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1. Introduction

In this article we count the number of conjugacy classes in the diffeo-
morphism group, of orientation reversing self-diffeomorphisms of order 2p,
where p is a prime, which act on an orientable compact surface of genus n. To
calculate this number we rely heavily on previous work of the author [5], [6]
and [7]. We give some notation which is fixed throughout the entire article. Let
X be a compact smooth surface of genus n _> 2 and let 9 be an orientation
reversing self-diffeomorphism of X oforder 2p. Letf 92, X’ X/(f, and let
9’ be the map induced by 9 on X’. Clearly 9’ is orientation reversing of order
two. If p is odd then 9

p is also orientation reversing of order two. We let c (resp.
pd) denote the number of loops on X which are fixed pointwise by 9

p

and fixed byf (resp. permuted by f). It follows by [5] thatfhas an even number
2a of fixed points. By the Riemann-Hurwitz formula n- 1 p(m- 1)+
a(p 1), where m is the genus of X’. If X is given a conformal structure so that
9 is anti-conformal, then X may be embedded in R3 so that f becomes the
restriction of a rotation. We denote the angle of rotation of f by (f) and
normalize by requiring 0 < (f) < 2r.
We denote by 4)(n, p) the number ofconjugacy classes in the diffeomorphism

group of X, of orientation reversing self-diffeomorphisms 9 which act on X. We
first calculate tp(n, p) in the case p 2. When p is odd we consider separately
three cases. We say 9 of type one if 9’ has fixed points and X’/(9’) is orientable,
9 is of type two if 9’ has fixed points and X’/(9’ is non-orientable, and 9 is of
type three if 9’ has no fixed points. If 9 is of type three we necessarily have that
X’/(9’) is non-orientable. Also if p is odd then X’/9’ is orientable if and only if
X/9p is orientable and 9’ has fixed points if and only if 9

p does.
Our main result is the following.

THEOREM 1.1. If X is a compact surface of 9enus n, then the number of
conjugacy classes in the diffeomorphism 9roup ofX, oforientation reversin9 maps
on X of order 2p, where p is a prime, is 9iven by the formula

tp(n, 2)= [(n + 1)/2]
4(n, p)= 41(n, p) + thz(n, p)+ 4)3(n, p), p > 2,
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where d i(n, p), the number ofconjugacy classes oftype i, are given in 3.4, 4.3 and
5.3.
Note. Conjugacy classes are always considered in the diffeomorphism group
of X.

2. p=2

LEMMA 2.1. The number d?(n, 2) is the number ofpairs (m, a) which satisfy the
equations (1) n 2m + a 1 and (2) rn a 1 mod 2, where rn >_ O, a >_ O, and
a+m>0.

Proof Using the notation of Section 1, if 9 is an orientation reversing map
of order four, then rn and a must satisfy (1)and (2) by 1.1 and 2.1 of [5].
Conversely for each pair ofnumbers m and a which satisfy (1)and (2)above, we
construct an orientation reversing map 9 of order four such that 92 has 2a fixed
points and X/(92) has genus m. By 1.1 of [5] the conjugacy class of g is
determined by a, so this is sufficient to prove the lemma. To construct a map 9
we let Y be a surface of genus n rn and let F be the hyperelliptic involution.
By (1) and (2), n rn is even and thus by [3], F has an orientation reversing
square root G. We let Pi and p’i G(p), 1, 2, m be a set of distinct fixed
points of F and let Di and D’ be discs about p and P’i respectively, such that
F(D) Di and G(Di) D’. Then by the same argument used in 2.2 of[5] there
are maps W: ODi OD’i such that if we identify x OD to W(x) OD’, the map
G induces an orientation reversing map 9 on the resulting surface X. Clearly X
has genus n, 9

2 has 2a fixed points, and X/(92) has genus m.

PROPOSITION 2.2. (n, 2)= [(n + 2)/2].

Proof By 2.1 we need only count the number of solutions to (1) and (2). By
considering separately the cases in which n is even and n is odd, it is easy to
show that b(n, 2)= (n + 2)/2 and 4(n, 2)= (n + 1)/2, respectively. Hence in
general q(n, 2)= [(n + 2)/2].

