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BY

AUGUSTO NOBILE

Introduction

The theory ofsaturations of rings was started by Zariski in [15]. In this paper
we present several results which hold for local rings ofcomplex analytic hyper-
surfaces. The main results are in the following direction. It is known that iff(x 1,

x,) is a convergent power series, and its associated hypersurface V has an
isolated singularity at the origin, then there is a number c such that for any
convergent power series 9(x 1, x,) (with associated hypersurface V’)satisfy-
ing f-- mod (xl, x)c+ 1), the local rings of V and V’ at the origin are
isomorphic. This is a special case ofthe main theorem of [4]. From this, it easily
follows that an isolated singularity of a hypersurface is algebraic. (A more
difficult theorem says that the assumption of codimension 1 can be dropped,
see [1, Theorem 3.8].) These results are false for non-isolated singularities (look
at y2 X2 and y2 X2 _]_ zn, see also [12], Section 14). Here we present some
results which hold for non-isolated singularities. Our main result is Theorem
(3.3). It says: given a hypersurface V of equation

f=y"+Al(x)yn-1 +’"+A,,(x), x=(xl,...,x),
having branch locus A C" (under the projection (x, y) -o x), there is a number
c such that if V’ is another hypersurface, of equation

O Y" + BI(x)Y"-1 +’"+ Bn(X),
satisfying (i) A, B mod (x)c+ 1, (ii) A’ A (where A’ is the branch locus of V’
under (x, y) --. x), then the saturations ofthe respective local rings at the origin,
with respect to the parameters x t,..., x,, are isomorphic. By a Theorem of
Zariski, they will be topologically equivalent (as embedded varieties). Using
Artin’s approximation lemma we present in Section 8 an application of this: If
V is a hypersurface (defined in C’+ 1, near the origin) and for a suitable projec-
tion onto a hyperplane its branch locus is algebraic (at the origin), then there is
an algebraic hypersurface V’ (in C’+ 1, containing the origin), such that the
saturations ofthe local rings of V and V’ at the origin are isomorphic (see (8.4)).
In particular, V and V’ are topologically equivalent. Note that the assumptions
are always satisfied for r 2, i.e., an analytic embedded surface is topologically
equivalent (as an embedded variety)to an algebraic surface. This answers

Received September I, 1978.

483

(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America



484 AUGUSTO NOBILE

affirmatively, in this case, a conjecture of R. Thom (see [11], page 228). For a
different possible approach to solve this conjecture, see [10], Section 3.
The proof of Theorem (3.3) is presented in Sections 6 and 7. It is really very

elementary, but there are many technical details involved, and we cannot avoid
the use of a rather complicated notation. For these reasons, to help the reader,
in this introduction we are going to discuss, informally, the ideas behind the
proof.

Let V and V’ be as before, n: V -o C (resp. n’: V’ C’) the maps induced by
the projection (x, y) x. The following is well known. Suppose we find a
holomorphic function : n-(U A)- C (U a suitable neighborhood of the
origin in C’), such that:

(a) for (x, y) n-(U A), (x, (x, y)) V’;
(b) the morphism : n-(U- A)-o n’-(U- A)given by b(x, y)= (x,

g(x, y)) is an isomorphism;
(c) if.x 6 U A, and n-(x) {(x, y), (x, y)}, then for 4: J, we have

m < Y,- Y/o(x, Yi) c(x, Y)I < M where M, m are real constants (indepen-
dent of x). Then, the saturations of V and V’ at the origin will be isomorphic (cf.
(3.6) and (3.8)). So, we try to find such a function
To fix ideas, suppose first that the branch locus A is the hyperplance x 0.

In this special case, we may try this naive approach: consider a line l: x t,
x 2g t, i= 2, r. Above the line l, we have the curves

n-(l):f(t, 2t,..., 2,t, y) 0 on V

and

n’-’(/):g(t, 2t,...,2,t,y)=0 on V’.

If (using notations as before) A B(mod (x)+’), c large enough, there is an
isomorphism 0a between these curves (near the origin). In fact, we need an
isomorphism of C{t}-algebras C{t}[y]/g(t, y) , C{t}[y]/f(t, y)= A, by Nakaya-
ma’s lemma we need a root of g(t, y) in A, satisfying yo(mod t. A), where
Yo is residue of y in A. But it is easy to see that the congruence above, with c
large enough, implies g(Yo) (g’(Yo))(t- A) see, e.g. (6.12). Now we use Hensel’s
lemma to find . The idea is to vary the line I. In this case (A a hyperplane) there
is no problem, using A’ m A, to extend the isomorphisms to get a function
: n-’(U- A) n’-’(U- A) (U small enough) which satisfies (a) and (b).
With more work (c) can also be proved. This simple approach does not seem to
work when A is not smooth. In fact, ifA is singular at the origin, it may happen
that the variable line intersects A at points arbitrarily close to the origin. It is
not clear how to uniformly extend the isomorphisms , to obtain a function as
before (consider, e.g., the case r 2, A" x- x3 0). However, we may
attempt a similar, but more complicated approach. Rather than using, as
before, a system of lines, we try to "fill" a neighborhood of the origin in C
(minus A) with several "families" of parametrized curves, say ’, ’q’e. The
precise definitions are in (5.1-(5.5). Lying above each family L’b there will be, in
V, several families of (parametrized) curves /’bl, ffb,t,), here r(b) is the
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number of irreducible components of rr-1 (C), where C is a typical curve of the
family -Wb. To prove the existence of those families (cf. (5.7)-(5.14)), we apply a
monoidal transform to a neighborhood U ofthe origin in C to get a morphism
q: F U (F a manifold), such that q-t(A) has normal crossings. By using
suitable coordinate neighborhoods on F, it is possible to construct families on
F which, when "pushed down" to U, yield the desired families 5’b. The families
V’ on V are "lifted" from 5, essentially by using analytic continuation. The
details are in Section 5. Given V’ as before (with c large enough), calling (as in
Section 5)Nthe union ofthe supports ofthe curves in 4r (minus the origin),
it is not difficult to construct (using the parametrizations of the curves and
Hensel’s lemma) functions : N--,C, satisfying: (x, a,(x, y)) V’ for
(x, y) N. The problem is that N c N,, might be non-empty, i.e. is not
obvious that the functions cz patch together to give a function z as we want.
However, for a suitable choice of the families .Wb, it can be proved that the ’s
agree on intersections. This is done by carefully studying the convergence ofthe
solution constructed in Hensel’s lemma (by Newton’s method, (cf. Section 4)),
and a topological argument. In fact, we see that for (Xo, Yo) V in a curve C in
a family V, and close enough to the origin, (Xo, Y0) equals lim w,, where

w0 Y0 and w.i+ 1= w- #(Xo, w)/a’(Xo, w.i

(the "Newton sequence"). Unfortunately, in order that the union of the sup-
ports of the curves (and the critical locus) form a neighborhood ofthe origin in
C’, we cannot take these curves "arbitrarily small", consequently it does not
seem possible to avoid that curves ofdifferent families meet at points where the
functions a are not defined by the Newton sequence (but rather by analylic
continuation). To guarantee that the functions ab agree at these points, a
special analysis is needed. In fact, using an argument involving covering spaces
(and Lemma (6.8), which makes clear, in a crucial situation, what "close
enough" means), we are reduced to points close to the origin, where b, cz,, are
both given by the same formula (namely, the limit above). Unfortunately, in the
topological argument we need our functions b to be defined in a set larger
than Nb. To "control" the situation, we are forced to work with three systems
of curves .o = ,b2 , (cf. (5.3)), rather than just 5b. Moreover, several
times we must "shrink" our families, i.e., rather than a single .Z’, we must
consider collections L’g(3), where 6 is the radius ofthe disk parametrizing each
curve, and accordingly with the Vb’s. In other words, we shall work with
systems oWb= ’3(6), b= (p), and eventually we’ll fix 6, p "small
enough". Once we proved that is well defined, (a)and (b)easily follow. The
details are in Section 6. Finally we prove that (after replacing, perhaps, c by a
larger number, and shrinking U) (e) also holds. The main point of the proofof
this is Lemma (7.3), which essentially says that, given any family , and a
general curve C of this family, then

lim (z(x, Yt,) o(x, yo)/y, ya) 11 0,
x’P
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where x e C, P is the origin, and (x, yp), (x, y,)are in V. This is proved using
parametrizations. With this, and the monoidal transform q: F - U, which es-
sentially reduces our situation to the case when A has normal crossings (hence
we can use parametrizations of the variety, etc.), it is easy to prove that (c)
holds. The details are in Section 7.

In Section 1 we review some basic, well known results on saturations, in
Section 2 we present some other results, which allow us to give a more intrinsic
formulation to our main result, using absolute saturations (cf. Corollary (3.5)).
Most of these results appear in the author’s Thesis, presented at M.I.T. in

1970, written under the direction of Michael Artin. We wish to thank him for
his important help during that period.

1. Review of results on saturations

(1.1) In this section we review some known results about saturation of local
rings. We shall restrict ourselves, in general, to the case of hypersurfaces. These
results are taken from [15], [7] and [8]. The review is done for the reader’s
convenience, especially as [7] has not been published yet.

(1.2) Throughout this paper we shall use the following terminology and
notations.

(a) C denotes the complex numbers. If a C, e is a positive real number,
write B(a, )= {z C/Iz-a < }. If a=0, we just write B(e), i.e.,
B(e) {z C/ z < e}.

C{xl, x,} denotes the ring of convergent power series in the variables x 1,

x,. Sometimes we use vector notation for the variables, i.e., we write
(x) (xl, x,). An analytic rin9 is a ring of the form C{xl, x,}/I, I and
ideal. We shall say that an analytic ring A is embedded if A has no non-trivial
nilpotents, is equidimensional and

dim (A) + 1 dimc(M/M2)
where M is the maximal ideal of A.

(b) We use the definition of an analytic space given in [5]. IfX is an analytic
space, (9x denotes its structure sheaf. The stalks of (9x could have nilpotents
(but most of the time we shall work with reduced spaces, i.e., with no nilpo-
tents). If x X, (gx, denotes the local ring of X at x. An analytic variety is a
reduced analytic space. If X is an analytic space, a subvariety of X is a closed
reduced subspace. A subvariety of an open U C" of pure codimension 1 at
each point is called a hypersurface. Equivalently, a hypersurface is locally
defined by the vanishing of a single holomorphic function (whose germs have
no multiple factors). Embedded analytic rings are precisely local rings of hyper-
surfaces. Finally, if X is an analytic space,

Sing (X)= {x e Xl(gx, is not regular}.

(c) Let f: X Y be a morphism of analytic spaces, W a subspace of Y
corresponding to the sheaf of ideals . Then, f*(W) is the subspace of X
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corresponding to Cx; f-’(W) f*(W)red the reduced subspace associated
for f*(W).

(d) If rt" X Y is a finite (i.e., finite-to-one and proper) surjective mor-
phism of analytic spaces, the set

A {y Y//at some x rt-l(y), rt is not a local isomorphism}

is closed. This set, with the reduced structure of analytic subspace of Y, is called
the branch locus of t.

(e) If X, Y are analytic spaces, then

when used without further explanations, will mean that f is an isomorphism
from X onto Y.

(f) Let A be an analytic ring, xl, x, elements of M, the maximal ideal of
A. They are a system of parameters if n dim A and they generate an ideal
which is M-primary. If A is embedded, we shall say (following [14], Section 2)
that parameters x,..., x, are a system of local parameters of A if there is some
y M, such that {x a, x,, y} generate M.

(g) A morphism f: X Y of analytic spaces is called strongly surjective if it
is surjective and the induced linear mapping of tangent spaces dfx: Tx, Tv, y

is surjective, for all x X. For instance, if X is a hypersurface in Cr+ and Y is
an r-dimensional manifold, this means that, in suitable coordinates, locally f
looks like the morphism induced by the projection (x l, xr,

(1.3) Let V be a hypersurface defined near the origin 0 of C"/ 1, 3 Cv, e,

x, x, a system of local parameters of 9. We may assume that V has an
equation

ym + A,(x)ym-1 +...+ Am(x O.

In [15], Zariski introduced a relation, called dominance, among the elements of. Let f, 9 e 3. They are germs of functions (which we still denote byfand 9)
defined on U Sing (V)(where U is some neighborhood of 0 in V), holomor-
phic and bounded. Let H {(x, x,, y)ly 0}, rt’U--, H be the natural
projection and A H its branch locus. We say that fdominates 9 (written
f >" 9) if (after shrinking U, if necessary) there is a real number M > 0 such that
for any pair of points P1, P2 U, satisfying rt(P1)= g(P2) A, we have

f(P,) -f(P2)/g(P) a(P2)l < M.

(1.4) Let V be as in (1.3). We keep the notations used there. The set
{f /f>- y} is a local subring of , independent of the choice of y. This ring is
called the saturation of 3 with respect to the local parameters (x) (x , x,)
and is denoted (or sometimes 3;). See [15] for details.



