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BOUNDARY BEHAVIOR OF AUTOMORPHIC FORMS
AND TRANSITIVITY FOR THE MODULAR GROUP

BY

MARK SHEINGORN

Introduction

This paper deals with a method of analyzing the boundary behavior (for
nontangential approach) of the modulus of certain meromorphic automorphic
forms on the modular group. The method is also applied to questions of
transitivity for the modular group. The idea of the method may be simply
stated: the line {zlz= + iy, y>0} (or a Stolz angle about it)may be
decomposed into a series of intervals each one ofwhich is "essentially".mapped
into the standard fundamental region for the modular group by a specific
transformation. Both the decomposition and the accompanying transforma-
tions are given in terms ofthe continued fraction representation of . Computa-
tions involving boundary values and transitivity are thus made more tractable;
in the first instance using the functional equation, and in the second, certain
geometric and measure theoretic considerations.

Section 1

Let F(1) be the modular group and q a positive integer. Thenf(z) is said to
be a meromorphic automorphic form (or simply, a form) on r(1) of weight q
(dimension 2q) iff satisfies

(1) f(Vz)V’q(z) =f(z)
for all z e H {z: Im (z) > 0} and all V e F(1). Let H+ H w {00}. Let be
an irrational point on the real axis with simple continued fraction representa-
tion [ao; aa, a2, a3, ...]. Let p./q, be the nth convergent of , so that
p,/q. [ao; a,, a,,].
Our principal results on boundary behavior (stated for positive q)are as

follows.

THEOREM 1. If is such that for some e > 0,

2q+e
a.+ -> log q,
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for infinitely many n, then the modulus ofany meromorphicform ofweioht q with a
zero oforder t > 1 at c has no nontanoential limit at . (Indeed our proofshows
that the cluster set of this modulus is [0, ].)

Conversely:

THEOREM 2. If satisfies

(z 2q logq,--a.+x) as n,

then the modulus ofany meromorphicform ofweioht q with a zero oforder la >_ 1
at c and vanishing nowhere else in H+, approaches for nontanoential
approach to . (Here T, u > 1 is an explicity computable constant dependin9 only
on q and lz and not

Some condition on the nonvanishing of the form away from is essential
for the method to work in Theorem 2. However, these theorems suffice to give a
rather complete discussion of AI, where

A(z) e2’z I-I (1 e2imz)24,
m--1

Im z>0.

COROLLARY 1 (Boundary behavior of A[). If is irrational and

12+e
a,,+ > log q,,

for some > 0 and some infinite sequence of n’s, then AI has no nontanoential
limit at . Conversely, if

12

/i:T6,
log qn--an+l --.ct as n,

then IA(z)] -, as z nontangentially.

Theorems 1 and 2 correct the assertion of D. Rosen appearing in the Duke
Math. J., vol. 25 (1958), pp. 373-380 (Theorem 6), as well as in Lehner [6,
p. 333]. The difficulty with Rosen’s proof is elucidated in Lemma 2 below. We
observe that the rate of growth a,+ log q. arises in connection with one of
the important theorems of Khinchin to the effect that almost real numbers
display this growth [5, p. 69]. We are not in a position to interpret this fact,
however. The proofs of these theorems are contained in section two. As the
reader will see in that section, partial results are possible with weaker hypoth-
eses. Also, analogous results hold for negative q.
We will now describe our results on transitivity which appear in Section 3.

Let Ro be the standard fundamental region for F(1), i.e.,

Ro {z" zl > 1, -1/2 < Re (z)< 1/2}.
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For any irrational number , consider the image of {z" z + iy, y > 0} under
F(1) in Ro (this is a set of h-arcs in Ro).

DEFINITIONS. (i) is called a point of approximation if the above image is
not nowhere dense (see Beardon-Maskit [2]). Call this set of ’s Ta.

(ii) is called point-transitive if the above image is dense in R0. Call this set
of ’s Tp.

(iii) is called line-transitive if any h-line in R0 may be approximated
arbitrarily closely by some arc of the above image. (One way of making this
specific is to require that the given arc and the approximating arc, when ex-
tended to the real-axis, fall at nearly coincident points on that axis.) Call this set
T,.

