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ELEMENTARY AMENABLE GROUPS
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CHING CHOU

1. In order to explain the Hausdorff-Banach-Tarski paradox, von Neu-
mann [19] introduced the class of amenable groups in 1929. Since then the
theory of amenable groups has advanced in many fronts, for a survey see Day
[4] and Greenleaf [9]. But algebraically the only known amenable groups and
non-amenable groups were provided by von Neumann. He showed that finite
groups and abelian groups are amenable and that the class ofamenable groups,
AG, is closed under four standard processes of constructing new groups from
given ones: (I subgroups, (IX)factor groups, (III) group extensions and (IV)
direct unions. As in Day [3] let EG be the smallest class of groups which
contains all finite groups and all abelian groups and is closed under processes
(I)-(IV). Then EG is contained in AG and, in fact, algebraically they constitute
the only known amenable groups. We will call groups in EG elementary amen-
able groups. Von Neumann also showed that if a group contains a free sub-
group on two generators then it is not amenable. Therefore, NF, the class of
groups without free subgroup on two generators, contains AG. The notations
AG and NF were also introduced by Day [3].
Yon Neumann [19] asked whether AG NF and Day [3] pointed out it is

not known whether EG AG or even EG NF. We are unable to provide any
new examples of amenable or non-amenable groups. But in this paper a better
description of the known amenable groups will be given. More precisely, we
will show that the groups in EG can be constructed from abelian groups and
finite groups by applying processes (III) and (IV) only. By combining this fact
with the existence of non-locally finite periodic groups, cf. [5], [20], we are able
to conclude that EG NF. Therefore either EG AG or AG :/: NF or both.
A finitely generated group G with a finite generating set F is said to be

exponentially bounded if (card Fn)l/n-- 1 as n- o where

F"= {x x,,: xi F}.
This property is independent of the choice of F. Milnor [17] and Wolf [22]
showed that if a finitely generated solvable group is exponentially bounded
then it contains a nilpotent subgroup of finite index. By applying our descrip-
tion of elementary amenable groups we are able to extend their result to finitely
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generated groups in EG. Note that it is easy to construct finitely generated
groups in EG which are not solvable-by-finite.
A group G is said to have property (P) if given a finite subset F in G there

exist a finite set S F in G and a set X c G such that Sxl Sx2 if
X1, X2 E X, .x; =)/:: x2 and {Sx: x X} G. We will show that groups in EG
have property (P). This fact will be applied to study the almost convergent sets
in such groups. Many groups not in EG also have property (P)e.g. free groups.
We are unable to decide whether there exist groups which fail to have property
(P).

2. Let EGo be the class of all finite groups and all abdian groups. Assume
that cz > 0 is an ordinal and that we have defined EGA for each ordinal B < .
Then if is a limit ordinal, set EG ) {EGa: < } and if cz is not a limit
ordinal, set EG is the class of groups which can be obtained from groups in
EG_ by applying either process (III) or process (IV) once and only once.

PROPOSITION 2.1. Each EG is closed under processes (I) and (II).

Proof Clearly if G EGo then a subgroup ofG and a factor group ofG also
belong to EGo. Assume that 0t > 0 and that EGa is closed under processes (I)
and (II) if fl < 0t. Let G EG and let B be a subgroup of G and C be a
homomorphic image of G. We have to show that B, C EG. If is a limit
ordinal then, by definition of EG, G e EGa for some fl < and therefore, by
assumption B, C are contained in EGa and hence in EG. If 1 exists, then
there are two ways to obtain G from EG_ 1: (i) G is an extension ofD by E with
D, E EG_ 1, i.e., there is an exact sequence e D -, G --, E -, e, and (ii) G is a
direct union of {G,}, G, EG_ 1. For (i) note that B is the extension of D c B
by a subgroup F of E and C is the extension of a homomorphic image D, ofD
by a homomorphic image E, ofE. By assumption, D B, F, D and E belong
to EG_ 1. Therefore B, C EG. For (ii), note that B is the direct union of
{G, B} and C is the direct union of {0(G,)} where 0 is the homomorphism
which sends G to C. Since, by assumption, G, c A and O(G,) belong to EG_ 1,

we conclude that B and C belong to EG. By transfinite induction, the proof is
completed.

PROPOSITION 2.2. (a) EG {EG: an ordinal}.
(b) EG is the smallest class ofgroups which contains allfinite groups and all

abelian groups and is closed under processes (III)and (IV).

Proof. (a) Let EG’ ) EG. Then EG’ EG. Clearly EG’ is closed under
(III) and by the above proposition it is also closed under (I) and (II). To see
that EG’ is closed under (IV), assume that G is a direct union of {G,} where each
G, EG’. Then for each z there exists an ordinal , such that G, EG,. Let
ct sup, ct,. Then G EG+1 EG’. Therefore EG’ is closed under (I)-(IV)
and hence EG EG’.