488 AUGUSTO NOBILE

(1.5) There is another approach to the question of saturations, followed in
[7] and [8] by Pham and Teissier. It is the so called theory of Lipschitz satura-
tion. Let V be an analytic variety, P e V, 2 (gv, ,, be integral closure of
Then,

{o Io(P’) o(P")] < KIP’- P"]
for some real K > 0, for all P’, P" non-singular, near P}

(where we are identifying the germ g with a bounded holomorphic function
defined at nonsingular points closed to P) is an analytic ring, called the (abso-
lute) Lipschitz saturation of 3. We denote it by or 3~.
There is also a relative version: if 9, P, V are as before, x is a system of

parameters of 9, H is the germ of linear space associated with the parameters
(x), and n: V H the germ of morphism induced by C{x} c 9, we define the
Lipschitz saturation, relative to (x), to be the set of germs g e satisfying an
inequality

g(P’) g(P")l < KIP’ P"I,
for P’, P" non-singular, near P, and such that n(P’) n(P"), for some positive
real number K (independent of the fibers of n). This is again an analytic ring,
denoted x or (gx)~. In [7] and [8] there are other equivalent definitions of this
notion. For an algebraic treatment of the theory see [6].

(1.6) If 9 is an embedded analytic ring and (x)= (xx,--., xr)is a system of
local parameters (cf. (1.2)), then the Zariski and Lipschitz saturations of 9,
relative to (x), coincide (see [7], page 27). Thus, when we are in this situation,
we can talk simply about (x)-saturation. This justifies the use of the same
symbol to denote both saturations in the embedded case.

(1.7) A nice feature of Lipschitzian saturation is that it easily globalizes.
Namely, if V is a variety, there is a coherent sheaf of algebras such that for all
P in V, p ((gv, e) If n" V- H is a finite surjective morphism, with H
nonsingular, then there is a coherent sheaf of algebras (n) on V such that for
every P e V, if Q n(P) and ua, u. are regular parameters of (gn, e, then

7*zz(n)o ((gv, p), where vi (ui) (the pull-back of u), i= 1,.., r dim V.
Hence, using the functor Specan (see [5], Exp. 19) we get in the absolute case

a space I7 and a finite morphism

(1.7.1) p- P V,

in the relative case a space V() and a definite morphism

(1.7.2) p" ’()--. V.

The space 17 (resp. 17(g))is called the saturation (resp. saturation relative to )
of V. It can be shown (see [7], page 10) that these morphisms induce homeo-
morphisms of the underlying topological spaces.

(1.8) Given a morphism of analytic spaces g" X -, H (with H nonsingular)
and a nonsingular subvariety W X, an analytic retraction of = onto W is a
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pair (r, q), where r: X W and q: H W are morphisms, qn r and ri idw
(i: W- X is the canonical injection).

(1.9) Let n: X H, W be as in (1.8), but we also assume that n is finite and
surjective, (r, q) a retraction of n. We say that X is equisaturated along W, with
respect to n and the given retraction, if there is a point 0 e W and a commuta-
tive diagram

W

H HoxW
where we use the notations of (1.2) and (1.7), no is the morphism from
Vo r- x(0) to Ho q- x(0)induced by n, and p’ (resp. p))is the composition of
the canonical morphism of (1.7.2)with n (resp. no).

(1.10) We maintain the notations and assumptions of (1.9), but we also
assume that X is a hypersurface. Let A be the branch locus of n. We say that n
has trivial branch locus, with respect to the retraction (r, q), if there is a point
0 e W and a commutative diagram

A (AcHo) x W

H ’, HoxW

where j: A - H, j0: A c Ho Ho are the inclusions; moreover we require that
A c Ho be the branch locus of no and (PE: Ho x W-- W being the second
projection) nr P2 an.

(1.11) In [7], Theorem 5, it is proved the following result, that we shall use
later. Let X be a hypersurface, H a manifold, W X a submanifold, n: X - Ha finite, strongly surjective morphism, and (r, q) a retraction of n onto W,
assume n has trivial branch locus (relative to (r, q)). Then, given 0 W, there
are neighborhoods U of 0, U’ of n(0) such that n(U)= U’, (r, q)induces a
retraction (r’, q’) of n’: U - U’ (n’ induced by n) onto W c U, and U is equisa-
turated along W c U (with respect to n’ and (r’, q’)).

2. Other basic theorems on saturations

(2.1) LEMMA. Let V be an analytic hypersurface in Cr+ 1, H a manifold
n: V - H afinite, strongly surjective, morphism, A H its branch locus, nonsin-
gular at n(P), P V. Then: (a)there is a unique component W of Sing (V)
passing through P; (b) there are neighborhoods U ofP (in V), U’ ofn(P) (in H)
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such that re(U) U’, and a retraction (r, q) ofthe induced morphism rt’: U U’
onto W c g such that rt’ has trivial branch locus relative to (r’, q’)).

Proof Let Q rt(P), (gv, e, ’= (n, e, Y,’", Y a regular system of
parameters of ’. Then it is clear that xi rt*(yi), 1, r form an equisin-
gular system of local parameters of 3 (see [14], Definition 4.3). Then (a)follows
from Theorem 4.5 of [14]. To show (b), note that the same theorem, near P, the
morphism rt induces an isomorphism b of W with A. We may assume, after
changing coordinates if necessary, that on some coordinate neighborhood U’ of
Q, A is given by Xr 0. NOW it is clear that, for U’ small enough and an open U
containing P suitably chosen, the morphisms

r’= 4)-lprt: U U W and q’= c/)-lp: U’--. U c W,

where p: U’--. U’ A is given by p(xl,..., xr)= (xl,..., xr_ 1, 0), have the
required properties.

Let X be an analytic variety. A singular subvariety of X is a subvariety W of
X such that X such that W m Sing (X). To verify that an irreducible subvariety
W m X is singular, it suffices to get a nonempty open set U W, such that
U Sing (X).

(2.2) PROPOSITION. Let V be a hypersurface, H a manifold, r: V - H afinite,
strongly surjective morphism, p: (r) - V the saturation of V relative to r, W an
irreducible subvariet) of V. Then, W is a singular subvariety of V if and only if
p-I(W) is a singular subvariety of

Proof. Let W be non-singular in V (i.e. W Sing (V)). Then for some open
dense set U in IV, every P e U is non-singular, a fortiori normal. Recall that p is
a homeomorphism. Its inverse p- is holomorphic at normal points (since 17(rt)
is dominated by the normalization of V). Hence p- (W) contains an open set
of non-singular points, and is non-singular. Assume now W singular. To show
the converse, it suffices to show that if W is an irreducible component of
Sing (V), then p-(W) is a singular subvariety of 17(rt). Let Wbe an irreducible
component of Sing (V). If dim W < r 1, then W contains a dense open set of
normal points of V (because V is a hypersurface). Hence, p- is holomorphic
there and p-I(W) is again singular. If the dimension of IV is r- 1, consider
n(W) W’ H. It must be a component of the branch locus A of r. Take a
non-singular point Q of W’, let P e W such that r(P)= Q. We may apply
Lemma (2.1), part (b) to get neighborhoods U, U’ of P, Q respectively, and
induced morphism r’: U U’ and a retraction (r, q)of r’, such that r’ has
trivial branch locus. By (1.11), if np: r-l(p) __. q-l(p)is the morphism induced
by r, and U, U’ are small enough, we have

57(r’) ((u) x ((U c W) where C r-l(p)
and we use the notation of (1.7.2). But C is singular at P, hence by [15],
Prop. 1.2, (7(rp) is singular at p-l(p). It follows that U W is a singular
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subvariety of (’). Since there is a commutative diagram

p-1(O

U

(cf. (1.7), p’ is the canonical morphism of (1.7.2))it follows that p-(W)is a
singular subvariety of 17().

(2.3) In the embedded case, the important topological consequence of the
notion of saturation is the following" let V (resp. V’) be a hypersurface, defined
in some neighborhood of P in C+ (resp. P’ in C+), let C (resp. C’) be its
local ring at P (resp. e’), and (x , x) x (resp. (x’, x’) x’) a system of
local parameters of 0 (resp. 0’). Suppose there is an isomorphism 4"
such that 4(x)= x’, i= 1, r. Then, there is a neighborhood U of P (resp.
U’ of P’) in C/ and a homeomorphism f: U---, U’ inducing a homeomor-
phism f’" U V---, U’ c V’ (see [15], Theorem 6.1).

Actually, it is possible to prove this somewhat finer result"

(2.4) THEOREM. We keep the assumptions and notations of (2.3). Then, if U,
U’ are small enough, the homeomorphism f: U V - U’ V’ has the following
properties:

(a) W (U c V)is an irreducible component ofSing (U V) ifand only if
f(W) is an irreducible component of Sing (U’ V’).

(b) Let S (resp. S’) be the union of the components ofSing (U c V)(resp.
Sing (U’ V’)) of codimension 1, then f induces an isomorphism of analytic
spaces:

Proof
diagram

It is clear that if U, U’ are small enough we obtain a commutative

(2.4.1) V V’

H

where we used the notations of (1.7) and we wrote, to simplify, V rather than
V c U, etc.; here all the arrows except f’ are morphisms ofcomplex spaces; H,
H’ are manifolds, g, g’ are finite and strongly surjective morphisms, etc. and this
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geometric situation induces the algebraic one described in (2.3) in the obvious
way. Moreover, f’ is the mapping of our theorem (cf. [15], Theorem 6.1). Then
(a) follows from the commutativity of (2.4.1)and Proposition 2.2. (b)is a
consequence of the fact that p- , p’- are holomorphic at normal points and V
is a hypersurface, hence non-singular in codimension 1.

(2.5) We recall the definition of transversal parameters, introduced (in the
algebroid case) in [15], Definition 8.1. In analytic terms, this means the follow-
ing. Let 3 be a reduced, equidimensional analytic ring, (x, x,)= (x)a
system of parameters of 3. The inclusion C(x} induces a surjective mor-
phism n: V--, H of germs of varieties (with H non-singular; V centered at
P V, (gv, e ). Let W be an irreducible component of Sing (V) ofcodimen-
sion 1. Then t(W) c H has again codimension 1, and is defined by the vanish-
ing of some e C{x}. Let q" 17 - V be the normalization of V. Then q*(W) (cf.
(1.2)c) is the union of several subspaces of 17, say Wx, W, > 1, ofcodimen-
sion 1. By the normality of 17, on an open dense of V (i 1, l), 17 is
non-singular, and W is defined, in local coordinates, by an equation z]ti) 0,
where h(i) is a well defined integer, depending only on IV/. The function

’= rq vanishes on (W)red with multiplicity _> h(i). If, for i= 1,..., t, the
order of ’ along (W)red is exactly h(i), we say that the parameters (x) are
transversal with respect to W. We shall say that the parameters (x) are generic
if they are transversal with respect to any component of codimension 1 of
Sing V, passing through P.

(2.6) Given a variety X and P e X, then Me(X denotes set of irreducible
components of codimension 1 of Sing (X) passing through P.

(2.7) PROPOSITION. Let 3, 3’ be analytic embedded rings

(x) (x’)
systems oflocal parameters of, ’ respectively; assume that (x) is #enericfor .
Suppose there is an isomorphism dp: ()--, (’)x,,such that (xi) x’i, i= 1,...,
r. Then (x’) is a system of#eneric parameters of ’.

Proof We may assume that the algebraic situation of the statement is
induced (by taking germs) by the following diagram of complex spaces"

(2.7.1)
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Here V and V’ are hypersurfaces, defined near the origin 0 of C + 1, 3 (9 v, 0,

’= (gv,, o, we use the notations of (1.7) and, as before, q" 17 V, q" I7 V’
are the normalization morphisms. All the solid arrows are morphisms of analy-
tic spaces, f= P’OP- is a homeomorphism (but not necessarily everywhere
holomorphic). Moreover, we may assume that x’ x, 1, r and that for
any W Mo(V) (resp. W’ Mo(V’)) (cf. (2.6)), n(W) (resp. n(W’)) is defined by
a single global equation. Let W’ e Mo(V’), Z=n’(W’), Z defined by

F(H, (gt/). Assume q’*(W)has components W], W. Given i= 1,..., l,
there is an open dense G c I7’ Sing (9’) such that each x e G c W’i is the
center of a coordinate neighborhood on which, in local coordinates, W’ is given
by zht0 0. We must show that Cn’q’ has a zero of order h(i)along (W’)d. By
Theorem (2.4), W pch-p’-(W’) Mo(V) and n(W)= Z. By the commuta-
tivity of (2.7.1), q*(W)has/components Wa, W, and (W)rd O- a((W’),d);
for points of an open dense, W will be given locally by an equation z]( 0. As
xa, x, are generic parameters for (x), nq has, along (W)d, a zero of
multiplicity k(i), hence by (2.7.1), since 9 is an isomorphism, n’q’ has along
(W’)rd a zero of order k(i). Thus we shall prove the statement if we prove
k(i) h(i).
To see this, we shall find another interpretation for these numbers.
First note that the assumptions imply that, near the origin, the branch locus

of and ’ coincide (see (3.2)). So we may also assume (since we are really
interested in germs of varieties) that A branch locus of branch locus of
’. Let P W be such that (P) is a non-singular point of A, P’= f(P). By
Lemma (2.1), we may find open neighborhoods U, U’ of P and P’ respectively,
such that n(U) n’(U’)is open in H, and the induced morphism n 1" U - n(U)
(resp. hi," U - n’(U’)) admits a retraction (r, s) (resp. (r’, s’)). Moreover, from
the proof of (2.1) we see that the retractions can be taken compatibly withf(i.e.,
fr r’f, etc.). By (1.11), if U, U’ are small enough,

p-l(U) , t(nl) C x (U W) where C (rp)-l(P)

(and C is isomorphic to the saturation of r-(P), relative to the morphism
r- l(p) s- l(p) induced by n). Similarly,

p’-l(U) C’ x (U’ W) with C’= (r’p’)-l(P’)~.
If, moreover, P’ is taken such that q,-l(p,) G, then q-I(U c W) is the dis-
joint union of W W c q-(U), i- 1, and W is locally defined by
t) 0. Hence, C will have branches C , Cat p- (P), and the multiplicity
of C is k(i). Similarly, C’ has branches C’, i- 1,..., l, with multiplicity h(i),

1, (respectively) at p’-X(p). But the compatibility offwith the retrac-
tions implies (Ci) C’i, 1, I. Since is an isomorphism, it follows that
the multiplicities of Ci and C; at p-I(P), p’-x(P’) (respectively)coincide, i.e.,
k(i) h(i). This proves the theorem.

(2.8) We recall that Zariski showed ([15], Theorem 8.2)that if (x), (x’)are
generic local parameters of the embedded analytic ring ), then x x, (as
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subrings of the normalization ). On the other hand, in [7], Theorem 2, page
15, it is shown that if (x) is generic, then x absolute Lipschitz satura-
tion of

(2.9) COROLLARY. We keep the assumptions and notations of(2.7). Then the
absolute saturations of and ’ are isomorphic.

Proof This is a consequence of (2.7)and (2.8).

3. Statement of the main results

(3.1) In this section we shall be concerned with an analytic hypersurface V,
defined near the origin ofCr+l (with coordinates (x 1, xr, y)) by an equation

(3.11) y" + a (x)y +"" + a,(x) 0

where Ai(x) C{x}, A,(0)= 0.

(3.2) In the course of the proof of Theorem 6.1 of [15], Zariski proved the
following. Let V’ be another hypersurface, given near the origin 0 ofC+ by an
equation

(3.2.1) y" + Bx(x)y"- +...+ B,(x)= O,

let rt (resp. rt’) be the map from V (resp. V’)into the hyperplane

H {(xl, x, y)/y 0}
induced by the projection, and let A (resp. A’) the branch locus of rt (resp. t’).
Assume there is an isomorphism dp: Yx---’ Y’, dp(xi)= xi, where 3v. 0,

’= (gv,, 0. Then, A A’ near the origin.
We shall prove in this paper the following result in the opposite direction

(keeping the notation and conventions of (3.2)).

(3.3) THEOREM. Let V be the hypersurface in C"+x given by (3.1.1). Then
there is a natural number c such that if V’ is the hypersurface given by (3.21)and

(a) A Bi(mod (x)c+ 1), (x)= (xx, x)
(b) A’ c A near the origin,

then there is an isomorphism p" Yx --’ Y’ such that p(xi) xi.

(3.4) Remark. When the origin 0 is a point of V of dimensionality type 1
(see [14], Definition 4.2), then the Theorem (3.3) is an easy consequence of the
results of [4], [7] and [15], by using arguments similar to those of the proof of
Theorem (2.4).

(3.5) COROLLARY. Let V be as in (3.3), but now we assume the parameters
induced by x x, x, to be generic. Then there is a natural number c such that if V’
is given by (3.2.1) and satisfies (a), (b)of (3.3)then ~’, where Y, Y’ denote
the absolute saturations of the local rings of V and V’ at the origin, respectively.
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Proof. This is a direct consequence of (3.3)and (2.9).

Theorem (3.3)will be a direct consequence of Propositions (3.6)and (3.8)
stated below (cf. (1.3), (1.4)and (1.6)).

(3.6) PROPOSITION. Let V be as in Theorem (3.3). Then, there is a natural
number c such that if V’ is 9iven by (3.2.1) and (a), (b) of Theorem (3.3)hold (for
this c), then there is a neighborhood U of the origin ofC such that:

(i) Ai, Bi converge on U, 1, n and A’ A in U;
(ii) there is an isomorphism : r- (U A) r(- (U A) which commutes

with the projections t,

(3.7) Remark. The fact that b commutes with rt, rt’ implies that th has this
form: if Q e t-l(U A) has coordinates (x l, x2, xr, y), then b(Q)= (xa,

xr, e(xa, x, y)), where t: rt-(U A) C is a holomorphic function.

(3.8) PROPOSITION. Let V and c be as in Proposition 3.6. Then, there is a
number Co >_ c such that if V’ is 9iven by (3.2.1) and A, Bi(mod (x)c+) then
there is a neiohborhood Uo ofthe origin ofC and real numbers M > m > O, such
that (i), (ii)of Proposition (3.6) hold and moreover:

(iii) if x e U0 A, and rt-a(x)= {(x, y), (x, y,)} then for all pairs
=/= j we have

m < I(Yi- yj)/((x, Yi) (X, YJ))I < M,

where is the function of Remark (3.7).

We shall prove Propositions (3.6)and (3.7)in Sections 6 and 7, respectively.
In Sections 4 and 5 we present some auxiliary results and concepts, necessary
for our proof.

4. An analytic form of Hensel’s lemma

(4.1) In this section we prove a "convergent analytic" version of Hensel’s
lemma. This is probably well known, but we include the proof since we could
not find it in the literature, and moreover, we shall need later certain auxiliary
functions that occur in it. In this section, if x (x, x) e C, and 6 is a real
number then Ixl < means ]x] < 6, i= 1, r. Let A C{xl, x,} (of.
(1.2)), M its maximal ideal; C[[x, x,]] the ring of formal power series,
Mo its maximal ideal. Let

(4.1.1) f(y) y" + cay + ""+ c,,

be a polynomial with coefficients in M, and a e A such that

(4.1.2) f(a) f’(a)2m, M.

Then we may form the Newton sequence

(4.1.3) ao a; ah+ ah f(ah)[f’(ah)]-l.
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It is well known that (4.13) is a sequence of elements ofA which converges, in
the Mo-adic topology to the unique solution a A of (4.1.1) satisfying
aoo -= a(mod f’(a)Mo). But note that all terms of (4.1.3)are also in A, and we
have:

(4.2) PROPOSITION. We keep the notations and assumptions of (4.1). Then,
there is a real number > 0, such that: (i)the ci and all terms of (4.13)are
convergent on G= {x e C/[x[ < di}; (ii)the sequence (4.1.3)converges uni-
formly on G to an holomorphic function , satisfyin9

(4.2.1) f(e) 0 and o a + f’(a)mg, g holomorphic on G.

Note that by the uniqueness in the formal case we must obtain aoo.

(4.3) We prove (4.2)in (4.3), (4.4)and (4.5). Let

b=f’(a)= na"-’ + (n- 1)cxa"-2 + .’.+

It is immediate to check that a, b are in M. We shall see, by induction, that for
any non-negative integer h,

(i) f(a)= bZm+’d, dn A
(ii) f’(a)= bn, e a unit.

For h 0 this is the hypothesis. Assume true for the index h, we shall check it
for h + 1. We have, by induction,

ah+ ah -f(ah)[f’(ah)] ah bmh+ Xdh; .
Write

(4.3.1) h= bmh+dhe. f(ah)[f’(ah)] -x.
By using Taylor’s formula and (4.3.1), we get

(4.3.2) f(ah+ )= f(a,- #h)= Q(ah, ,),
where

(4.3.3) Q(U, v)= 1/2f"(U)+ VQ(U, v)
is a polynomial with coefficients in Q[c, c,.], independent of h. Hence

(4.3.4) f(ah+) b2mh+ 2(mhde. 2Q(ah, h)
and we have the inductive step for (i), with

(4.3.5) dh+ mhde; 2Q(ah, h).
To see (ii), note that by Taylor’s formula,

(4.3.6) f’(ah+ ) f’(ah h) f’(ah) hR(ah, ,),
where R(U, V) has coefficients in Q[c, c,] and is independent of h. Then,
f’(a,+ ) be.h bmh+ dhe.aR(ah, h) be.h+ , where h+ is a unit in A. This
proves (ii).
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(4.4) Now we shall show the existence of positive real numbers 6, K > 1
such that c, i= 1, n, ah, dh(h >0), b and m are defined on
G {x C’/[x[ < 6}, [a[ < K/2 on G, and

(a) Idhl <_ 1, h-O, 1,
(b) levi > en -, 6)h+’, h 1, 2,...
(c) lab[ < K(1/2)h+’, h 1, 2,...
To define such numbers, consider the function of r + 1 variables -f"(u)=

F(x,u). As F(0,0)=0, we can choose 0<K<I, 0<61, such that
iF(x u) < (1/2)2 for [u < K, x < 61; moreover we may assume that a,
c,(i 1,..., r)and m are defined for Ix -< and that a < g/2. Consider
the polynomials QI(U, V)= ,i,j flij(x)U’W and R(U, V)= E,.s 7,s(x)U’V of
(4.3). Note that the functions fl,j(x), 7,s are defined for Ix < 61. and put

(4.4.1) M E sup
i, Ixl_<,l

(4.4.2) M’ Z sup
t,s Ixl_<l

Since b(0)= m(0)= 0, we find 6 < c51 such that bl < min ((4M)-1, (4M’)-1,
(4K)-1, 1) and m < 1/8(M’ + 1)< 1/2, we claim that K, 6 satisfy the condi-
tions stated above. We have ml <-[ and al < K/2 by the choice of the
numbers. We prove (a), (b), (c) by induction. They are trivially true for h 0,
assume them true for < h. Note that this induction hypothesis implies

(4.4.3) lab < K,
(4.4.4) I(eh)-ll < 2,
(4.4.5) Ifl[ < bl(1/2)h < 1.

In fact,

> I (1/2) (1/2)+ >"" > Io
which proves (4.4.4). Similarly,

lal < la-,I + K()+’ < ""< K( + ""+ ()n+l)< K,

which proves (4.3.3). (4.4.5)is trivial.
To show (a), use the expression (4.3.5)ofd+ ; since Imd[ < 2 on G, w

must show that (ah, fl) on G. But F + V (of. (4.4.3)); since on G,
a, <K and fll < 1 (and &,),we get F(X, ah) <([)2 there. Onthe

other hand,

IhQ,(ah, h)[ I E sup
i,)

Thus, QI on G, and (a) follows.
We now prove (b).

I+l I- m+dhU(o, ) Il Imh+dU(, h) l"
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But

and (b)is proved.
For (c), we have

la+,l la-/l lal + I/1 < lal / Ibl(1/2) < lal / k(1/2)h+2,
and (c) is proved.

(4.5) With this, now we prove convergence. The convergence of {ah} is
equivalent to the convergence of o= o (ah ah-1). (Recall a-1 0.) We claim
that this series normally converges. In fact,

ah ah-1] flhl < (_)h+l,

so that our series is majorized by E=I (_)h, which converges to 1. Hence, (ah}
converges to a function , holomorphic on G, which clearly is a root of (4.1.1).
We shall see that o satisfies (4.3.1). In fact, we have ah ao + Eh fli, and the
series

i=0 h=0 h=0

where the last series is majorized by =0 (_)h. Passing to the limit, we get
ao bm9, for some 9 holomorphic on G. Proposition (4.2) is proved.

(4.5) Note that the polynomials F, Q 1, R introduced in (4.3)can be formally
defined for any polynomial (4.1.1), either if (4.1.2) holds for some a or not. They
depend on f, and we shall denote them by F(f), QI(f), R(f) respectively.

(4.6) Let us summarize the results about convergence of the sequence
(4.1.3) (which will be important in (6.7), a crucial step of the proof of Theorem
(3.3)). According to the proof of (4.2), given f and a as in (4.1), we can insure
that all terms of (4.13) are defined on a polydisk D c Cr, and the sequence
converges there uniformly to the root of (4.2.1) if the following hold.

(i) ]the coefficients off can be continuously extended to the closure of D;
(ii) there is a positive real number K < 1 such that IF(x, u)] < -, for x e D,

]u < K (here F (f)is the polynomial of (4.5));
(iii) bl < min ((aM)- 1, (aM’)- 1, (4K)- 1, 1), where M, M’ are defined in

(4.4.1), (4.4.2)(with sup taken over x e D), using Ql(f), R(f)(cf. (4.5)). Note
that M, M’ exist by (i);

(iv) m < -(1 + M’)on D.
(v) la <g/2onD.
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5. Local families of curves

(5.1) DEFINITION. An m-dimensional local family of curves on a complex
space X is a system r (U, , k, X) where U U1 x x U,,+ is a poly-
disk in C" + 1, Ui (zi/zi z < ei}, 1,..., m + 1, " U X is a holomor-
phic mapping, 1 _< k _< m + 1. These data are subject to the condition"

(L) q induces an isomorphism of Uk {z e UlZk ::/: Z} with an open of X,
disjoint from ({z e U/Zk Zk}).O

Note that if (U,) is an open ofX, disjoint from @((Z U/Zk Zk}) consist-
ing of non-singular points, and fil U, is injective, then (L) is automatically
satisfied.

(5.2) The set N b(U,) (which is an open submanifold of X)is called the
open carrier of the family, No- b(U) the carrier of the family. Given an
m-tuple a (a), a e U, 4= k, the set A(a) {x X/x b(z), z ai for 4 ik,
Zk Uk} is called the curve of the family corresponding to a, the point
Xo tk(a’), where a’ a for 4: k, a, Zk, is called the origin of A(a).

(5.3) Given two families (of dimension m)on X,

ff=(U1 "" x U+I,,k,X) and W’=(U] ...x U,+1,4’,k’,X),
we say that yff is a subfamily of’ (written f c ’) if k k’ and for all j, the
disk Uj is contained in U3, with Uk and U, concentric, and 4 is the restriction of
4’ to U. If U 4: U’ for some j 4: k we say that V is a strict subfamily of U’,
and we write

(5.4) We say that a family yV’ can be "extended to the boundary" if ff is a
subfamily of some family ’, such that (with the notations of (5.3)) Uk is
properly contained in U,. In all of our applications the families will be exten-
sible to the boundary.

(5.5) It is not difficult to see that if X is reduced, then what we called the
curves of the family are actually locally closed analytic subspaces ofdimension
1 of X. Moreover, if A is the curve of ff (the family of (5.1)) corresponding to

then : B(ek) A given by

(Z) (C1, Ck_ 1, Z, Ck + 1,’’’, Ck + 1)
is a parametrization of A. Given this situation, when we say that "A is para-
metrized by Zk B(ek)" we mean that we use the map just described to
parametrize the curve.

(5.6) In the sequel, we shall keep the notation of (5.1), i.e., local families will
be denoted with capital script letters, the open carrier by the corresponding



500 AUGUSTO NOBILE

capital letter, the same letter with a subscript "zero" denotes the carrier. The
expression "neighborhood of x" means a set containing an open set containing
x, but the neighborhood itself could be not open. The closure of a set A is
denoted cl (A). If the origin of all the curves of is the same point Xo X, we
say that is a "family through Xo" or "is composed of curves through Xo".

(5.7) PROPOSITION. Let A be an analytic set in an open G ofC, Xo A, d a
positive integer. Then, there is a positive integer e, a positive real number 6) and
for each pair (2, ), 2 1,..., d, 6 <_ bto) a collection of localfamilies ’(6),
(6) on G and throu9h Xo such that if Ga(6)= J,--x L(6) then"

(a) For all 2, 6 <_ 6, G(6) G A;
(b) Ga(b) w A is a neighborhood of xo,for 2 1,..., d, 6 <_ fit);
(c) If6 <_ 6’ <_ 6 then (6) (6’), 2 1,..., d, b 1,..., e;
(d) 5(6)< b- (6), 2 2,..., d, 6 _< fifo), b 1, e;
(e) Given any open neighborhood G’ ofx there is a b <_ 6 such that for all 2,

Moreover, these families are extensible to the boundary.
(5.8) We present the proof of (5.7)in (5.8)-(5.11). First we shall find an

open neighborhood T G of x0, a manifold F and a proper surjective mor-
phism q" F - T such that the following hold.

(i) E(A)= q-(A)= Ex w .-.w E, where E is non-singular, codim (El)
1, and the Ei have only normal crossings, i.e., the equation of q-(A) is

given locally by zx z 0, _< r for suitable local coordinates (zi);
(ii) E(xo)- q-(Xo)- Ex Eu, l <_ s.

To do this we use the following result of Hironaka (see [4], Lemma 7): let X be
a complex space, Y X P", Y non-singular, n" Y--, X induced by the first
projection, J a coherent sheaf of ideals on Y, x X. Then, there is an open
neighborhood U of x in X and a finite succession of monoidal transforms {f"
V/+ V), with Vo rt-I(U), centers D in V, with the following properties.

(i) D, is non-singular, contained in supp ((_gv,/J,), where Jo J[vo and
-1Ji+a =fi (Ji), for all i;

(ii) Jr is of the form I-[=a ’ti), where i is the ideal of a nonsingular
irreducible complex subspace E of V of codimension 1 and = E has only
normal crossings.
We use this result in this way" first we blow up the point Xo of G; we get a

submanifold Ta c G x pr- 1, and a morphism qo" T1 G induced by the first
projection. Let J be the ideal of q-l(A). By Hironaka’s result (applied to
(T1, J)) there is a neighborhood T of Xo, a non-singular space F and a mor-
phism q with the required properties. Note that q-l(Xo) E1 w--.w Eu is
compact, since q is proper.

(5.9) Next, consider the subsets S ofE(xo)= q-l(Xo) where for i= 1,..., r,

Si= {y E(xo)/at y there are at least/components of E(A)}.
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We have s" S-1 ... St= E(xo), and these sets are closed in E(xo),
therefore compact. Now we fix a covering of E(xo) by opens M(i, j), 1,...,
r and j 1, ogi, with the following properties.

(a) For all i, j there is a polydisk H(i, j)= I-lk_ H(i, j, k), where

H(i, j, k)= B(e(i, j, k))
(cf. (1.2) (a), and an isomorphism O(i, j)" H(i, j) M(i, j), such that
O(i, j)(x) S’, where c is the center of H(i, j), O(i, j)- I(E(A)) corresponds to

and O(i, j)- ’(E(xo)) to

{z H/(i,j)/zl z O}

{z/z zi, 0 for some i’ _< i}

(i’ depends on i, j).
(b) M(i,j) cS*=oifl>i.
It is easy to construct such a covering by descending induction, using the

facts that E(Xo)is compact, F is non-singular and the components ofE(A)have
only normal crossings.

(5.10) Now, by elementary topological considerations we may choose, for
each triple i, j, k, d numbers

ca(i, j, k) <"" < e’(i, j, k) < e(i, j, k)

such that if, for 2 1,..., d we write

H(i, j, k)= B(ea(i, j, k)),

and

Ha(i, j) fi H(i, j, k)
k=l

MZ(i, j)= O(i, j)(H(i, j)),

then {Ma(i, j)} is a covering of E(xo).
Now, for any triple (i,j, k), fix d collections of disks D(i,j, k; s), 2 1, d

and s 1,..., s(i, j, k), such that:
(i) el (D(i, j, k; s) n-(i, j, k);
(ii) 0 q cl (D(i, j, k; s)), s > 4;
(iii) D(i,j, k; s) Da-(i,j, k; s), 2 2,..., d;
(iv) ti,=xj, k) D2(i, j, k’, s) = n(i, j, k) {0}.

For instance, let D(i, j, h, s), 2 1,..., d be the disk of center 7(exp (1/2ires) and
radius a real number 7, 0 < 7 < 1/2ca(i, J, k) (here/is the imaginary unit), for
s > 4 the choice is clear.

(5.11) Let

J’={(i,j,k)/i= 1, r, j= 1,...,o9,, k= 1, r}
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(a.
J {(i, j, k) J’/k < i’}

(recall that on H(i, j), the set E(xo) has an equation zl,..., zi, 0 (cf. (5.9));
I {(i, j, k; s,..., s_ 1, s/ ,..., si)/(i, j, k) J; s, 1,..., s(i, j, t), for all t}
(cf. (5.10)). Sometimes we just write (i, j, k; (s))to denote an element of I. Let e
be the cardinal of I. Fix a bijection z" {1, e} ---, I; define v" I J by v(i, j, k;
(s)) (i, j, k).

Let fi(0) < e(i, j, k), for all (i, j, k) e J. If 6 6t, define (for b 1,..., e,
2 1, d) the polydisk K(6) as follows. Let

r(b) (i,j, k; s,, , si)

(where means that the corresponding index is omitted). Then

(5.11.1) g(b)= {z C’/z, OX(i, j, t; s,) for t= 1, , i, I ,1 <
and [z, < e(i, j, t), t> i},

We call 0 to the restriction of O(i, j) to K(6), q qO, and we define the local
families (6) by

(5.11.2) (b) (K(6), q, k, G).
We claim that the number fio and these families satisfy the conditions of

(5.7). It is straightforward to check that these are local families through Xo,
extensible to the boundary by construction. Next, note that the union of the
open sets (of F)
(5.11.3) P(Sb) Ob(K(bb))
and E(A) form a neighborhood of E(xo) in F. In fact, if, for e < d(i, j, k), (i, j,
k) J’ we put

(5.11.4) Ma(i,j,k;e)= {y Ma(i,j)/O(i,j)-’(y)= (Zl,...,z,)with Iz l < },

then clearly, for e small enough, E(xo) c MX(i, k, k; ) (U:I P(b) E).
From this and the fact that q is proper, (b) follows. (a), (c)and (d)are obvious
from the constructions, and (e) is an easy consequence of the compactness of
E(xo). This proves Proposition (5.7).

(5.12) Remark. We can also define, as is clear from the proof given above,
the following families of curves (on F) which will be useful later. If 1 __< b < e
and z(b)= (i, j, k; (s)), we set, for 5 < 6(),

(5.12.1) k, v).

In the following proposition we shall keep the notation of Proposition (5.7)
(and its proof).
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(5.13) PROPOSITION.
the polydisk

Let V be a purely r-dimensional analytic set, defined in

V containing the origin. Assume that the morphism re" V---} G induced by the
projection on the first r coordinates is finite" let A c G be the branch locus offt.

Fix a positive inteoer d and a system offamilies {’b(gi)} in G, 2 1,..., d, b 1,
e, 6 <_ 6), as in Proposition (5.7). Then, there is a real number 6ta) <_ 6) and

for each triple (2, 6, b), 2 1,..., d, 6 < 61), b 1,..., e, a collection, 1(5),
ff, tb)(6) of local families of curves on V through the origin, satisjj;in9 the

following.
(a) For all b, 2,
(b) For any pair (b, ), b 1,..., e, 1,..., (b), there is a natural number

d(b, ) such that (using (5.11.1))
yt/’,(6) (K(p,), qb, k, V), 2 1,..., d, 6 <_ 6(’),

where k is the third coordinate of z(b) (cf. (5.11)), (p)dtb,,= 6, and qb is a
suitable function.

(c) For any 2, b, a, b (as in (b)) there is a commutative diagram
qb

K(p) (N(6))o

K(6) (L(6))o T

(5.13.1)

where we use the notations of (b)and (5.2), T is the open of Proposition (5.7)and
zdk(b,O7ba(Z1, Zr): (Zi Zr) where z z if i=/= k, Z

(5.14) Proofi Let the families {5(6)} be given. Take an index b, b 1,...,
e, let z(b) (i, j, k; (s)), and Ab(c, 6) denote the curve in 5(6) corresponding to
the (r- 1)-tuple c (c1, ?k, C)(Cf. (5.2)). Let

(5.14.1) tic" B(tS)- {(z) K(f)/z, c,, =p k}
be the natural isomorphism, flc(Zk)= (C,,..., zk,..., Cr). Let a (a,), t= 1,
r, where at is the center of DX(i, j, t, st) if < i, =/: k (cf. (5.10))and the center of
HX(, j, t) for > i, A’ Ab(a, 6{)). Consider t- I(A’) F; since A’ meets A only
at the origin Xo, the morphism rt" F --. A’ induced by r ramifies only at Xo. Let
a(b) be the number of irreducible components of F at xo. We claim that for
some 6{1) < 6{) we get commutative diagrams

B(61)) ,i A Ab(a, gi1))
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where q, qbfl, (Cf. (5.11.12) and (5.14.1))and the following hold:
(1) F, e 1, t(b) are the irreducible components of t-l(A).
(2) 0b is holomorphic, and an isomorphism for r/4:0 (i.e., a parametriza-

tion of the curve F).
(3) n,(rl)= qd(b, ot), for some integer d(b, ) such that (p(1)Od(b’))- 6(1).

In fact, let {F’,} be the irreducible components of F and C, the fiber product
P2

B(6)) A’
q’b

(where q; qb ft,, cf. (5.14.2)). Then, C, is again a curve, it is irreducible at Xo,
and P2 is an isomorphism outside the origin. Consider a parametrization

f

Clearly we may choose it in such a way that p,f(rl) rl
d(b’ "), for all r/ B(p(X)),

where d(b, o) is the degree of the covering map F, {Xo} ---, A {Xo}. Now it is
obvious that our claim about (5.14.1) holds, with 6ta)= (p))dtb,,).

It is also clear that the diagrams (5.14.1) induce similar diagrams, with 6ta)

replaced by J < 6t) (and p, accordingly).
Now, we construct the family/1/,(6). If b 1,..., e, e 1,..., (b), 6 < 6tl),

(5.14.2) f’,(6) (K(p), k, qb, V)
where K(p,)is as in (5.12), (p,)dtb,,)= 6, and qb is defined as follows. To
compute qb,(Z,..., Z), with Zk =/= O, consider Q Ob,(Zk) e F, (cf. (5.14.1)). Let

O {(w) e K(f)/Wk z,}, O q(O).

