscr{M}(A)$ is an l_{1}-algebra.

Conversely, suppose that $\mathscr{M}(A)$ is an l_{1}-algebra. Then $\mathscr{M}(A)$ has the RN property, hence, the closed subspace A of $\mathscr{M}(A)$ also has the RN property [1, p. 30]. Arguing as in the proof of (1), it follows readily that A is the semigroupalgebra $l_{1}(S)$, where

$$
S=\{x \in \Gamma: x \in \operatorname{supp} \mu, \mu \in A\}
$$

Finally, from the preceding paragraph, $\mathscr{M}(A)=l_{1}(\Omega(S))$.

References

1. J. Diestel and J. J. Uhl, Jr., The Radon-Nikodym theorem for Banach space valued measures, Rocky Mountain J. Math., vol. 6 (1976), pp. 1-46.
2. W. Dinculeanu and C. Foias, Sur la représentation intègrale des certains opérations linéaires. IV opérations linéaires sur l'espace L_{a}^{P}, Canad. J. Math., vol. 13 (1961), pp. 529-556.
3. J. Gil de Lamadrid, Measures and tensors, Trans. Amer. Math. Soc., vol. 114 (1965), pp. 98-121.
4. ——, Measures and tensors II, Canad. J. Math., vol. 18 (1966), pp. 762-793.
5. A. Grothendieck, Produits tensoriels topologiques et espaces nuléaires, Mem. Amer. Math. Soc., No. 16, 1955.
6. E. Hewitt, and H. S. Zuckerman, The l_{1}-algebra of a commutative semigroup, Trans. Amer. Math. Soc., vol. 83 (1956), pp. 70-97.
7. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publ., vol. XXXI, 1957.
8. D. L. Johnson and C. D. Lahr, Multipliers of L^{1}-algebras with order convolution, Publ. Math. Debrecen., to appear.
9. C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math., vol. 72 (1977), pp. 99-104.
10. C. D. Lahr, Multipliers for certain convolution measure algebras, Trans. Amer. Math. Soc., vol. 185 (1973), pp. 165-181.
11. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York, 1974.
12. J. L. TAylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., vol. 119 (1965), pp. 150-166.
13. ——, Measure algebras, Regional Conference Series in Math., no. 16, Amer. Math. Soc., Providence, R.I., 1973.
14. J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J., vol. 12 (1960), pp. 147-154.
15. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., vol. 2 (1952), pp. 251-261.
16. K. Ylinen, Tensor products of complex L-spaces and convolution measure algebras, Ann. Acad. Sci. Fenn, Series A, I. Math., no. 558, 1973.
17. K. Ylinen, The multiplier algebra of a convolution measure algebra, Pacific J. Math., vol. 51 (1974), pp. 327-337.

University of Southern California

Los Angeles, California
Dartmouth College
Hanover, New Hampshire