3. g is of type one, i.e. g’ has fixed points and X’/g’ is orientable

We calculate the function th l(n, p) of all conjugacy classes of orientation
reversing maps 9 of type one. Before doing this, however, we need a combina-
torial lemma which we will also use in subsequent sections.

LEMMA 3.1. Let a ao, m mo be the solution of n 1 p(m 1) +
a(p 1)for which a is smallest, and rn is largest. Then the values ofao and mo are
described in the table below. The number of solutions to the above equation is
[mo/(p 1)] + 1. Also the solutions (a, m) are given by a a,- ao + ip and
mi- mo i(1 p), i= 0, 1,..., [mo/(p 1)].
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?1 a m

n=_ modp 0 (n+p- 1)/p
n 0 mod p nip

n 0 or mod p p(1 + [n/p]) + n (1 + [n/p])(1 p) + n

Proof Let q and r be integers such that n/p q + r/p, 0 < r < p. Then

(n + a-- 1)/p= q + (r + a-- 1)/p.

The given equation implies that p l(n + a-1), so that we must have
p] (r + a 1). If r 0 or r 1 then the smallest possible values for a are a 1
and a 0, respectively. This gives the first two lines ofthe above table. If n 0
or 1 mod p then p > r > 1 and the smallest value of a occurs when r + a
1 p, so that a p + 1 r p + 1 p(n/p [n/p]). It is an easy matter to
calculate the corresponding values of m.

If we list the pairs (a, m)which satisfy n 1 p(m 1) + a(p 1)in order
of increasing values of a, then we obtain a finite sequence (ai, mi), 0, 1, 2,

k. Since pl(ai+ r-1) we must have ai+l ai+ p. Also mi+l m +
1 p. Thus ai ao + ip and m m0 + i(1 p). The largest value of such
that m > 0 is thus [m0/(p 1)]. Hence there are [m0/(p 1)] + 1 solutions.

LEMMA 3.2. Let a(f)= be fixed. Then the number of conjugacy classes of
orientation reversing maps 9 of type one with 92= f is the number /(n, p) of
4-tuples (a, m, c, d) which satisfy:

(1) n-l=p(m-1)+a(p-1),m_>0;
(2) m+l--c+dmod2;
(3) n + l --c + pd mod 2;
(4) a+c-=0mod2;
(5) c>O,d>O,c+d>O,m>c+d-l,n>c+pd-1.

Proof Assume 9 is a map of type one and let a, m, c, d be as defined in
Section 1. Equation (1)is immediate from the Riemann-Hurwitz formula; (2)
and (3) follow from the fact that X’ and X are doubles of surfaces with c + d
and c + pd boundary components; and (4) follows by 2.3 of [7].

Conversely, one may construct a surface X with an orientation reversing
map 9 such that .c= 92 has 2a fixed points, e(f)-- e, 9

p fixes c + pd loops
pointwise, c of which are fixed byfand pd of which are permuted by f, and X’
has genus m. We first let Y be a surface of genus n + 1 (c + pd) with no
boundary components. This surface has an embeddable map F of order p with
a + e fixed points. One may see this by observing figures 1 and 2 of [2]. Let
ct 2j/p, 1 <_ j < p. Ifj is even then some power of F, say H has e(H) 2rj/2p.
Ifj is odd, then some power of F, say H has e(H) 2g(j + 1)/2p. Thus in both
cases e(H2) 2rj/p e. Again by observing Figures 1 and 2 of [2] it is easy to
see that Y may be embedded so that Y is invariant under a reflection K in the
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x y plane which fixes pd loops which are permuted by H. Now we let Pi and
K(pi) P’i, 1, 2, a be fixed points of H and let Di and D’i be open discs
about pi and p’, respectively, with the property that H(D)= D, H(D’)- D’i,
K(D) D’ and K(D’)= D. We now remove Di and D’i, i= 1,..., a, and glue
ODi to OD’ by identifying x OOg with K(x) cOD’i. We then obtain a surface X
of genus n. The maps K and H induce maps K’ and H’ on X and g H’K’ has
the desired properties.

LEMMA 3.3.
3.2 is given by

The number d/,(n, p)of4-tuples (a, m, c, d) whichsolve (1)-(5)4

[(e + 2)/2] + y’, [(e + 1)/2] --j,
\e=l =1Ol(n p)-- i--0

[(e + 2)/21 + Z [(e + 1)/2] -j,
i=0 \e=l e=l

ao even,

ao odd,

where k [mo/(p 1)], ki [(mo + i(1 p)+ 2)/2], ao and mo are obtained
from 3.1, j 1 if n 1 mod p or n 0 mod p and j 0 otherwise.

Proof We first remark that (3) is redundant. We let m + 1 c + d + 2j,
where j > 0, and if we substitute for m in (3) we obtain

n + l c + pd + 2(p(j-1) + l + (a + c)(p -1)/2.

By (4), (a + c)(p 1)/2 is an integer, so that n + 1 c + pd mod 2.
To count the number ofsolutions we fix a solution (m, a)of (1)and count the

number of pairs (c, d) which satisfy (2), (4) and (5). Let e c + d. fwe require
that e > 0 then there are [(m + 2)/2] solutions to the equations m + 1
e mod 2, as can be seen by considering the cases m even and m odd separately.
For each such value e there are e + 1 ordered pairs (c, d), with c >_ 0 and d _> 0,
such that e c + d. Thus for a fixed value of e, a and m there are (e + 2)/2 pairs
(c, d) which satisfy (2) and (4)if a is even, and (e + 1)/2 pairs if a is odd. Now fix
a solution (a, m)of (1). Then there are e=l [(e + 2)/2] or =1 [(e + 1)/2],
k [(m + 2)/2], pairs (c, d) which satisfy (2)and (4), depending on whether a is
even or odd. We remark that ifa is even then ai+, is odd. The condition (5) will
be satisfied provided we do not have both a + c < 2 and c + d m + 1. This
can only arise ifa=0, c--0, d=m+l, ora= 1, c= 1, d=m-l, whichin
turn only occurs when n _= 1 mod p or n _= 0 mod p. The formula now follows
directly.

PROPOSITION 3.4.

t((P + 1)/2)01(n, p)P) la (n, p) + ((p + 1)/2)zx (n, p)
/fn 1 modp

if n= lmodp
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where

os(n, p)= [(e + 2)/2]- 1,
e=l

zl(n, p)= Ol(n, p)- ax(n, p) and

k [(mo + 2)/2],

mo= (n + p-1)/P.

Proof The conjugacy class of an embeddable map f with 2a > 0 fixed
points is determined by (f). It follows by Nielsen’s Theorem [1, p. 53], thatf
and f, 1 < < j < p are conjugate iffj p i. Thus there are (p + 1)/2 conju-
gacy classes for f iffhas fixed points. If n 1 mod p then a0 4:0 so by 3.3 we
conclude that

,(,,, p)= 1/2(p + p).

If n 1 mod p then a0 0 and by the argument used in 3.3 for a fixed value of
(f) , there are a (n, p) conjugacy classes of 9 with no fixed points and
z(n, p) conjugacy classes of g with fixed points. Nielsen’s theorem [1] implies
that iff is fixed point free, it is conjugate to all of its non-trivial powers. Thus

4,, (,,, p)= ,,,(,, p)+ }(p + p)
in this case.

4. g is of type two, i.e. g’ has fixed points and X’/(g’} is non-orientable

We first make some preliminary remarks. We note that g’ has fixed points iff
gP does (3.3 [7]), and X’/(g’) is non-orientable iff X/gp is (2.1 [7]). Now let Y be
a surface and K an orientation reversing map of order two with the property
that Y/(K) has boundary components. As in Section 3 of [7], we define an
annular region for K to be a region A homeomorphic to an annulus, with the
property that A/(K) is a moebius strip. By 3.4 of [7], we know that there are
either one or two annular regions for gP on X, each of which is fixed by f and
hence projects to an annular region for g’ on X’. If we remove these annular
regions from X and X’, then the quotients ofthe resulting surfaces by the maps
induced by g and g’, respectively, are orientable. Also, the number of annular
regions depends only on the topological type of X/(gP). Thus let e 1 or 2 be
the number of annular regions for gP (and hence also g’).
We have the following analogue of 3.2.

LEMMA 4.1. Let a(f)= be fixed. Then the number of conjugacy classes of
orientation reversing maps of type two is the number of 5-tuples (a, m, c, d, e)
which satisfy the following.

(2)
(3)
(4)
(5)

n l p(m -1) + a(p -1), a > O, m _> O.
m+ 1 =c+d+emod2.
n + l c + e + pd mod 2.
a+c+e=Omod2.
c_>0, d>0, 2_>e_>l, c+d>0, m>_c+d+e-1, n>_c+pd+
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Proof We remark that if 9 is of type two, then by an argument similar to
that used in 3.2 the conditions (1)-(3)and (5)may be verified. One may prove
(4) by an argument similar to that used in 2.3 of [7]. Thus to each orientation
reversing map of type two we may associate a 5-tuple (a, m, c, d, e) and clearly
this 5-tuple is determined by the conjugacy class of 9.
Now let (a, m, c, d, e) be an arbitrary 5-tuple which satisfies conditions

(1)-(5). By 3.2 we may construct a surface Y of genus n with an orientation
reversing map G of order 2p, such that if F G2, then t(F) , F has 2a fixed
points, and X/(F has genus m. Also there are c + e loops which are fixed
pointwise by Gp and fixed by F and pd loops which are fixed pointwise by Gp

and permuted by F.
We now construct a surface X and an orientation reversing map 9. We

choose e loops which are fixed pointwise by Gp and fixed by F. We first
consider the case e -= 1. Thus let ), denote this loop. The surface Y may be cut
along 7 to obtain a surface Y’ with two boundary components on which Gp and
F both induce maps K and H, respectively. Clearly K and H commute. Let
7i: S Y’, i-- 1, 2, be parametrizations of these boundary components with
the property that

K(),l(exp iO))= 72(exp iO) and H(v,(exp iO))= 7,(exp i(O + )).

Then K(72 exp iO))= 71(exp iO) and H(v2(exp iO))= 72(exp i(O + )). Now
identify ,x(exp iO)with ),2(exp i(O + )). We thus obtain a surface X of genus n.
The maps K and H induce maps k and f, respectively, on X. If we let 9 kfj,
j (p + 1)/2, then 9z= f and 9P= k and there are c loops which are fixed
pointwise by 9

p and fixed byfand pd loops which are fixed pointwise by 9
p and

permuted by f If e 2 then a similar argument may be used. Thus to each
5-tuple (a, m, c, d, e)satisfying (1)-(5)we may associate an orientation reversing
map 9 of type two. This completes the proof.

LEMMA 4.2.
by

02(n, P)=’

The number ofS-tuples (a, m, c, d, e) which satisfy (1)-(5)is given

[r/2] + Z [(r + 1)/2] -j,
i=0 \r=2 v=2

ao even,

[r/2]+ Z[(r+l)/2] -j, ao odd,
i=0 \r=

where k [mo/(p- 1)], ki [(mo + i(1- p)+ 1)/2], ao, and mo are obtained

from 3.1, and j 2/f n 1 mod p, j 1,/f n 0 mod p, and j 0 otherwise.

Proof The proof of this lemma is analogous to that of 3.3. It is similarly
true that (3) is redundant. Let r c + d + e and let (a, m) be a fixed solution of
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(1). We first count the number ofchoices for r. Since m + 1 r + 2j, for some j,
and since r _> 2, there are [(m + 1)/2] possible choices for r. For each fixed
choice of r we count the possibilities of writing r c + d + e. If e 1, then
there are r r- 1 + 1 choices for (c, d), such that (2) holds. Thus for fixed
values of a, r, and m there are [r/2] choices for (c, d)which satisfy (2)and (4)ifa
is even, and [(r + 1)/2] choices if a is odd. If e 2 then there are r- 1=
r 2 + 1 choices for (c, d) such that (2) holds. Similarly, ifwe fix values for a, r
and m, then there are [r/2] choices for (c, d)which satisfy (2) and (4)ifa is even,
and [(r + 1)/2] choices if a is odd.
The condition (5) will be automatically satisfied provided we do not have

both a + c + e _< 2 and c + d + e m + 1. This can happen only when e 2,
c=a=O,d=m-l, ore= 1, c= 1, a=O,d=m-l, ore= 1, c=0, a= 1,
d m- 1. The first two cases occur when n 1 mod p and the last occurs
when n 0 mod p. The formula now follows easily.

PROPOSITION 4.3.

fi(P + P)P) toz(n, p)+ 1/2(p + 1)02(n, p)
/fn@ 1 mod p,

ifn 1 mod p,

where az(n, p)= Zk=2 [r/2] 2, and :2(n, p)= 02(n, p)- az(n, p).

Proof The proof is analogous to 3.4. We remark that az(n, p) is the number
of conjugacy classes of maps of type two which have no fixed points.

5. g is of type three, i.e. g’ has no fixed points

LEMMA 5.1. Let a(f)-- be fixed. Then the number of conjugacy classes of
orientation reversing maps oftype three is the number ofpairs (a, m) which satisfy
the equation n 1 p(m 1)+ a(p 1), where a is even ifm is odd.

Proof We set up a one-one correspondence between pairs (a, m) satisfying
the above conditions and conjugacy classes of maps of type three. By 1.1 of[7]
the conjugacy class of a map 9 of type three determines the pair (a, m), and by
4.3 [7] a is even if m is odd.
We now construct a map 9 of type three given a pair (a, m). Let Y be a

surface of genus n. By 3.2 we may construct a map G on Y of type one which
corresponds to the 4-tuple (a, m, c, d). Here c 0, d 1 if a is even and c 1,
d 0 if a is odd. Ifm is odd and a is even then by 4.1 we may construct a map G
of type two on Y corresponding to the 5-tuple (a, m, 1, 0, 1). In both cases we
cut Y along the loops which are fixed pointwise by Gp and reglue as was done in
3.2 so that G induces a map 9 of type three on the resulting surface X.
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LEMMA 5.2.

( 1)
+1

Here mo and ao are obtained from 3.1.

The number of pairs (a, m)satisfying the conditions of 5.1 is

ifm0 is even,

if mo is odd and ao is even,

if mo is odd and ao is odd.

Proof. This follows immediately from 3.1 and 5.1.

PROPOSITION 5.3. Ifca(n p) denotes the number ofconjugacy classes ofmaps
of type three then

(p + 1)/3(n, p) /fn 1 mod p,
P) t(P + 1)(3(n, p)- 1)+ 1 /fn-- 1 mod p.

Proof. This is analogous to 3.4 and 4.3. If n 1 mod p, then ao and by 5.2,
there is exactly one conjugacy class with f fixed point free.

REFERENCES

1. J. NIELSEN, Die Struktur periodischer Transformationen yon Flchen, Danske Vid. Selsk.
Mat.-Fys. Medd., No. 1.

2. R. ROEDY, Symmetric embeddin#s of Riemann surfaces, discontinuous groups and Riemann sur-

faces, Ann. of Math. Studies, no. 79, Princeton University Press, 1974.
3. D. SINGERMAN, Riemann surfaces which are conformally equivalent to their conjugates, (preprint).
4. R. ZARROW, A canonical form for symmetric and skew-symmetric extended symplectic modular

matrices with applications to Riemann surface theory, Trans. Amer. Math. Soc., vol. 204
(1975), pp. 207-227.

5. ., Anti-conformal automorphisms of compact Riemann surfaces, Proc. Amer. Math. Soc.,
vol. 54 (1976), pp. 162-164.

6. ; Orientation reversing square roots of involutions, Illinois J. Math., vol. 23 (1979),
pp. 71-81.

7. ; Orientation reversing maps of surfaces, Illinois J. Math., vol. 23 (1979), pp. 82-92.

NORTHERN ILLINOIS UNIVERSITY
DEKALB, ILLINOIS