Since D’ is contractile, the lifting from Q ofany real arc joining r(Q)and q(z’),
where z a,, 4= k, z, (z)n’ ), will end at a well defined point q,(z,...,
z) V. We complete the definition of q, by putting qb,(Z) Xo if Z 0. It is
readily checked that, using the coordinates of C"

qb(Z) (Xl, X,, y,, yo),

r + v n, where (x)= qb(Z’) and z zt for t =/= k, z,(’ "), and y ,..., y are
holomorphic functions of z,..., z. To see the latter statement one uses the
theory of analytic continuation and Riemann’s extension theorem. Proposition
(5.13) is proved.

6. Proof of Proposition (3.6)
(6.1) In this section we prove Proposition (3.6). The details ofthe proof are

rather technical; we remind the reader that an informal sketch of it can be seen
in the introduction. We are given a hypersurface V, defined near the origin P of
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Cr+ (with coordinates x 1, xr, y) by the equation (3.1.1). We identify C" with
{(x, y) C"+ /y 0}. Fix a polydisk G in C", centered at P, such that A,(x),

1, n (cf. 3.1.1)) is defined on G. The branch locus A of rt, the projection of
V on G parallel to the y-axis, is a hypersurface in G. We apply Proposition (5.7)
to this situation; with d 3 (for reasons which will be clear in (6.9)and (6.10)).
Thus, we get, for 2 1, 2, 3; b 1, e; 6 < 6t) local families 5a(6) on G
through P, with the properties (a)to (e)of (5.7).
Next we apply Proposition (5.13), taking our V as the variety of (5.13) and as

the families {Se} of (5.13) the ones we just took. We get families Va(6) on V,
6 < 6t) < 6t), satisfying properties (a), (b) of (5.13). Moreover, we shall use
families constructed as those of the proofs of propositions (5.7) and (5.12). In
particular, we shall use the notations introduced during those proofs, as well as
in the remainder of Section 5.

(6.2) We shall determine the number c of (3.6). Let 6 be the discriminant of
the polynomial f(y)(cf. (3.1.1)). Consider the morphism q: F T G (cf.
(5.8)) and the coordinate neighborhoods M(i, j) of (5.9). Then, (keeping the
notations of (5.9)) for each pair i, j where 1, r and j j 1, COl, the
composition 6, 6qO(i, j) is an holomorphic function of z H(i, j). It van-
ishes on the subspace of H(i, j) defined by za z, 0. By the Nullstellensatz,
there is a number c(i, j)such that

(6.2.1) (Z zi)c( i, J) 6ijhij

where h,j is an holomorphic function (and we may assume it is defined on
H(i, j)). We set

(6.2.2) c=max{2c(i,j,)}, i= 1, r; j= 1,...,o9,.

We claim that this number c satisfies the conditions of (3.6).

(6.3) Now consider another hypersurface V’, of equation (3.2.1), satisfying
(i), (ii) of (3.6) with the number c defined in (6.2). We shall use the notations of
(3.6). We want to define an isomorphism b" rt-:(U A)--, rt’-(U A), (U a
suitable neighborhood of P), commuting with the projections rt, rt’. First of all,
choose an open neighborhood U ofP in C" such that U = T and the series Bi,
i= 1, n, converges there. Using property (e) of (5.7), we find a positive
number 6(2) t(1) such that G(6) U for 6 _< t(2).

(6.4) We are going to define holomorphic mappings

(6.4.1) a(6): Nb(6) C

for 2 1, 2, 3;b 1, e; for b fixed 1,..., (b); 6 < 6t2’ (cf. (5.2), (5.13)).
These maps will be compatible, in thesense that if 6’ <_ 6, abe(6 is obtained
from a(6) by restriction; and they will satisfy the following"

(6.4.2) If (x, y) Nb,(6) = V, then (x, a(6)(x, y)) V’.
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In (6.10) we shall see that there is a real number 6{’)_< 6{2), such that for
6 < 6{4), the maps a(6) agree on the intersections and thus we obtain (by
(6.4.2)) a morphism " g-I(U A) ’- (U A) (for some small open U)as
desired. To define these maps we shall use Lemma (6.5) given below. To clarify
its statement, consider the following commutative diagram (cf. (5.13.1))

qb

K, (N)o V V’

Kb (Lb)0 , U

(6.4.3)

where, to simplify, we wrote V rr-I(U 1), Vp /Ip- 1(U 1), Lb L,(6(2)),
Kb, K’(p)(pa) 6{z)), K K,(f{z)), and we use the notations of (5.2)and
(5.13). For any open U in C" let F(U)=F(U, Cv)(cf. (1.2)). Let
Bb Biqb 7r,bo I"(Kb), Bbi qbBi = I’(Kb). Write

(6.4.4) g Y" + B, Y"-’ F(K)[Y]
i=1

(6.4.5) 9b, Y" + Bb,i y,-i F(K,)[Y].
i=1

Then, we have"

(6.5) LEMMA. Consider the polynomial gb (see (6.4.5)), let

z(b) (i, j, k; (s))
(cf (5.11), y" V---} C the map induced by the projection (x, y)---} y, Wb,= Yqb.
Then there is a unique root ab, F(Kb,) Ofgb with the followin9 property" there
is a neighborhood (o ofXk {Z Kb/Zk 0} aM m0 F(o), vanishin9 on Xk,
such that

(6.5.1) ab Wb [g(ab,)]mo on if0.
Moreover, for points z o,
(6.5.2) abe(Z)= lim wj

j

where Wo Wb(Z) a wj+ wj g(x, wj)/g’(x, wj) with x qb nb(Z).
In order not to break the main proofwe postpone the proof of (6.5) to (6.12).

(6.6) Accepting the lemma, define

(6.6.1) a(6(2)) abq1" N(6(2)) C.

By taking the suitable restrictions we define a,(6), 2 1, 2, 3, 6 6(2). It is
clear that these maps have the property (6.4.2).
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Note the following facts, which will be useful later. Using the notations of
(5.11.3) and (5.11.4), for 6 small enough,

(6.6.2) M(i, j, k; 6)- E ) Pb(6t2,) c F
b Sijk

(where Sik (b I/vz(b) (i, j, k))) for 2 1, 2, 3, (i,j, k J’ (cf. (5.11)). Given
6
_

6t2, define, for 2, i, j, k as in (6.6.2),
(6.6.3) R(i, j, k; )= (Q Fflz(Q) q(M(i, j, k; 6))- A).
Then, from Lemma (6.5), it immediately follows that the maps ab(6), b S 0"k,

patch together to give a well defined holomorphic map

(6.6.4) a(i, j, k; 6)" R(i, j, k; )- C, 2 1, 2, 3.

Moreover, if A is a curve in one of the systems .o(b Sk), then there is some
real p > 0 (depending on A), such that if Q (x, y) v and x A corresponds
to a value Zk of the parameter of A, with 0 Zk P (cf. (5.5))then
(6.6.5) a(6)(Q)- lim w
where Wo- y and w/ w- g(x, w)/g’(x, w).

(6.7) Next we want to show that the maps ab3(6)agree on the intersections
of their domains, if 6 is small enough. To see that, first we define a number t(3)

as follows.
Consider the polynomials F(g)(U), Q(g)(U, ), R(g)(U, V)associated to

g(y), introduced in (4.5). Since Bi(O -O, i- 1,..., n for some 0 K 1,
6a > 0 we have [F(g)(x, u)] < 1/4 for Ix[ < 6, [ul < K. Now we compute
the numbers M, M’ of (4.4.1), (4.4.2), with our data and 6a. Next, for some
62 <_ 6, ]g’(x, Y)I < min ((4M)-, (4M’) -a, (4K) -1, 1) for Ix] < 62,
Yl < 62. Now, by continuity of the algebroid functions, we may choose
6 _< 62 such that ]x < 6 implies that all roots y(x) off(x, y)= 0 satisfy
ly(x) < min (62, K/2). By condition (e)of (5.7) we can get a number 6 such
that GX(6) is contained in

(6.7.1) U2 {z cr/]ztl < (3, t--- 1, r}.
Next, we would like to analyze the following situation. Consider one of the
coordinate opens Ml(i, j, k, 6) in F (with 6 < 6t3’). Assume E(P)is defined by
z "... "zi,- 0, > 2. For each k, _< k < i’, we may consider the curves Aa"
xt at, t 4: k, for constants a l, ilk, at. We know that for Xkl small, if
Q (x, y) V and x q(A,) A, then aa(i, j, k)(Q) is given by the "Newton
sequence" (6.5.2). How small should [Xk] be to achieve this? The following
lemma says that if a coordinate av, 1 <_ v < i, v 4: k, is close to zero, then we take
]Xk] "not too small". Precisely, we have"

(6.8) LEMMA. With notations as before, consider the coordinate open m(i, j,
k; 6) F, i= 1,..., r, j 1,..., (Di, ( t(3), with coordinates (z x,..., zr) (cf
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(5.9), (5.11.4)); let E(P)= q-(P) (cf. (6.3))bedefined by z z,,= O,E by z
zi O, >_ i’ >_ 2, and assume 1 <_ k, v <_ i’, v =fi k. Let Q e M(i, j, k; c5), with
coordinates (a, a,), ao 0, a =fi Ofor 1 <_ <_ i, =/: k (a may be zero or not).
Then, there is a real number rl > akl, arid positive real numbers ),, 1 <_ <_ i,

=/: k, such that for any point Q’= (x, y) v satisfyincj"
(i) x q(M(i, j, k, 6))- A (cf. (6.3)),
(ii) q-(x) has coordinates (z, z,), with Izl < r/, I, a,I < ,, t= 1,

...,i,tk,
we have

a’(i, j, k)(Q’) lim w
m--

where Wo y and Wm+ W, --g(X, Wm)/t’(X, Wm).
The proof of this lemma will be presented in Sections 6.14 to 6.16.
(6.9) Now we define a number c5t#) _< 6t3)such that {a(6)} will agree on the

intersection of their domains, for fi _< 6t4).
For that, fix real numbers

t(3)(6.9.1) 0 < P3 </92 </91

We define, for any pair (b, c) of integers, 1 < b < c _< e (where, say, z(b) (i, j,
k; (s)), z(c) (i’,j’, l; (s’)))a real number e(b, c)as follows. Consider the families
(on F) (Pa), b 1, e (cf. (5.12).

(a) If (P(P3))o (P(P3))o ; set e(b, c)= p3 (recall that P0 is the car-
rier of a family cf. (5.2)).

(b) Assume this intersection is non-empty. First note the following facts.
(i)

{Q P(p3)/l-coordinate of 0-I(Q) is zero}

(where 0-L P(P3) K(p3)is the coordinate isomorphism of (5.12))is con-
tained in exactly one irreducible component of E(P), say Eo.

(ii) For 6 _< P3, (P3(6))o can be viewed as a disjoint union of curves of the
form A 0({(z,)e K3(b)/z, is a fixed number for i=/= t,

(iii) Each such curve meets Eo only at the point corresponding to zt 0
(i.e., the origin).
Now, we claim that for certain p’ _< p 3, all such curves A (parametrized now by
zt B(p’)) have these properties" (1).if A meets (P(P3))o, then the origin of A
belongs to M2(i, j, k; P2); (2) if the origin of A is in M2(i, j, k; P2), then A is
entirely contained in Ml(i, j, k; p).
To see (1), consider the compact set Eo M2(i,j, k; P2). It is disjoint from the

closure of (P(p 3))0 (since M2(i,j, k; P2) = cl (P(P 3))), hence the distance (with
respect to any metric inducing the topology of F) between them is positive.
Then, it is clear that for some p < P3, any curve A of the family 3(p)with
origin outside M2(i, j, k; P2) does not meet (P3(p3))o. To see (2), consider the
compact cl (M2(i, j, k; P2)) Eo, disjoint from the closed F- M(i, j, k; Pl),
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hence at positive distance. Again, it is easy to see that for some p’ < p 4, any A
in 3(p,)with origin in M2(i,j, k; P2)is completely contained in M(i,j,k; P l)-
Take e(b, c)= p’, and define

(6.9.2) fit#)= min e(b, c), 1 b < c e.

(6.10) Now we are in conditions to prove that the functions a() (cf. (6.6))
coincide on the intersections of their domains, for fit#). Let Q N(6t#)
N3 tgt,)/ 1 < b < c < e, 1 < g < g(b), 1 < fl < g(c)(cf. (5.2)and (5.13)). Wec# /’

want to see tat

To smpfify, we shall write , a a(). Frst, note that there is a
unique curve, say A, in te family () passing through p. But (we cla)
A-P R(/, j, k ) (el. (6.6.3) and (6.9.1)). In fact, the proection
Ao n(A) C is a cue in (e); on the other hand Ao q(A’)is a cue in
#(e), having at least one point (namely, q-Xn(Q)) in common with P(e). By
(1) and (2) of (6.9), A’ M(i, j, k; pt), hence by Definition (6.6.3), A {P}
Rt(i, j, k; Pl), as claimed.

Let z(b) (i, j, k; (s)). In the sequel, we write a a (i, j, k;p ) (cf. (6.6.4)).
Note that if we find a point Qt eA such that a3(Qt)=at(Qt), then
a3(Q) at(Q). In fact, the functions a3 and a defined by the foulas

(6.10.2) (x, y) (x, a’(x, y)), i= 1, 3,

are two mappings from A {P} to n’- t(Ao {P}), commuting with the projec-
tions on Ao- {P}. Since these spaces are etale over the connected space
Ao {P}, if the maps (6.10.2) agree at a point they agree everywhere, hence we
shall obtain a3(Q)= at(Q). But also note (use (6.6))that at(Q)= a(e)(Q).
Hence, if such point Q1 exists, (6.10.1)would follow.
To show the existence of such Qt, consider Ao n(A), parametriz (using

the map q, cf. (5.11.2)and (5.5)) by {z e C/I zl < e}. Then, by (6.6.4), there is
some p > 0 such that, if Ao(p)= {g e Ao/R corresponds to z e B(p)}, and
Q’ e A verifies n(Q’)e Ao(p), then a3(Q’) lim, wg (where wgis defin as in
(6.6.5)). On the other hand, consider A’ (the cue in (e) such that
q(A’) Ao). Let Qo be its origin, Qo E(P). Then, there is a neighborhood of
Qo, such that for any R e V, with n(g) e q() A, we have at(R) lim w,
where wg is defined by (6.6.5). In fact, let the coordinates of Qo (in the coordin-
ate neighborho Mt(i, j, k; {) be (at). Since Qo E(P) (defined by zt
z, 0), a 0 for some t, 1 t i’. If k, the existence of follows -mediately from Lemma (6.5), if t k, from (6.8). If A’(p) F is defined by the
condition q(A’(p))= Ao(p), then clearly ( E) A’(p) O. Then, for
any Q1 (x, y)e A such that n(Qx) e q(), clearly at(Q t)= aa(Qt)= (x, yo),
where Yo limg w, and w is defined by (6.6.5). The proof of (6.10.1)is
complete.
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(6.11) Now we prove that the morphism

(6.11.1) : n-x(U A) --. n’-X(U A),

(where U = G3(64)) w A is an open neighborhood of P, cf. (5.7)for the nota-
tion) given by

(6.11.2) (x, y)-- (x, a(x, y)) V’

is an isomorphism. As before, let fi4= e. Since n-(U A)and n’-(U A)
are non-singular, it is enough to show that 4 is bijective, and by (a)of (5.13), it
suffices to show that for any curve A in some family ba(e), the map

(A): :-1(6 -{P}) z’-1(6 -{P})
induced by b is bijective. Since these spaces are etale over A {P} and b(A)
commutes with g, g’, it suffices to check this for points of some deleted neigh-
borhood of the origin.
So let A be a curve of certain ,q(e), parametrized by

t(z)- (t l(z), tn(Z)) z D-- B(e.),
where q" D A is naturally induced by qO,: K(e)---, U (cf. (5.11.2), (5.5)).
Consider the pull-back (by ) of -(A) and ’-a(A) to D; we get a diagram,
with cartesian squares:

(6.11.3)

C’ x’- (A)

C .rr

D

Then, C, C’ are the plane curves given by the equations

y(z, y)= y" + + ...+ 0

and

7(z, y)= y" + BOP(z))y"- +’"+ B,,(O(z))= 0

respectively, and h, h’ are homeomorphisms. We claim that there is an isomor-
phism p" C C’, defined near the origin, such that the following diagram
commutes"

(6.11.4)

C {Po) (A)

p [ [ 4)(A)

C’- {Po} n’ n’-’(A) -{P}
(Po is the origin in the (z, y)-plane, and C, C’, A really are the restrictions ofthe
corresponding curves to a suitable neighborhood of the origin.) The bijectivity
of h and h’ clearly implies that (A) is bijective.
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To find such a germ of isomorphism p is equivalent to find an isomorphism
of C{z}--algebras

p’: C{z}[ Y]/((t(z, Y) Ciz}[ Y]/f(z, Y).
By Nakayama’s lemma it suffices to find a root a of (z, Y) in A, satisfying
a y(mod (z)A), where A C{x, y}. But we have

(6.11.5) g(y) [g’(y)]Z(zA).
We shall prove it in (6.10). By Hensel’s lemma there is a unique solution, giving
the isomorphism p’. It is easy to check (using (4.2)) that the induced isomor-
phism p has, near the origin, the form

p(z, y)= (z, a(z, y)),

where a(z, y)= limj_oo wj, Wo y and w+= wj- 9(z, wj)/g’(z, wj). From
this, using the definition of , it follows that (6.11.4) commutes. Hence ((A) is
bijective; and we saw that this implies that (cf. (6.11.1)) is an isomorphism.

(6.12) To finish the proof of Proposition (3.6), we must show Lemmas (6.5),
(6.6) and the equality (6.11.5).

Proof of Lemma (6.5). The indices b, a will remain fixed throughout the
proof, so we shall write Kb-- K, Kb-- K’, Wb= W (cf. (6.4.3)). We also use
notation H Bbi, G Ab AiqbIb;

v(Y) 9b(Y)= Y" + H,-i yi, u(Y) fb(Y)= Y" + , G,-i yi.

We claim that there is an open neighborhood c in K) of XR and m
such that re(z)= 0 for z XR and

(6.12.1) v(w) [v’(w)]Em
on c. To check this, note that as y" + Ai(x)yn-i= 0, we get

(6.12.2) u(w)=w"+Gw"-+’’’+G.=0 on K.

Recall that A, B mod (x)+ , with c defined in (6.3.2). Thus

A,,(x) B,,(x)= k,,,+ ,(x) + k,,,+ 2(x)+""
where k,., is a form of degree i. We shall consider the pull-back of this equality
to K’ Kb, via q (cf. (6.4.2)). Note that qb(Z), a function from a polydisk to C,
is of the form

qb(Z) (0, (Z), O,(Z)),

where O(z), i= 1, r, is holomorphic; and since q;(P) is the analytic set of
equation Zk 0, /(Z) has necessarily the form

o,(z)
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for certain Pi F(K’). Thus, on K’,

A,,,(z)- B(z)-- km, c.,(z,P,(Z), z,p,(z)) +
and, using the homogeneity of the k’s,

(6.12.3) A,m(Z) Bbm(Z)= z,+ ’l,,,(z)
for certain l,,(z) e F(K’). Using (6.2.1) and (6.2.2), we have on H(i, j)(cf. (5.9)),

(Z1 2i) ---((ij)2(Z1 zi)c-2c(iJ)hij(2).
Then, calling h (zx zi)C-2a)(zt , z)-Ch, and noting that on K’

we have zt 4: 0, 1 < _< i, t 4: k, we get, on K’,

(6.12.4) z, 6h, h F(K’)
where 3b is the restriction of 3 to K’.

Thus, from (6.12.3) we get

(6.12.5) Abm(z Bbm(Z)-" (6b(Z))2zkjt,m(Z)
for some Jbm F(K’). Then, by pulling back this equality to K, and recalling
how n,: K K’ is defined (cf. (5.13.1)) we get

(6.12.6) H,,,(z) G,,,(z) 6o(Z)2j,,,(z)
w,ere 6o 6., j. =j.., a a(b). Hence, replacing (in v(Y)) H,, by
(6.12.6), and using (6.12.2), we get

(6.12.7) v(w) 6pzn

for certain p F(K’). To finish the proof ofthe claim about if, we shall relate 6 o
to v’(w).

It is clear that 6o is the discriminant of u(Y), hence by a classical formula,

(6.12.8) 60 u(V)E(V)+ u’(V)O(Y)
for some E(Y), D(Y)in F(K)[Y]. Hence, making Y w and using (6.13.2)we
get

(6.12.9) 6o u’(w)D(w).
But using (6.12.6), an elementary calculation yields

(6.12.10) u’(w) v’(w) 6ho za
for certain ho F(K). So, by (6.12.9)and (6.12.10)we get

6o O(w)v’(w) 6s,
s F(K), and s(z)= 0 when z, 0.
Hence

(6.12.11) 6o(1 + 6oS)= D(w)v’(w).
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Since s vanishes on Xk, We can find a neighborhood f of Xk such that
I6oSl < 1 on c. Hence, on c the function (1 + 6oS) is invertible and we can
write

(6.12.12) 6o v’(w)sx, sa F(.
The equalities (6.12.7) and (6.12.12) prove our claim. With this, we shall prove
the lemma. If c e Xk, we can find a polydisk D(c) about and a unique
root a e F(D(c))of the polynomial

v,(Y) yn + (Hn_,lO(c))r-,
satisfying a- w v,(w)m on D(c). This is a consequence of (6.12.1), which
allows us to apply Hensers lemma (cf. (4.2)). We can extend analytically a to
D(c) {z K/z D(c)}. This is a consequence of the fact that

qbnb" D(c)- Xk- U, and r(" n’-’(U, A) U,

are etale, and the morphism

" D(c) - n’- ’(U, A)
defined by q/(z) (qb Ub(Z), ac(Z)) satisfies u’ qbub. Let 5c be the extension
of ac to D(b). Consider a collection of points c e XR, which are centers of
polydisks D(c) as above, such that w D(c)= K.
The maps 5c agree on the intersections; in fact, D(c) c D(c’) is connected,

then using the uniqueness part of (4.2)and the principle of analytic continua-
tion, tic c’ on D(c) c D(c’). Thus, we get a e F(K’), which clearly satisfies
v(a) 0. We take (go w D(c), mo= rn IC5o and (6.5.1) holds. (6.5.2)is a con-
sequence of Lemma (4.2). Thus, (6.5)is proved.

(6.13) With the same argument, we can show the following result, to be
used later. Make the same assumptions as in (6.5), but now we assume
Ai B mod (x)++ , 1, n, where s is a positive integer. Then, there is a
function ab, as in Lemma (6.5), but satisfying the stronger condition

(6.13.1) ab- Wb [9’b(ab)]2kmO
on a neighborhood fo XR; mo 0 on XR.

(6.14) Proof ofLemma (6.8). We may assume, after changing the indices if
necessary, that k 1, v =.2. First we show the following lemma, in which we
use the notations of Section 5 and (6.5), (6.8)and (6.12).

(6.15) LEMMA. The assumptions are as in (6.8) (with k 1, v 2) but we also
assume that at D (i, j, t, st), 3,..., (cf (5.10)). If 1 <_ s <_ 4, and is a real
number, let Bs(y)= B(y exp (1/2irs), 5,)(cf (1.2)(a), here is the imaoinary unit).
Fix s2, 1 <_ s2 < 4. Let b z- 1(i, j, 1; s2, si), 1 < a <_ a(b). Then, there are
real numbers r/> all, yt > 0, 2, r, such that"
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(a) S’= {(z) e H(i, j, 1)/Iz < , z n(), Iz,- ,1 < ,, t= 3,
r} K(di)(cf. (5.12), (5.2)).
(b) If Q’= (x, y) v, x qO(ij)(S’), then a(i, j, 1, b)(Q’)=1 w), where
Wo y, w+,= w- (, )/’(, w).

Proof We keep the notations of (6.12). In particular, generally we drop the
fixed indices b, g. Consider the polydisk H(i, j) H (cf. (5.9)) and Z qO(ij):
H C’. Since we assume

{Z H/Z Z2 O} E(P),
then Z(z)= (z z2 Z,(z)), i= 1, r, where each Z, is an holomorphic function
on H. Reasoning as in (6.12) we get the following foula, analogous to
(6.12.3):
(6.15.) amZ(Z) nmZ(Z)= (z z)c+’m(z)
for all z H Z-(U)(cf. (6.7.1)); ffm F(H). Using (6.2.1), we get, on H,

(6.5.2) ( z)C" (z z,)-c"),h,
for z H’= {z H/z, D(i, j, t; s,), t= 3, i}. Write

h(z) (z zi) -"’.

By the choice of c (cf. (6.2.2)), from (6.15.1)and (6.15.2)we get, on H,

(6.15.3) AmZ BmZ (z zz)fih2
where 6 6Z, ff F(H), note that h is not holomorphic (unless i= 2), but
meromorphic.

Let d d(b, ), p the positive d-root of 6, K K(p), K’= K(fi) H,
p (cf. (6.4.3)). Note that p(z)= z’, where z’ z, for i> 1, zq 4 (since
(b) (i, j, 1; (s))). Consider the pull-back of the equalities (6.15.3)under p. We

get, on K (using the notation of (6.12)),

(6.15.4) Gm Hm zfhLm
where 6o 6 p, Lm p, note that h did not change, since it does not involve
the variable z. Also note that all functions on the right hand side, except h, are
pull-backs of functions in r(n). w may relate rio with v’(w)as in Lemma (6.5)
(cf. (6.12.8) ft.), but note that now the coemcients of the polynomial D(Y) (cf.
(6.12.8)) are pull-backs (by p)of functions in r(n). With elementary computa-
tions we obtain, as in (6.12.11), the following equality on K"

(6.5.5) 6o( + oS)= O(w)’(w),

where

(6.15.6) s z zha (R)(w)
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and (R) is a polynomial; moreover trt and the coefficients of (R) are pull-backs of
functions in F(H). Let tr2 tr t0w;then (we claim) tr2 is bounded on K. In fact,
w is obviously bounded, and trt and the coefficients of (R) are bounded, since
they are pull-backs (by p) of holomorphic functions on H, which contains the
compact set cl (p(K)). Hence, < M on for certain constant M.
Consider

g’- < 1-I Dt(i,J, t; st) Ut(i,j, t);
t=2 t=i+l

choose r/> at I, Y,, t= 3,...,r such that r/< 6 and {z/Iz a,I _< ,} is con-
tained in Dt(i,j, t, s,) for 3, and in nt(i,j, t) for + 1, r. Then,
since no disk D contains the origin, there is some positive constant Mo such
that h(z) < Mo for z (Zl, z,) with zi a, < 7,, t 3,..., i. Write, for
a real number 7,

(6.15.7) S’(7)= {z (zt, Zr)/Z2 - Bs,.(7), zt < rl;
z, B(a,, ,), t= 3, i; z, n(i, j, t), t> i},

and S(y)= p-(S’()). Clearly for o small enough, S’(7o) K’ and also
(using (6.15.6) and the bounds M, Mo) 16o s(z) < 1/2 for z S(y 0) K. Then, if
we restrict the equality (6.15.5) to S, we can invert (1 + gioS ), to get

(6.15.8) 6o v’(w)ro, r F(S),
where ro D(w)(1 + 6oS)-t; note that ro is bounded on S(7o). Using (6.15.3)
we get

(6.15.9) G, H, v’(w)2m,

where

(6.15.10) m z2r2oh2L,,.

Note that S’(y), for 7 < o satisfies condition (a)of the statement of Lemma
(6.15). Now using the fact that 6 < gi3, we shall see that for some 2 < 7o,
condition (b) is also satisfied. We want to use (4.2) to prove that, for some
72 70, the function f= at(i, j, 1; 6)qb, (cf. (6.4.3)) can be computed with the
"Newton sequence" (6.5.2), for all z e S(72). Consider the sufficient conditions
for convergence (on the polydisk S(y)) of the Newton process, listed in (4.6).
The choice of dit3) implies that all of them, except perhaps (iv)
(I m < -(1 + M’)) are automatically satisfied. But from (6.15.10), clearly for
some 72 < 70, m < -(1 + M’) on S(72). Then the polydisk S’ S’(72)satisfies
(a) and (b), and the lemma is proved.

(6.16) Now we conclude the proof of Lemma (6.8). The assumptions imply
the existence of integers s, t 3, i, such that a Dr(i, j, t; s). In fact, for
fixed i, j, t, these disks (with s, varying)cover Ht(i, j, t) (cf. (5.10)). We apply
repeatedly Lemma (6.15), for s2 1, 2, 3, 4, and for each s2, for all possible
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values of . We get numbers 7t,, ,, Y, Let

7, inf (7,,, ,), > 2, r/= inf {r/z, }, 7 inf {72,, ,}.
S, S, S,

Consider H(i, j, 2), it is clear that for ; small enough, the set

{z/O < z < 72} c fl B(7 exp (1/2irts), ;).

With this choice of r/and 7,, 2, r, Lemma (6.8) is an immediate con-
sequence of (6.15).

(6.19) The proof ofthe equality (6.11.5) is completely similar to the proof of
formula (6.12.1), and we do not repeat it here.
The proof of Proposition (3.6) is complete.

7. Proof of Proposition (3.8)
(7.1) We shall use the notations of Sections 5 and 6. In this section,

R {real numbers}, R(+)= {a e R/a > 0}, R(-)= {a R/a < 0}.
Let us define the number c0 of (3.8). Consider the families 5a3(64)), which

will be denoted here simply by 5b, similarly Kb will denote K(64)). Through-
out this section, the number 64) of (6.9) will be denoted by 6. Fix any b 1,
e. We let

{(z) # 0};
here we assume r(b)= (i, j, k; (s)). Note that the fundamental group of/ is
isomorphic to Z {integers}; let p be a generator. Thus, / is not simply
connected, but we can express it as a union of two simply connected subsets,
namely,

(7.1.1) K, {z g,/z, : R(+ )}, K {z g,/z, : R(-)}.
Using the monodromy theorem, by fixing Q q,(K), considering the differ-

ent roots yp of y" + Ai(Q)y"- and analytic continuation, we find n holomor-
phic functions

(7.1.2) q" K --,C 1, n

such that r/, + Aa r/, + + A, 0, where At= Ajqb (cf. (5.11.2)). The fun-
damental group of/ operates on the set {r/1, r/,} in an obvious way. For
any p 1, n, there is a smallest positive integer r, so that p""rl, q,. This
follows from the definition of q,, moreover, it is easy to check that r is precisely
the integer d(b) of (5.15) (c), if (Q, yp) N,,. Let b 1,...,e,r(b)= (i,j,k; (s)),
and consider, for 1 < p, q < n, p 4: q the polydisk

Gb(p, q)= {z C’/z D3(i, j, t; st) for _< _< i, :/: k,

for > i}.
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_rprqDefineamapwl Gb(p,q)-*Kb, bywl(z) z,wherezt ztaft=/=k, Zk=Zk
Then, the open set of Gb(p, q),

S(p, q)= {z G(p, q)/O < arg (Zk) < 2r/rprq, Zk =/= 0}
is isomorphic, by w, to K.

Clearly, by the choice of rp, the functions rlpWl F(Sb(p, q))can be extended
first to an holomorphic function on {z Gb(pq)/Zk O} and then, since it is
bounded, to a function bpq defined on Gb(pq). Similarly, working with r/q we get
functions ,pq F(Gb(pq)). Consider the difference qbpq pq, let l=/(1, b, p,
q) be the order at which it vanishes along zk --O, i.e.,

(7.1.3) )pq )pq , zlk,
where 2 F(Gb(pq)) and Zk 0 is not a zero of 2.
Working in a similar fashion with the different sets K we get functions w2,

dpibpq, and, we find numbers/(2, b, p, q). Take

s > sup {/(1, b, p, q), /(2, b, p, q)},
where 1 _< b _< e, 1 < p, q _< n, p =/: q. Define

(7.1.4) Co c + s.

(7.2) By the choice just made, Co > c, the number of Proposition (3.6).
Hence, by that result, if V’ is another hypersurface given by equation (3.2.1)
with Bi Ai(mod (x)c+ ), and A’ c A near the origin (cf. (3.2)), then there is
an isomorphism

(])" -I(U A) -- ’-I(U A)
for certain neighborhood U of the origin; moreover, if (x, y) V, then
4)(x, y)- (x, (x, y)) V’, 1-’(rt-I(U i)).

(7.3) LEMMA. Fixan index b,b 1, ...,eand let z(b)= (i,j,k; (s)),Aabethe
curve in qb corresponcling to a Y {a Kb/ak 0} (cf. (5.2)); this curve is
parametrized by Zk e B(tS) cf. (5.5)). Then, there is a subvariety Y’ of Y, ofdimen-
sion < r 1 dim Y, with the following property: #ivene real positive, for any
a Y Y’ there is a number 8(a), such that for any pair (x, yp), (x, yq)in V, with
x Aa and correspondino to a value Zk ofthe parameter satisfyin# Zk < 8(a), we
have

(7.3.1) [(y; y’q /yp yq 11 < e

where Y’i o(x, Yi), i= p, q.

Proof. We know by (6.4), that is induced, for points in n-’(Lb c U), by
the functions abe= a(6) F(Nb), where Nb= NL(6). We may work on
n-(Lb) Nb, since only such points are involved in the lemma. We also
omit the index b, since it does not vary during the proof.
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Fix a point Zo e K’ K" (cf. (7.1.1)). Consider a pair p :/: q, 1 _< p, q _< n, and
assume (cf. (5.13.1))
(7.3.2) (q(zo), rlp(Zo)) N,

(7.3.3) (q(zo), r/(Zo))e Na.
Let q’p: K’K (K= K3,(pt*)), (p(4))d(b)= 3) be given by r/,(z)= q,X(q(z),
rip(Z)) (cf. (5.13.1)). Then n,rl’(z) z, for z e K’ (t rb,, recall we are omitting
the index b). It is readily checked that if we define j: G(p, q)--, K, by j(z)= z’,
where z z, for 4: k, z, =/z,,,/ a conveniently chosen rp-rOot of 1 (and rp, rq
as in (7.1)), then we have a commutative diagram

(7.3.4)
G(p, q)K]I,
X(p!q) ,K’z

This is an immediate consequence of the definitions, using the remark that
rp d(boO.

Consider now the function a a of (6.14). Since A, =_ B,(mod (x)+’+ ),
we get an equality

as w [9’(a)]z m,

on certain neighborhood C# ofXk {Z e K,/zk 0}. Ifwe pull-back this equa-
lity to G(p, q) via j, we find

(7.3.5) ap dl) lpq zSk mp,
where ap= aj, and mp is holomorphic in some neighborhood co of
Yp {z G(p, q)/z 4: 0}. This easily follows from diagram (7.3.4).

Similarly, interchanging the roles of p and q, we get an equality

(7.3.6) ao tp2q Skmq,

valid on a neighborhood fq of Yp. From (7.3.5) and (7.3.6) we get, on

(7.3.7) (ap a/$ dpzp) 1 d(mp m)($Xp $2p)-.
But b- 42, z,2, t< s and Yp, is not a zero of 2 (cf. (7.1.3)). Then,

2 bo(z,,..., k,..., Z)+ Zkb,(z), bo =/: O. Hence

(7.3.8) (ap- a/cD- cD,q)- 1= zkmp/bo + Zkbl
where mpq F(C5), b e F(G(p, q)), i= 0, ; bo does not depend on zk
Now it is clear that given a (a, a,), a e f#, b o(a) 4:0 and a real number
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e, > 0, if in (7.3.8) we fix zt at, 4: k and consider values of Zk with
small enough, then

(7.3.9) [(ap aq)/(dplq dpzq) 1/< .
So far, we worked with a fixed pair (p, q), hence to be precise we should write
throughout an index (p, q). For instance, b0 b’opq, (pq, etc. Also, we have
used in this process the manifold K, of (7.1.1). Clearly, we may apply to
K"= K of (7.1.1) a similar procedure (with obvious changes), to get functions
bq, ap, a, qpq, w2, etc., with properties analogous to those of ap, aq, etc.
Apply this process to all possible pairs p, q (with both K’ and K"); in

particular we get a collection {bpq, bpq} of functions of r 1 variables, analo-
gous to the function bo defined above. Consider the different morphisms wipq:
G(p, q) K, 1, 2, 1 < p < q < n, and the various images of the subspaces of
equation zk 0, bipq 0. This way we have a finite collection ofsubspaces ofK
(Wp is proper), let Y’ be its union. We claim that this is the set Y’ of (7.3) In
fact, given e > 0, if a e Y- ’ c K and A, is the corresponding curve in 5e,
then the inequality

[(y’- y)/y, y) 11 <

is equivalent (for suitable p, q) to

(7.3.10) I(a a)/(4’ ch2) i < e

(or, if we had to work with a Wzp, the same with dn, instead of ap,
respectively). But (7.3.10)follows from (7.3.9). This proves Lemma 7.3.

(7.4) Now we shall prove the existence of real numbers, m, M and a set G’,
such that G’ w A contains an open neighborhood Uo of P, U0 c U, and if
x G’, (x, yp), (x, yq)are in V, and (x, yp)= yp, (x, yq)= 71, then

(7.4.1) m < I(Y; Y’)/(Y. yq)[ < M.

This will prove Proposition (3.8), and hence Theorem (3.3).
Consider (using the notations of (5.9)and (5.10))the polydisk

K(ijk) {z e < };

let M(ijk)= 4(ij)(K(ijk)). Let

M’(ijk) M(ijk)- E, K’(ijk)= K(ijk)- {z/za z, 0}

where c/)(ij)-I(E) is defined by z, z, O. K’(ijk) is not simply connected, but
it can be expressed as the union of 2 simply connected open subsets. In fact,
K(ijk) I-I;=x H(ijt), where H(ijt)= H3(ijt) if t4: k,

H(ijk)= {z H3(ijk)/Izl < }
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(cf. (5.10)), then for t < i, let

H’(ijt) {z H(ijt)/z R(-)},
H2)(ijt) {z H(ijt)/z : R( + )}.

Then, K’(ijk) is the union of the 2 possible products

(7.4.2) I-[ U(Z()(iJ) x fi n(ijr) K(ijk)
r=l r=i+l

where 2(r) is 1 or 2. These spaces are simply connected. We let W,, 1, 2,
be the sets in (7.4.2) (taken in a certain order). Fix v, v 1, 2’; since Wo is
simply connected, by analytic continuation we may find n holomorphic func-
tions , , on W, such that

(7.4.3) +Ao,-+...+A,,=0 on Wo, P=l,...,n,

where A,, A, qO(ij) (restricted to Wo). Note that ,(x) @ (x)for all x
if p @ q. The fundamental group F of K’(ijk) is isomorphic to Z, and it acts on
the set {, ,} in an obvious way. Let p a, pbe a free basis of F. For
1 i, 1 p n, let r(t, p) be the smallest positive integer such that
p""), ,; it is immediate to check that these numbers exist. For p @ q,
1 p, q n, let ffp [= if’o, where ff*o n(ijt) for > i; and for i,

{z c/I z "’’’’’ "’ <
where n(t, v) ez(ijt)ift @ k, and e(k, v) 6. Next consider the mapping
po K(ijk), given by

(7.4.4) upo(z) z’; ’= ’=z, 1)+z’p)"’), i" z, z,, >

(2(r) is the index in (7.4.2)). Let

S, {z ff,/0 < arg (z,) < 2n(r(tp). r(tq))-, t= 1,..., i},
then S, is isomorphic to Wo under u,o. Clearly, by our choice of the numbers
r(t, p) and Riemann’s extension theorem, the functions induced by ,, on
Spo can be extended to holomorphic functions , ’ on
Now consider the functions

(7.4.5) a(i, j, k) a3(i, j, k; )" R3(i, j, k, b) C

(cf. (6.6.3)and (6.6.4)). Let ap: Spqv C be defined by

(7.4.6) ap(X) a(i, j, k)(qO(i, j)upq,(x), p(x)).

Note that ap can be extended to a function tip F(Cpo). This follows from the
definition of Upq (cf. (7.4.4)) and the fact that (x, y) (x, a(i, j, k)(x, y)) is a
well-defined morphism from R3(i, j, k; b)c V into V’, commuting with the
projections, and hence pr,, P)ap ap for t 1,..., i, p 1,..., n. Thus, on (pqo
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it makes sense to form the quotient

(7.4.7)

(7.5) We claim that this meromorphic function is actually holomorphic and
never vanishing on fpqv. We shall prove this by showing that it has neither
zeros or poles. In this section the indices v, p, q remain fixed, so we suppress
them, i.e., O pqv, f f#pq,, u Upqo, etc. It is clear from the construction
that is a unit outside z zi= 0, hence the only possible zeros or poles could
be the subvarieties zt 0, 1, i.

First, we see that takes the value 1 on the subvariety Y given by Zk O.
Assume first it is not a pole. Hence, for an open dense in Y, is defined and
holomorphic. Let Qo (a) be a point where it is defined. Ifwe choose any (real)
arc 7 ending at Qo, and contained in {z/zl zi 0}, except for its end point
Qo, by continuity we have O(Q0)= lim O(Q) for Q tending to Q0 along 7-In
particular, we can choose 7 inside

A’a= {z e /z,= a, for t4:k}.
If tr is any positive real number, let A,(a)= {z A’a/I zkl < a}. If a is small
enough, it is clear from our constructions that, letting 0 qO(O)u, we have
0(a’,(r)) A, for some curve A in some system 5eb, and for each Q A’,(a),
(7.5.1) (Q) (y’s y)/(ys

(with the notations of (7.3.1)), where (x, Ys), (x, y,)are suitable points of V
lying over O(Q). But, by Lemma (7.3), if Qo (a)was chosen outside some
lower dimensional subvariety, then the expression (7.5.1) tends to 1 as Q tends
to Q0 along 7.

This worked with the assumption that did not have a pole along Y. If it
does, consider -1, and use the above argument with if-1, which has a zero
along . Thus ff takes the value 1 on an open dense of Y, hence on all of Y.
From this is easily follows that q has neither zeros nor poles on c: were z 0
a zero, then the value of q at, say, a point z with z, Zk 0, Z e, e real small
enough, s @ t, k, should be simuntaneously 1 and 0. Similarly if zt 0 is a pole,
by considering if-1 (which again takes the value 1 on Y)we get a
contradiction.

(7.6) So, is we replace in the definition of f#pqv the numbers 3(ijt), t by
smaller numbers e’(ijt), 6’, we get a polydisk f#pqv fpq and positive real
numbers

(7.6.1) mpqv({e’(ijt)}, 6’), Mpq,({e’(ijt)}, 6’)
such that

(7.6.2) mpqv({e’(i j, t)},
for Q f#pq (because now, is the restriction of a function defined on a
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compact). In particular, using the compactness of E(P), we can choose those
numbers e’(ijt), 6’ so that:

(a) 1 w M’(ijk, 6’)is a neighborhood of E(P), where

M’(ijk, 6’)= {Q M(ijk)/Q has coordinates (z), ]z,] < e’(ijt), t=/: k, ]z[ < 6’}.
(b) 6’<6.
(7.6.3) Let m min {m,,v({e’(ijt)}, 6’)}, M {M,,v({e’(ijt)}, 6’)} (both taken

over all possible values of the indices, which is a finite set). Then we claim that
G’= q(’ E), and m, M just defined have the properties stated at the begin-
ning of (7.4).

It is trivial that G’ w A U0 is a neighborhood of P, contained in U. To see
that (7.4.1) holds, first note that since G’ c U A,

: -(’)-, ,-(,)

is well defined, moreover (x, y)= (x, abe(x, y)) for (x, y)e rt-I(G’) c Nb,
where a, a3(6)= a(ijk), (cf. (7.4.5)); here r(b)= (i, j, k; (s)). Let (x) G’,
(x, yp), (x, y,) be in V; then, q-(x) M’((ik, 6’). Choose an index v such that
(x) qO(ij)(,ugo). We shall identify (to simplify notation) x with [q0(/j)]-a(x).
Choose functions , ,, in F(g) such that (x)= y, ,(x)= y. We have

S’ c c,qo G’

with S’= Spq cp, and qO(ij)up. Then induces an isomorphism
S’ q(M’(ijk, 6’) c ,). Let z S’ be such that (z) x. Then, it is clear that

(7.6.4) Y’ Y’/Yp

(cf. (7.4.7)). By our choice in (7.6.3), this and the inequality (7.6.2)imply (7.4.1).
This concludes the proof of Proposition (3.8), and hence of Theorem (3.3).

8. Some Applicatiom

(8.1) In this section we present some applications of Theorem (3.3)to
problems of algebraization of analytic singularities.
We start by recalling some well-known results. Given an algebraic variety V

over C, there is a canonically associated analytic variety, denoted Vh, whose
underlying set is V(C), the set of closed points of V (see [9]). Given an analytic
variety V and a point P V, we say that V is algebraic at P, or that P is an
algebraic point of V, if there is an algebraic variety W and a closed point
Q W, such that C v, , is isomorphic to the local ring of Wh at Q. This is
equivalent to the assertion that V and W be locally isomorphic (about P, Q
respectively).

Let A C[xl... x,]t, where M (x, x,), (i.e., the algebraic local ring
of the origin of C"), then

h(A) henselization of A {a C{xa, x,}/a is algebraic over A}.
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This is a local ring. It is customary to denote the henselization of A as/, we use
the notation h(A) to avoid confusion with saturations.

(8.2) If a germ of analytic set V, about the origin P ofC", corresponds to an
ideal I C{xa...x,} generated by elements fa, f,, in h(A), then V is alge-
braic at P (see [2], 18.6).

Finally, recall:

(8.3) ARTIN’S APPROXIMATION LEMMA. Given polynomials

fiC[x, ...,xn, y, ym] i- 1, ...,s,

assume yi(x) C[[xl x,]] satisfy

f(x, y,(x), y,,(x))= O, i- 1,..., s,

(where x (xl, x,)). Fix any integer d. Then, there are elements pa(x) h(A)
such that yj(x)= jj(x)(mod (x)d), j 1,..., rn and

f(x, ., (x), .m(X))-- 0, i-- 1, S.

(See [1], Theorem 1.10.)

(8.4) THEOREM. Let V be an analytic hypersurface, defined near a point P of
C,+ 1, and let 3 Cv, p. Assume there is a non-singular variety H and a finite,
strictly surjective morphism r: V H (cf. (1.2)(g), defined near P, such that r(P)
is an algebraic point of A, the branch locus of r. Then, there is an algebraic
hypersurface W, a point Q W, local parameters (x) of , (x’) of ’ (the local
ring ofWh at Q (cf Remark (1.2 (f)), and an isomorphism dp: x ’x such that
c/)(xi) x’ifor all (we use the notation of (1.4)).

Proof It is easy to see that, up to isomorphism, the situation may be
assumed as follows: V is given near P, the origin ofC*+1 (with coordinates

x, y) by the equation

(8.4.1) y" + Al(x)y"-1 +"" + A,(x) O,

H is the hyperplane y 0, t is induced by the projection (x, y)--. (x, 0)and if
6o is the reduced discriminant of (1) with respect to y (i.e., if 6 is the discrimin-
ant of (8.4.1) 1-I P’, and p is not associated with p for -- j, then 6o I-I p),
then 6o ePo, where e is a unit and Po is a polynomial in xl,..., x,. Then, since
6 and 6o have the same prime factors, we must have

(8.4.2) 6’ emP 6F, for some integer m > 0,

(8.4.3) 6 6o G ePo G,

where F, G are power series, convergent near P. Moreover, there is a polyno-
mial Q(T,..., T,) with integral coefficients such that

(8.4.4) Q(A1, A,)= 6.
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Now, look at (8.4.2), (8.4.3) and (8.4.4) as polynomial equations in A, 60, 6,
F, G, e, with coefficients in C[x] (note that Po 6 C[x]). The equalities above
show that these equations have a solution in C{x}. Take d c + 1, where c is
the number ofTheorem (3.3). By (8.3), we find Bz, 6’0, F’, G’, e’ in h(A)congruent
modulo (x) to Ai, 60. etc. Hence

(8.4.5) F_,tmPO 6’F’,

(8.4.6) 6’ e’Po G’,

(8.4.7) Q(BI, B,)= fi’.

Consider the hypersurface W given near P by

(8.4.8) O(Y) Y" + BI(x)Y"-a + ""+ B,(x)= O.

By (8.4.7), the discriminant of O with respect to y is 6’; by (8.4.5)and (8.4.6), 6’
and Po have the same prime factors and therefore, since P0 was a power series
without multiple factors, Po is the reduced discriminant of O- That is, the
branch locus of W is again given by Po 0. Since {B,(x)} are in h(A), by (8.2),
W is algebraic at P. By Theorem (3.3), since Ai Bi mod (x)c+1, we have
3,, 3, (where 3, 3’ are the local rings of V, W at P respectively), by an
isomorphism leaving {xa} fixed. This proves the theorem.

(8.5) Remark. Note that these two embedded singularities are topolog-
ically equivalent (cf. (2.3)).

(8.6) COROLLARY. Let V be an analytic hypersurface of dimension 2. Then,
there is an algebraic hypersurface W, a point Q W, local parameters (x), (x’)of
the local rings 3, 3’ of V and Wh at P and Q respectively, and an isomorphism
dp" - )’,, such that dp(xi)= x’i, for all i.

Proof Take a morphism rt with the properties of n in Theorem (8.4) (e.g., a
"general" projection into a plane in C3). Then the branch locus A is a plane
curve, hence it is algebraic at t(P) (cf. [4]). So we are automatically in the
conditions of Theorem (8.4), and the corollary is proved.

(8.7) Remark. If, in the conditions of Theorem (8.4), for certain regular
parameters ha, h, of the local ring of H at n(P) the induced parameters
x, rt*(h,) form a generic system of local parameters of (9v, , (cf. (2.5)), then
using (2.7) and (2.9)we see that the absolute saturations of (9v, e and of 3’ are
isomorphic. Note that if dim V 2, then we can get (use suitable coordinates
xa, x,, y about P, and project into y 0) a morphism t and parameters xi
which are generic. Hence we get:

(8.8) THEOREM. Given an analytic hyperface V, of dimension 2, and a point
P V, there is an algebraic hypersurface W and a point Q W, such that the
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absolute saturations oJ the respective analytic local rings at P and Q are
isomorphic.
With Theorem (8.8), one can prove the following known result:

(8.9) COROLLARY. We make the same assumptions as in Theorem (8.4), but
now we also suppose to be normal. Then, P is an algebraic point of V.

Proof. Keeping the notations of Theorems (8.4), there is an algebraic var-
~,iety W such that xis isomorphic to x’- Then, the normalizations of and ’are again isomorphic. But the normalization of is , since is normal;

and the normalization of ’ is algebraic, since the normalization of an alge-
braic variety is algebraic. Hence, the local ring is algebraic, and the corollary
follows.

Again, if is embedded, normal of dimension 2, then the conditions of
Corollary (8.9) are satisfied and is algebraic. It is not difficult to see, using
these techniques and the local parametrization theorem (see [3], Ch. III.A) that
we can drop the condition that is embedded. Thus one can get a different
proof of the well-known result that any normal two dimensional singularity is
algebraic.
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