(b) is a direct consequence of (a).
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Remark. Since the set of all finitely generated non-isomorphic groups has
the cardinality of the continuum there exists a smallest ordinal g0 such that if
> 0 then EG, and EG,o contain the same collection of finitely generated

groups. Therefore EG EG, + x.

Recall that a group G is periodic if each element of G is of finite order and G
is locally finite if each finitely generated subgroup is finite. It is now well known
that there exist periodic groups which are not locally finite, of. Golod [5] and
Novikov-Adjan [20].

THEOREM 2.3.
EG NF.

Every periodic group in EG is locally finite. Therefore

Proof The second statement is a consequence of the first, because if G is a
non-locally finite periodic group then G NF\EG.

Clearly every periodic group in EGo is locally finite. Assume that > 0 and
that each periodic group in EG, is locally finite if fl < . Let G be a periodic
group in EG. If a is a limit ordinal then G EG for some fl < z and, by
assumption, is locally finite. If is not a limit ordinal then either G is a direct
union of periodic and hence, by assumption, locally finite groups in EG,_ or G
is the middle term of an exact sequence e B G --, C e where B, C are
periodic (and hence locally finite) groups in EG,_ 1. Therefore G is locally finite
by applying the well known and easy to prove facts: (i) A direct union of locally
finite groups is locally finite. (ii) An extension of a locally finite group by
another is locally finite. By transfinite induction and Proposition 2.2 we con-
clude that each periodic group in EG is locally finite.

Another consequence of Proposition 2.2 is the following.

COROLLARY 2.4. A finitely 9enerated simple 9roup in EG is finite.

Proof Let G be a finitely generated simple group in EG. Let 0 be the
smallest ordinal such that G EG,. Note that is not a limit ordinal. If > 0
then since G is simple it has to be a direct union of groups {G} in G,_ 1. Since G
is finitely generated it equals G for some z. So G EG,_ 1, contradicting the
minimality of . So --0 and hence G is finite.

The first finitely generated infinite simple group was constructed by Higman
[10]. Let H (a, b, c, d; a- 1ha b2, b- lob c2, c- de d2, d- lad a2) and
N be a maximal H) normal subgroup of H. Higman showed that H/N is a
(4-generated) simple non-periodic group and hence it doesn’t belong to EG. We
do not know whether it is possible to choose N so that H/N contains no free
subgroups on two generators. If it could be chosen then we would have an
example of a group in NF\EG which doen’t depend on the existence of non-
locally finite periodic groups. In fact a stronger conclusion could be made.

Let PA be the smallest class of groups which contains all abelian groups and
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all periodic groups and is closed under processes (I)-(IV). Let PAo be the class
of all abelian groups and all periodic groups. Construct PA inductively by
applying processes (III) and (IV)as in the case of EG. Then PA PA. In
this setting, Proposition 2.4 can be stated as follows: A finitely generated simple
group in PA belongs to PAo. Since Higman’s simple group H/N q PAo it
doesn’t belong to PA either. Note that by applying Novikov-Adjan [20] and
Kostriken [11], B. H. Neumann [17, p. 71] has constructed an infinite simple
finitely generated group with exponent p, p a prime larger than 665.

If it is possible to find N such that Higman’s simple group belongs to NF
then we may further ask whether it is possible to choose N so that H/N AG.
If possible, then we would have found a group in AG\EG. No matter whether it
is possible to choose N so that H/N NF we speculate that PA NF.

3. Let G be a group with a finite generating set F. G is said to have polyno-
mial growth if there exist positive integers c and k such that F"I < cnk for each
positive integer n where for a set A, AI is the number of elements in A. Milnor
[16] showed that lim F- TM v always exists. If v > 1 then G is said to have
exponential growth and if v 1 then G is said to be exponentially bounded.
The conditions mentioned above do not depend on the choice of the finite
generating set F, cf. Wolf [22]. Clearly if G has polynomial growth then it is
exponentially bounded. However it is not known whether the converse holds.
Milnor [17] and Wolf [22] proved that a finitely generated solvable group G is
exponentially bounded if and only if it has polynomial growth and if and only if
it is almost nilpotent, i.e., G contains a nilpotent subgroup of finite index. Wolf
[22] suggested that their theorem ought to hold for all finitely generated
groups. By applying the description ofEG in Section 2 we are able to prove that
Wolf’s conjecture holds for groups in EG.

First note that a finite-by-nilpotent group G is almost nilpotent. For if
e F G N e is an exact sequence of groups where F is finite and N is
nilpotent then for s F set K {x G: xs sx}, i.e., the centralizer of s in G.
Using the fact that F is finite and normal one sees that [G: K] < o and
therefore [G: K] < o where K {K: s F} is the centralizer of F in G.
Consider the exact sequence

e- F K- K K/F c K e.

Note that K/F c K is nilpotent since it can be embedded into the nilpotent
group N and that F c K is contained in the center of K. Therefore K is
nilpotent and hence G is almost nilpotent as claimed.

LEMMA 3.1. If e A - B C - e is an exact sequence of groups where A
and C are almost nilpotent and B is finitely lenerated then B is either almost
nilpotent or it has exponential growth.

Proof. Assume that B is exponentially bounded. Since B is finitely gen-
erated so is its homomorphic image C. Let C be a normal nilpotent subgroup
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of C with [C: C1] < oo. Then C is also finitely generated and hence is finitely
presented. Now C is finitely presented since it is the extension of the finitely
presented group C by the finite group C/C 1. By applying Lemmas 1 and 2 of
Milnor [17] we conclude that A is finitely generated. (Milnor’s Lemmas 1 and 2
are stated for abelian A. The fact that A is abelian is only used on line 10 of
p. 448. This can be avoided because what is needed is to express m as a word in

OJmm-i" ((X""" J’-m-)- "? ’--
Let A1 be a nilpotent subgroup of finite index in A. Since A is finitely

generated, by a theorem of M. Hall (see [12, p. 56]) it has only finitely many
subgroups with index [A: A1], say, A 1, A., A,. Let Ao 7=1 At. Then Ao
is a nilpotent characteristic subgroup of A with finite index. Therefore A o is
normal in B. Consider the exact sequence

0
e.e --. A/Ao B/Ao C

As before, let C be a nilpotent subgroup of finite index in C. Since the sequence

e A/Ao O- (C) C e

is exact, C1 is nilpotent and A/Ao is finite, by the remark given before this
lemma, 0-1(C 1)is almost nilpotent. Since [B/Ao: O-I(C 1)] < oo, B/Ao is also
almost nilpotent.
Now consider the exact sequence

e --. Ao B B/Ao e.

Let K be a nilpotent normal subgroup of B/Ao, [B/Ao: K] < o. Then we have
the exact sequence

e Ao n-l(K) K e.

Since A and B/Ao are finitely generated A o and K are also finitely generated.
Therefore n-(K) is a finitely generated solvable group and by assumption is
exponentially bounded. Hence, by the theorem of Milnor-Wolf, n-I(K) is
almost nilpotent. Again since B/n- (K) B/Ao/K is finite we finally conclude
that B is almost nilpotent.

THEOREM 3.2. Let G be a finitely generated group in EG. Then G is either
almost nilpotent or it has exponential growth.

Proof. By Proposition 2.2, it suffices to prove that this theorem holds for
groups in each EG. As before, transfinite induction will be applied. If G EGo
then G is of course almost nilpotent. Assume that > 0 and that we have
proved the theorem for finitely generated groups in EGa, fl < . Let G be a
finitely generated exponentially bounded group in EG. We may assume that
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G q EGa if fl < oz. Then is not a limit ordinal, i.e., 1 exists. Since G is
finitely generated, the only way to obtain G from EG_ is by group extension,
say, we have the exact sequence e A G C ---, e where A, C EG_ 1.

Since G is exponentially bounded, so are A and C. By inductive assumption A
and C are both almost nilpotent. Therefore, by Lemma 3.1, G is almost
nilpotent.

In [21], Rosenblatt modified the proofs of Milnor and Wolf to obtain the
following: If G is a finitely generated solvable group then G is either almost
nilpotent or it contains a free subsemigroup on two generators. Clearly, if a
group contains a free subsemigroup on two generators then it has exponential
growth. Therefore, Rosenblatt’s theorem is somewhat stronger than Milnor-
Wolf’s result. As in the proof of Lemma 3.1, we may apply Lemmas 4.8 and 4.9
in [21] together with the understanding that A doesn’t have to be abelian there
to obtain the following: If e --, A --. B C --, e is exact, A, C are almost nilpo-
tent, B is finitely generated and contains no free subsemigroup on two genera-
tors then B is almost nilpotent. As a consequence, we may state Theorem 3.2 as
follows:

THEOREM 3.2’. Afinitely 9enerated 9roup in EG is either almost nilpotent or it
contains a free subsemiroup on two 9enerators.

The fact that a finitely generated exponentially bounded group is amenable is
first given in Milnor [16, Lemma 5], see also Corollary 3.5 of Rosenblatt [21]
for a stronger conclusion. For the convenience ofthe reader we like to include a
short proof here: Let F be a finite generating set of an exponentially bounded
group G. Since F"]I/" 1 there exists a subsequence nk such that
IF"+’ [/IF’[ 1, as k---, oo. Let b be a w*-limit point of (tkk)where
qbk l(G)* is defined by

b(f) (1/IF".I) E {f(x): x F"}, f6 l(G).

Then b is a left invariant mean on /(G); so G is amenable. