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TRANSLATION INVARIANT KOTHE SPACES

BY

GERALD BURTON SILVERMAN

1. The function spaces that this work deals with were first studied by K6the
in [6], [7], [8] when he examined subspaces of the space of all real sequences put
in weak duality. The theory was later generalized by Dieudonn6 in [1] to
subspaces of locally integrable functions on a locally compact a-compact
Hausdorff space with a Radon measure. This was further developed by Luxem-
burg in [11], Lorentz in [9], [10], and Welland in [14], [15] among others. Here
we deal with such function spaces defined over a topological group with invar-
iant Haar measure.

2. We need some definitions and facts.
Let E be a non-discrete, locally compact, a-compact, additive topological

group with regular invariant Haar measure g. There exists a 0-neighborhood
U ofsymmetric open sets that are relativelybase ’ containing a sequence { .}.=

compact such that {0} . Uand .+ c U for any n [4]. Let {E}= be the
increasing sequence of compact sets whose union is E.
The set of all locally integrable functions on E is denoted by

f= {f: f [f[ d#< o for each n}.
En

For any subset F of f we define the K6the space associated with F by

A= A(F)= {f f.fef, gdp< for all g F};
A* A(A(F)) the K6the dual of A. A is a complete vector lattice with (A, A*)
in weak duality by the bilinear form (f, #) j f. # d/. A set of functions
H c A* is normal if h H and I#1 -< hl implies # H. The set A is a com-
plete locally convex topological vector space under the strong topology S
(A, A*) S defined by the seminorms p(f) Sn(f) supg n j Ira1 d# as H
runs through the weakly bounded subsets of A*. The weak topology or a-
topology on A is generated by the sets {f: ]j f.# d#l < 1} for each # e A*.
The function defined by f(x)= f(x + t) for t, x E are translates off. We

define a K6the space A to be translation invariant if each translate offbelongs
to A wheneverfdoes. A semi-norm p is translation invariant if p(f) p(f) for
each t e E and f A.
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TRANSLATION INVARIANT KTHE SPACES 413

3. In this article we give some characterization of the strong topology on a
translation invariant space together with a number of counter examples on
conjectures raised concerning the behavior of translates of functions in such a
space. We then give a theorem which is the main result of this article linking the
convergence of the translation to the original function and the condition that
the KiSthe dual be the same as the topological dual under the strong topology.
In general, with the strong topology the K6the dual is not the same as the
topological dual A’. Witness the fact that (E, L1) are K6the duals but
(L)* L :fi (L)’.

In addition a sufficient condition is given for th convergence of the trans-
lates to the original function.

4. PROPOSITION 1. a seminorm p on A is translation invariant if and only if
the bounded set B A* is translation invariant, i.e.

U {Or: 9 B} a.
teE

Proof If we assume B is translation invariant then for a t 6 E, 9-t 6 B if 9
does. Since p is the seminorm associated with B, we have

p(f)= sup f f Ol dla sup f If’o-,Id/t=p(f).
gB "E gB E

For the converse we can assume without loss of generality that the weakly
bounded B A* is normal, convex and weakly closed in A* and p is transla-
tion invariant. If

then the bipolar

coincides with B by [14].
If there existed a t 6 G and an h 6 B such that ht q B, then because B (B),

there would exist an f6 B c A satisfying supgB f. oldu_< 1 but
]f.h, ldu> 1. But p being translation invariant and p(f)=

sup, ]f’old _< 1 yields a contradiction since

p(f) p(f_,)= sup f f_, ol >_ f If-, hi’Ix ( If h,I > 1.
gB

Thus the proposition is proved.

Remark 1. The space f and its K6the dual tI), the set of essentially bounded
functions of compact support do not have translation invariant seminorms or
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ones that are translation bounded. The seminorms generating the strong topo-
logy on A are given by

P.(f)= If]dla, n= 1,2,
’g

If E R and f(x) = (x n)/"- Z.,,+ and t. n (n 1, 2,...),
then p(.) . d + (x- n)/"- dx as n .
Even if A is a translation invariant Banach space p may not be translation

invariant or translation bounded. For this example let E R and set 9(x)
x + 1 ft. Then L {f fl: f’9 d < } can be easily shown to be a
Banach function space with norm p(f)= R [f’o]d. The function 9,(x)=
x + t] +1 is a multiple of O(x)and the bounded function (Ix+
t] + 1)/([x + 1) showing that anyffor which R fo] d < will also have

Therefore L is not only a Banach space but translation invariant. If we
consider the function f(x)= x-3. Za, L, then for each n,

This clearly shows that this Banach space does not have a translation bounded
norm.

PROPOSITION 2. If the set {g,.}= is weakly bounded in A* for each g A*
and sequence {t,} in E converging to O, then for any seminorm p for S(A; A*) and
any compact K E there exists a seminorm p’ for S(A, A*) such that
sup, K P(f) <-- P’(f) for anyf A.

Proof Let p and K be given. Let B A* be the a-closed bounded, normal
subset associated with p; i.e. p(f)= S,(T). We show D ,r B, is weakly
bounded.

If D is not bounded, then there exists an f A for which

sup sup f fo, dl "tK gB"

Thus we could extract a sequence {t.}=l c K and non-negative {g.}= B
such that f. (g.),. ]d/ > 2". n for each n. Since {t,} K is compact, there is
a subsequence of {t.} and e K which is the limit of the subsequence. Replacing
the subsequence by {t.} and considering {t. t} we can assume t. .0. Since B
is normal,

A=B={fA’lffodl < 1 for allg B

is normal and

< 1 for allf A [141.
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If h, ’= 9i/2i for n 1, 2, then for any r(x) A,

r.h. dlx < r.gidlx <1.

Thus h. 6 B A for each n. By [14] there is h 6 A* which is lim h,. Since
r. h La(E, Ix), we use the Lebesgue dominated convergence theorem to see
that

As this is true for all r e A it follows that h e B. But

1f f" h,. dl >-f f(h,,), dl >- n f f(9,,),, dl >- n oo.

h is weakly bounded. ThusThis contradicts the hypothesis that .}.=a
D L)trBt is weakly bounded. Replacing K by the compact
-K {-t: t K} and denoting p’ as the seminorm associated with D, we
have for any K and f A,

sup f f, o d sup flY o-,I <_ sup f lfoldu p’tf).p(f)
gB gB gD

is a partition o the identit I on A i limo /o the stron topolo on A
or each / A.

COROLLARY 1. Iffl is translation invariant and {T} is a partition of1for the
weak topology on A, then for seminorm p of S(A, A*) and K compact, there is a
seminorm p’ of S(A, A*) for which sup, r p(f) < p’(t) for any f A.

Proof Let t.--+0 in E and let f6 A. By our hypothesis if 9 6 A*,
lim, [E (f-,.- f)9 dlx[ 0. Thus there exists a positive number M for which

I.If’g,.dlx =lff_,.9 din < I.ff’gdlx +M for alln.

Thus {9t.}, is weakly bounded in A* and the corollary follows from Proposition
2.

COROLLARY 2. If B c A* is a-bounded, normal and there exists an open set
V in E such that U {Bt: t V) is a-bounded, then U {Bt: t K) is a-boundedfor
any K E compact.

Proof Since V is open there exists a relatively compact 0-neighborhood
U E and y e V such that y + U V. Further

fief(o), +r a/ f f_,!7, d/ for t U
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implies U{B,: U} is also a-bounded by the hypothesis. Let K be any com-
pact subset of E andf A. Then there exist n elements {ta, t2, t.} K for
which K UT:l (ti -- u).

As U {B,: U} is a-bounded and {f_,,},".=, is a finite set of functions in A we
have

sup sup
i_<n g uB

Because every s 6 K is of form s t + for some K and some <_ n we
have

sup sup f f" gl d/ sup sup sup
sK gB i<_n teU gB

This holds for anyf A; so the corollary is proved.
Notice that if A is a Banach space with norm p and satisfies the conditions of

Proposition 2 or its corollaries, since each E.: n 1, 2,... is compact there
exist numbers {M.: n 1, 2,...} satisfying

sup p(f)< M..p(f) for each n andf a.
teEn

As shown in Remark 1 we cannot conjecture any further that there exists a
constant M such that sup p(f,) < Mp(f) for all n.

5. In this section we show that the net (T,} being a partition of I is equiva-
lent to the K6the dual being the same as the topological dual. The assumption
of Proposition 2 in the previous section is vital to the discussion; we give an
example showing the assumption is not true even in a restrictive case.

Example. We construct K6the space A which is the intersection of KiSthe
spaces associated with the translations of a single function of compact support
and demonstrate that {O.}. is not weakly bounded in A* for a O 6 A* and a
sequence t. 0 in E.

Let E RX with Lebesgue measure and let

g’x’(
1 /2 + 1/,,4

X Z[ 1In, 1/(n )1"
tl

Then g(x) L since

f.R1 x- dx
rl /n

1 1 1/2+ 11n4

n (n-1)n 2= 1 1
< )", -- <oo.

2
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The sets L’,, {f6 f" ,, [f-g,[ d < oo} are K6the spaces for each R’ as
is the space A ("It Lgx, which is translation invariant.

Let f= x-x/z. Zto,j. To see that f6 A we must showf. 9 is integrable for
every R. Clearly the only t we need check are t 0, 1In (n 1, 2, ...).
For t 0,

1
f’Odl= n _ln) 1/2 + 1/n4

X- 1/2 X dx

1
_<2En- <m.

For any fixed integer m 1, 2,... set tm --1/m and we have

f-1/m "g d/a x- ) 1/2 + 1/m4

X--

n=l n /n

m4+ ()()dx
m m(m-1 .=

is clearly finite. But

dx

dx

f f" 91/m dla f f_ 1/m ] dla > m3 for each m 1, 2,

Thus {g/m}m is not weakly bounded in A*.
In view of the preceding remarks we make the following definition.
A translation invariant K6the space A is Translation Bounded if {O.}. is

weakly bounded in A* for any 9 6 A* and any sequence {t.} in E convergent to
0. Because of Proposition 2 this is equivalent to having
,r B, ,r {f:f B} weakly bounded in A* for any B c A* that is
weakly bounded and K = E that is compact.
With our consideration of the functions {f} we have to make use of the

functions To fforfe A and relatively compact 0-neighborhood U c E defined
by

1
Tv f(x) I(U) f f(x + t)dl(t) for x 6 E.

From now on we use dt or dx in place of dla(t) or dl(X). With the obvious
definition {U" O e q/} is a directed set and {Tv}v is a net.
The following theorem will be useful.
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THEOREM 1. If A is translation invariant and translation bounded, then we
have the following:

(i)
(ii)
(iii)

Iff 6 A, then Tv f 6 A forf 6 A and U .
Tv f is continuous for f and U .
Iff --+f as t --+ 0, then Tv f--+f as U -+ 0 for S(A, A*) and f6 A.

Proof (i) Letf A, g A* and U ’. Since u is relatively compact and A
is translation bounded the set {e f,9 dp" t U} is bounded by some constant
M. We then have

1

1
+ dx)la(U) fv (.(E f(x t)9(x) dt

la(U f O dla dt < M.

Thus Tv f A.
(ii) The proof of (ii) runs similarly to the proof of Lemma 2 in [13].
Let f f, U ’ and x e E. Let E be a positive number. There exists an

integer n such that x E., and an integer m > n such that the compact
E, + U + U + U Era. Since f is integrable on Era, there exist a 6 > 0 for
which A c E and p(A)< 6 implies A fld < (u)(e/2).

Let V be a symmetric open 0-neighborhood in E such that p(V + U[ U) < 6
and Vc U. If yx+ V, then for t V+U we have t+yEm and
+ x E., implies the following

Ia(U) T f(x) Tv f(y)[ ft f(t + x) dt f f(t + y) dt
U

ft f(t) dt f f(t) dt
+x +y

fU + x/U +3,

x-y+U/U

f(t) dt +

f(t + y)dt

f f(t) dt
+ y/U +

+ U/U

<- f f(t + y) dt-t- fvv + uiu + uIu

< p(U)(e/2)+ p(U)(e/2)

Thus Tv f is continuous at x.

f( + at
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(iii) Let B A* be normal and weakly bounded. If 8 > 0 is given, then
ffas t ---, 0 implies there is a U ’ such that Ss(f -f) < 8 if U. Con-
sequently, if V U we have

Ss(To f-f) sup f (T f f)g dla
eB

f [lfvsup (f(x + t)-f(x))dt 9(x) dx

sup (f(x + t)-f(x))o(x)dx dt

’ Jsup dt(t)

1

Thus Tv ffas U 0 for S(A, A*).

THEOREM 2. If A is a translation invariant K6the space given the strong
topolooy S(A, A*), the followin9 two statements are equivalent"

(1) A is translation bounded, A* can be identified with the topolooical dual A’
of A*.

(2) {T,} e is a partition of the identity in A.

Proof We first show (1) implies (2). We begin by showing lim,_.o ;(A +,= ZA
and lim ZA+V .A as V---, 0 (V q/) a.e. and for S(A, A*) whenever A E
with p(A) < oo. Since

{x-Izv+ ;al 4: 0} la(V + AIA)O as V--+0 (V +

because of the regularity of p, we have lim A+V A a.e. Further if 8 > 0 is
given there is a V ’ for which p(V + A/A) < 8/2. Consequently for t V
symmetric we have

kt{X" .A+,(X) ZA(X) 4: 0} p(A + t/A) + I(A/A + t)
la(A + t/A)+ p(A t/A)

< I(V + A/A)+ p(V + A/A)
<8.
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Thus limt+o )(,A+t )(,A a.e. For convergence in S(A, A*) let us consider the case
where A is compact and let B c A* be normal weakly bounded and weakly
closed (without loss of generality). Given e > 0, for each V a compact symme-
tric neighborhood of 0 in E consider the sets

Av Ig A*" f g ZA+v d# < e}.
The sets are open for the weak topology tr(A*, A) in A*. Since each 9 A* is
also in f and I(V + A/A) 0 as V--. 0, we can always find a V for which
a+v/a O < e and therefore {Av: V U} covers B A*. Because of [15,
Theorem 2] B is compact for r(A*, A). Hence there are a finite number of
symmetric 0-neighborhoods V1, V2, V, in E such that B c 7= Av,. Let-
ting Vo (]’= V, we have

Thus

f )(,A+V g d# < .A+Vo g d# < for all V c Vo and 9 B.

SB(JA+V ZA)= SB(ZA+V]A)-" sup f )(,A+V 0 a]x < , for V Vo.
oB

We have now lim ZA + V ZA for S(A, A*). Now let A be a set with/(A) <
there is a sequence of compact sets {A.}n% such that A, c A,+ 1, n 1, 2,
and LJ, A, A. Since

A )(,An )(,AlAn L no a.e. and )(,A + v )(,An + V )(,A + V/An + V ,L no a.e.,

the fact that A*= A’ implies (by [15])

SB()(,A + V j(A + V) no and S.(ZA )(,An) ,L O.

If e > 0 is given and fixing a Vo there is an n for which

Sn(ZA + Vo- ZA. + Vo) < e/3 and SB()(,A )(.An)"< /3.

For this fixed n there is a V Vo such that Sn(Zv +An
V= Vo,

)(.An) "< e/3. Thus for

SB()(,V + A XA) SB(XV + A )(,V + An)-JI- SB()(,V + An- )(,An) -F" SB()(,A )(.A) < ’"
Therefore, lim ZA + v ZA for any A of finite measure. We use this information
to show ZA +t -+ A as -- 0. TO do this fix a Vo q/and let D t Vo Bt which
is also weakly bounded in A* because of our hypothesis and the fact that Vo is
relatively compact. Since lim ZA +V a for any e > 0 there is a V c Vo such
that So(a + v ZA) < e/2. Then for t V
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<_ s.(x +,) + s.(x+,)

=sup )+/d+sup /+d
gB gB

sup A +,/A g d + sup Za-,/a g-, d
gB gB

d
geB geB

d
geD geD

Now that we have shown Z+Z as t0 for the strong topology if
() it follows that S S as 0 for S(A, A*) for any simpl function S
whose support is of finite measure.
We are now ready to show that () forms a partition of the identity. For this

purpose let f A and we will assum without loss of generality that/ 0 a.e.;
let B A* be normal and weakly bounded, and suppose e > 0 is given. If U is a
relatively compact symmetric open set containing 0 in E; then
D (B’t U) is also weakly bounded in A* because A is translation

S be an increasing sequence of simple functions each ofbounded. Let )=
whose support is of finite measure such that S T f a.e. Because A* A’ implies
(by [1] (f-S) 0 fo S(A, A*), th xiss an o such that fo o,
So(f- S) e/3 for n no. Choose an n > no; since S is a simple function the
fact that SB((S)--S)O as t0 implies there is a symmetric 0-
neighborhood W U such that S((S) S) e/3 for all W. Consequently
for we have

S( f S( (S)) + S((S) S) + S(S f

ge B "E ge B

ge B "E ge B

sup (f- s)o + / + sup (s-f)o
gD "E gD "E

so(f- s)+ /3

This completes the proof that (1) implies (2).
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Now we show (2) implies (1). First, if {T}, e is a partition of the identity for
the strong topology, then it is a portion of I for the weak topology. Because of
this Corollary 1 implies A is translation bounded. We show A* A’ by show-
ing an equivalent property--A contains a countable dense subset [15]. Fix an
E., and let {V.}= be a sequence of relatively compact, symmetric, open 0-
neighborhoods such that V.+ V., n 1, 2, and V. $ {0}. Since E,, is
compact, for each n there exist a finite number k. and points {x3: j 1,...,
k.} such that the sets

{U= V.+x’j= 1, k.}

cover Era. For each n we consider the disjoint sets

The sets S(n, m) ofsimple functions with a single rational value on each of these
disjoint sets is countable for each fixed n, m 1, 2, and the collection of all
such simple functions over all n, m is a countable set. Suppose b is a continuous
function whose support is contained in Es. Given e 0, since qb is uniformly
continuous there exists an n such that b(x) (y)] < e if x y v.. Choose
a set of rational numbers {F: j 1, k.} such that [b(x)- F[ < e/2,
j 1, k,, and let S(x) be the simple function contained in $(n, m) of
previous construction with value Fj on V’j/ji (J 1, k.) and value F
or F, on /p,, V" (j, i= 1,..., k.). If x Era, there is an index j for
which x V. + x7 and F is the value of S(x). Since x x] V, we have
qb(x) b(xi)[ < e/2 and therefore

This shows us that for any continuous function of compact support and any
e > 0 there is an S ).,.,S(n, m)(a countable collection)such that

Now letf A and B A* be normal and weakly bounded. Since it is known
that Sn(f" (1 Ze.) 0 (see [14]), there is an m such that Sn(f" (1 Ze.))<
e/3. Since {T},e is a partition of I, Theorem 1 (iii) implies Tv f--.fas U --. O.
Thus there exist a compact 0-neighborhood U = E such that S(Tv(f" ).)
f" Zu.) < e/3; and since Theorem 1 implies that Tv(f" ).) A is a continuous
function of compact support contained in Em + U, there is an S QJ.,m S(n, m)
such that

Tv(f )(.,.) S <
3s.(x. + u)"
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Therefore

S.(f S) <_ S(f (1 ,Z,,,))+ S(f Zr. Tv(f Zm))
+ S.(Tv(f" ).)- S)

< e/3 + e/3 + [ITv(f" ))- SII(R)S() + U)
<8.

This completes the proof of (2) implies (1) and the proof of Theorem 2.

COROLLARY. If A is translation invariant and {Tt}, is a partition of the
identity for the strong topolooy, then Co(E) the continuous functions ofcompact
support is dense in A for the strong topology.

Proof. This follows obviously from the last part of the proof of Theorem 2.

THEOREM 3. If A is translation bounded and Co(E) is stronoly dense in A,
then {Tt} is a partition of the identity in A for the stron9 topolooy.

Proof We first show that for any $ e Co(E) a continuous function ofcom-
pact support 4t--* 4 as t- 0. Suppose $ has its support in K compact. Let
B c A* be weakly bounded and normal and let e > 0 be given. Fix V a rela-
tively compact open 0-neighborhood in E. If S(;tv /) 0, then because 4, 4t
for t e V will have its support in K + V we can easily see

b) sup ($,- ). Xv+" O d/ 0
eB

and the result 4’ --’ b. If S(zv + :) 4: O, then the uniform continuity of implies
there exists a O-neighborhood U c V for which

I (x)  (Y)I <
S (zv +

whenever x y e U.

Then for e U, since b, bt have support in K + V,

Sn(b,- b)= sup f (ck(t + x)- ck(x)) Zx+v a(x) dx
oB

< sup v+r 9 d

8

s.(zv +
s.(zv +.)

Thus {T,} is a partition of I in Co(E)strongly.
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Now let f e A, B c A* weakly bounded and e > 0 be given. As A is transla-
tion bounded we can fix a symmetric relatively compact open 0-neighborhood
V in E such that D tv Btis weakly bounded. Since Co(E) is strongly dense
in A, there exists a b e Co(E) satisfying So(f- $) < e/3. By virtue of{T} parti-
tioning I in Co(E) there is a 0-neighborhood U c V such that e U implies
S(dA ) < e/3. For such we have

S(f f <_ S(f cD) + S(dp

< e/3 + e/3 + sup faeB

e/3 + e/3 + sup f (f- b)t3_, d/
aeB

_< 2e/3 + So(f- c)

Thus {T} is a partition of I in A.

COROLLARY. If A is translation bounded and Co(E) is strongly dense in A,
then A* A’.

Proof This is an obvious consequence of Theorem 3 and Theorem 2, (2)
implies (1).

Remark. Even though all of our results had the strong topology on A, they
could have been generalized to any of the K6the topologies on A which are
generated by subsets of weakly bounded sets in A* provided we stipulated that
there always exists a compact 0-neighborhood U E for which tv Bt is a
member of that set of subsets whenever B is a member.
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