Clearly Ta Tp T. Artin [1] showed that T consists of those real numbers
whose continued fraction representation contains each finite sequence of
integers. Myrberg shows, first for F(1) and later for much more general Fuch-
sian groups, that (the complement of Tt) has measure zero [7], [8]. We shall
make use of both of these facts. (Interestingly, Myrberg’s proof in the general
case proceeds by introducing a kind of continued fraction representation for
points in the limit set.) These papers of Artin and Myrberg began a deep study
of ergodic properties of certain geodesic flows (see Hedlund [3], and Hopf [4]).
The distinction between Tp and Tt has been obscured in the literature. Lehner

[6, p. 321] informally describes Tp and then gives T as his formal definition of
the transitive set. Nicholls uses T in [10] and Tv in [9], calling them both the
transitive set. It may be, of course, that Tp and Tt are the same set. However, this
is not known, one way or the other, for a single Fuchsian group.2 Indeed at this
time the only known method of proving a point is in Tp is to prove it is in T.
Theorem 3 below starts with a set of T (not satisfying Artin’s criterion)

and proves that such Tp. Thus it is a step in the direction of proving Tp T
for F(1). However, this theorem suffices to show that point-transitivity is not
connected with the above-mentioned boundary value problem for automor-
phic forms (Corollary 3). There is such a connection for automorphicfunctions
(q 0 in (1)); Lehner [6, p. 331].

If Tp does not equal T for F(1), then perhaps Tp is characterized as a class of
continued fractions with number-theoretic significance. This is the case for Ta,
where the Beardon-Maskit characterization reduces (for F(1))to the statement
e Ta if and only if is irrational.

Section 2

This section contains the proofs of Theorems 1 and 2. We begin with:

LEMMA 1. Letfbe aform ofweight q on F(1). Assume has unbounded partial

The author has recently shown that T T in the case of the modular group (to appear in
Proc. Cambridge Philos. Soc.).
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denominators (the ai).
I/(z,) . Then there exists a sequence z.= + iy. with

Proof (Epstein-Lehner [6, p. 332]). Khinchin [5, p. 36] contains the formula

q(ak+X + 2)
Pk

We see from this that the assumption on is equivalent to assuming that
q2.i 1 P.i/q.i 0 on some sequence ni m. Call n ni and set z. +
i/cq2., c > 0 to be determined later. Let V. e F(1) be the matrix

We have

Also,

1/cq2
Im (V.(z.))= q.( + i/cq2.)- Phi 2

1/c
q2. ( p./q,,)2 + 1/c2

c.

1
Vq(z.)l q2.( p./q.)2 + 1/cZq2.

Choose c so thatfhas no zero ofthe form x + ic. We may also choose V. so that
1/2 < Re (V.(z.)) < 1/2. Then, by the above, we can get a subsequence (again

called n) such that V.(z.) z* and f(z*) O. Now
pqf(z.)] f(V. z.)] V (z.) --,

LEMMA 2. Assume is such that there exists e, > 0 with

(2 + 2 6)q + a)log q.

for infinitely many n where f is holomorphic at havin9 a zero of order la >_ 1
there. Then there exists a sequence z. nontangentially with f(z.)--. O.

Proof
hypothesis. Let V. be as in Lemma 1. Now

Let z. + p./q. l, where {n} is the sequence described in the

and
1

(3) V(z.)l [2q21 p./q.12]

1
(2) Im (V.(z.))= .["q2, P.’-.’/ql --*
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Because of (1)and (2) we have

exp q.21 p,,/q.[If(z.)] 0 q2.q p,,/q,,12q
where the O constant does not depend on n and the estimate holds only for n
sufficiently large, i.e., Im V.(z.) sufficiently large.

It is at this point that Rosen [12] alleges (p. 379, Lines 2-3) that the O term
approaches 0 with n if a. --, 00. That this is not the case without further hypoth-
esis may be seen by taking

a,,+ q P./q,,I
log log q,,.

We now split into two cases:
(i) I-p./ql<l/q/ for infinitely many n. Thus
< [- pn/qn[’/2+’ and

exp 1 P/ql/ +

f(z,)l o qI P/q,,I o(1).

(ii) (2+26)q+e
log q.

> qZ. P,,/q,, >- 1/q

holds for infinitely many n. Thus q2 I P./q.l2 > 1/q2+2 and

f(z.)] O np
q- -- 2 6)q

Because and 6 may depend on q we have shown Lemma 2 and with it
Theorem 1.

Clearly the same techniques yield analogous results for forms of negative
weight.
We now wish to establish a converse to Theorem 1. Since our approach will

be based on Equation (1), we must have some knowledge ofthe zeros atf. That
is, as in Lemma 1, the growth of ]V’,q(z,)] is to determine the behavior of
]/(z,)]. But for that we must know ]f(V.(z.))] + o too rapidly. As will be
seen, at c this is not a problem. But off a neighborhood of o, there is no i
priori reason that f(V,(z,)) is not equal to zero for all n. Thus, for the remainder
of this section, we will assume that f has no zeros in H. As the reader will see,
weaker but less natural assumptions are possible.
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Lastly, in what follows we will work with the line + iy rather than a Stolz
angle at in order to simplify computations. All results hold for the Stolz angle,
however.

PROPOSITION 1. Let be an irrational number. Then there exists e(= e) such
that if e, > y > 0 there is an n with

(4) 1 P,/q,I
< y < 1/q2,.

10a,+

Proof To show this, we must merely show that

1/q2,+1 >_
]-P"q"]

or 10>q"+ll-P"q"].
10a.+ an+

Now
2

RHS
(q,,a,,+l + q,,-1 I

an+
(a,+l + q.-1/qn)Zq2 l Pn/q,I

an+
(a,+l + 1)2

2an+
by(,). We are done since a,+l is a positive integer.

PROPOSITION 2. Choose y > 0 and let z + iy. Select n so that (4) is

satisfied. Then Im (V,(z))_> 1/20 (V, as in Lemma 1).

Proof.

(V.(z)) >_ min !Im (V.( + i/q2.),Im

First,
10a,, +

1 1
i/q2")) q,l - Pn/qn[2 if- 1 -> (1/a.+ 1)2 + 1+ 1/2,

by (*).
Second,

10a,,+ 10a,,+ q.Z[ P./q.I (1 + l/a2.+ 1)

__> 1/20,
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We will need the following computational result"

PROPOSITION 3. Let A A,= q,, B B,= p,/q,I, C C,= AB,
D D, a,+ 1, and

_#y )exp .CZ + AZyz

(C2 -F- A2y2)q

Then the minimum of 9(Y) for

(4’) B/IOD < y < 1,/Az

occurs either at 1/Az on in the interval [B, TB] for some constant T T, u"

Proof. A simple calculation shows

-.y )tg,(y) {(Cz + Az + yz)--z exp .C2+AZyz

2A4qy3 + laA2y2 2A2C2cgy ]/C2].

The term in braces is positive. Call the term in brackets P(y). P(B/IOD)is
negative. P(y) is negative if y is large. Thus P(y) 0 cannot have three roots in
the interval [B/IOD, l/A2]. It is easily seen that the minimum of 9 in this
interval occurs at 1/A2 or the smaller root of P(y)= O.

Claim. Assume P(y)= 0 has a root in (4’). Then there exists a constant
T T,, such that (for all n) P(y) has its smallest zero (in (4’))in the interval
[B, TB].

Clearly P(y) < 0 for 0 _< y _< B. Say n is such that a.+ -> 20q/3/. We have
P(2B) A2B213/,t 20qA2B] >_ 0 since A2B q2, p./q, <_ 1/a,+ 1, by (.).
Thus in this case the claim is valid with T 2. For those n with a,+ < 20q/3kt,
we have by hypothesis a > 1 with P(tB) >_ O. This means that

(t2 1)/(t 3 t) > 2qA2B/la

which, for these n, implies lit >_ q/(lOq + 3/) using the LHS of (,). This estab-
lishes the claim and with it Proposition 3.
We are now ready to prove our converse. Let z,, + iym, Ym O. By

Proposition 1, to each Ym there is an n n(m)so that (4)is satisfied. By
Proposition 2, Im (V,(z)) > 1/20. Using (1), the fact that fdoes not vanish in
H, and the fact that f has a zero of order # > 1 at we get

(5) f(z.)l f(V.(z.)llVy(z.)l
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for some positive 6 independent of m. The RHS of (5) is equal to

2rtpy
exp C2 + A2y2

g(y).
(C2 -- AZy2)q

(Here the notation is that of Proposition 3, 2rtp replaces p, and we have
dropped the subscript m.) Since y Ym is in the range (4), which is the same as
the range (4’), the minimum of 9(Y)occurs at 1/A2 or in the interval [B, TB], by
Proposition 3. It follows from the proof of Lemma 1 that 9(1/A2)
g(1/q2.) c as nc. (Take c= 1 and the fact that q,41_ pn/qnl2 is
bounded). Thus we must calculate g(t] p,/q, ]) for 1 < _< T"

a(tl --P,q,I)

-2npt )exp q.lg P,/q,[ (1 + 2)

r2qr2q T2+ exp +
> q2qe-"Ur".+,.(1 + T2)-qe-2"ur

where the first inequality uses (,). The log of this expression is

log q, a,+ K2,

where K, K2 > 0. Thus we have proved Theorem 2.
Again, analogous results hold for forms of negative weight.

COROLLARY 1. (Boundary behavior of AI). If is irrational and

(12 + e)
a,+ _> log q,

for some e > 0 and some infinite sequence of n’s, then [A has no nontangential
limit at . If

12
log

gT6,1

then I (z) oo as z nontangentially.

Proof A is a nonvanishing (in H)modular form of weight 6 with a zero of
order 1 at oe (Rademacher [11, p. 136]).

Section 3

The aim of this section is to prove"

THEOREM 3. Let [ao; a,, a2, ...]. If there exists a sequence {ni} and a
constant K such that {%}--, oe and am < K, m q {hi}, then Tp.
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We begin with some results needed for the proof:

LEMMA 3. q,-1/q, [0; a,, a,_ 1,

Proof.
q,- q,- 1
q. a.q._ + q.- 2 qn- 2a --tin-and proceed by induction.

LEMMA 4. If [0; a), a), ...]- [0; a l, a2,...] as in , then a- a, as- o .[br each n.

Proof This can be done by induction. We omit the details.

LEMMA 5. Let S S be the derived set of {q,_l/q," n 1, 2, ...}. Then
m(S) 0 or 1. (S obviously lies in [0, 1].)

Proof Assume re(S)=/: O. Since S is closed, we must show S [0, 1]. Since
m(T) 1, we have that S c T 4: 0. Let z S c T, z [0; a l, a2,...]. Take
any fl [0, 1], fl= [0; ill, fiE, ...]. Choose L > 0. The sequence ill, flL
appears in the expansion of z (infinitely often) since z e T. Say aN+j-1 flj,
1 < j < L. Since z e S we may select a sequence q,,_ 1/q,, z. By Lemma 4, for
all sufficiently large, the expansion of q,,_ 1/q,i begins with al, aN+ .-1.

Now Lemma 3, applied to q,i_ 1/q,,, shows that the sequence ilL,..., fl appears
in the expansion of . Again by Lemma 3 there exists an s, such that

(6) qt-1/q [0; ill,..., ilL,..., all.
Now let L o. Then the RHS of (6) converges to ft. Since fl was arbitrary,

we have shown S [0, 1].
The proof shows that fiE,..., fll was contained in the expansion of . This

implies

COROLLARY 2. With notation as in Lemma 3, m(S) = 0 implies e T.
LEMMA 6. Let

V= \(q"+lq, -P,+),_P,

and - [ao; a l, a2, ...,]. Then

(7) -V,()= [0; a,+2, a,+ 3," ’’]

Proof Let r, [a,+ 1; a,+2, a,+3,...] and

P. P,- )q. q,-
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Then (see Khinchin [5, (16)] z.(r.)= . Now

-1)z-+ V,

and

-1 -1 -1
Vn() Tn--+ll () Fn+ [a.+2, On+ 3,’’ "] -[0; a.+2, a.+3,...].

We will apply this lemma when n is even, and thus F(1). When n is odd,
defining

Wn (--qn+q, --P,

PV,() [0; a,+ 2, a,+ 3,’’ "]"
gives

The derived sets of {Vn()}neven and {I’V()},,od have measure 0LEMMA 7.
or 1.

Proof. Let T T be the derived set of {W,()}= 1. Say m(T)=p O. Then, as
in Lemma 5, there is r e T c T. Let z [0; e,, e2, ...]. (We showed in Lemma
6 that T c [0, 1].) Let bl, b, be an arbitrary sequence of positive integers.
bl, b. appears in the expansion of z. Say eN+j-1 bj; j 1, L. Let
W,()--.z. By Lemma 4, if n is sufficiently large [0; el, aN+L-l] is the
N + L 1 convergent of I,V,(). By (7’), the sequence b 1,..., b , appears in the
expansion of . Thus e T and re(T)= 1, again by (7’).

LEMMA 8.
holds for Wn.

Im V.( + i/qZ,)> 1/3, Im V,( + i/q,+ 1)>- 1/5. The same result

Proof. We have already done the first calculation as part of Lemma 1.

1
Im V.( + i/q+ 1) 2 2q,,q,,+ 1[( p./q.)2 + 1/q+ 1]

1
2 2 2q,,+ + q2.1 P./qnl2 + q,,/q,,+

1
>

[(a.+l + 1)2/a.2+ 1] -t’- 1

by (7)and (,).
1/5,

We are now in a position to prove Theorem 3.
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Proof Let h.={z: z= + iy, 1/q2,+x <-Y <- l/q2, By Lemma 8,
Im V,(h,) > 1/5. (We will now assume that V, e F(1), i.e., that n is odd. If n is
even a corresponding argument with l/V, must be substituted.) Select Y so large
that (i) the set J J r= {z: z x + iY} has no points F(I)equivalent to any
point with 1/5 < Im (t) _< 5 and (ii) Y > K + 2. Now if Tp, F(1) images of
the h, must be dense in J. V,(h,)is an arc ofthe h-line whose endpoints are V,()
and q,+a/q,. Now V.() q,+a/q, 1/(qZ. I P,/q. I). It follows that for
n q {n}, V,(h,) c J . On the other hand

]V.,()-q,,,+,/q,,,] as ni.

Relabel the {hi} sequence as {n}. Then for n sufficiently large,

V,(h,) c J =/= O.

(Here we use the simple facts that Im (1/,( + i/q2,), 1/,( + i/q2,+ a)) < 9.) If U is
any element of F(1) with U(h,) J 4: f), then it follows from this, Lemma 8,
and the choice of J, that U TV. for some translation T in F(1) uniquely
determined by n. We have already noted that the (euclidean) radius ofthe h-line
of which V,(h,) is an arc, approaches . This means the arc(s) between
J c l/,(h,) and the real axis given by these h-lines is nearly a vertical line, for n
sufficiently large. (That is, this arc lies in a Stolz angle of width e for n > N
N(e).) The same analysis applies, of course, to the arcs determined by the h-lines
T, V.(h,).
The base points of these arcs and their F(l)-equivalents in [0, 1] are easily

determined. 0 > V,()> -1 as we saw in Lemma 6. Also, q,+ a/q, is F(1)
equivalent to q._ a/q, by the equation q,+ a.+ aq. 4- q._ a. Thus a complete set
of F(1)-inequivalent base points in [0, 1] lies in the set D {x: x V,() + 1, or
x q,_ a/q., for some n}. (There may be repetitions.) By Lemma 5 and 7,/ has
measure zero and is, of course, closed. Thus we may choose a closed interval
[a, b], 0 < a < b < 1 with [a, b] c/-- 0. Consider J[a, b], the subset of J
whose elements have real part in [a, b]. Because [a, b] c/ 0, and these arcs
lies in Stolz angles of arbitrarily small width for all n sufficiently large, we have
that J[a, b] has no point in common with these arcs for n sufficient large.
(Recall that the arcs in question are the segments of T. V.(h.) for height Y, i.e.,
from their intersection with J, to the real axis.) From this it follows that J[a, b]
contains (uncountably many) points not in the closure of

0 (r’(1)(h,)c J)-- 0 (T, V.(h,) c J).

There remains the possibility that these points lie in the closure of a sequence of
arcs of F(1)(h,) not intersecting J (i.e., below it). But all members of this
sequence beyond some finite point would have to intersect J y_ for some small
6 and the argument above would show that the points J y[a, b] do not lie in the
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closure of this sequence. Thus we have shown

Ro ] r(1)(hn))

and so q Tp. This concludes the proof of Theorem 3.
The fact that an, oo (and is not just unbounded) is essential to this proof as

otherwise the Stolz angle argument fails. But the fact that an may approach o
arbitrarily slowly allows us to state:

COROLLARY 3. No analytic condition on the closeness ofrational approxima-
tion to determines whether or not Tp. In particular, point-transitivity and the
existence of boundary values of automorphic forms are different problems.
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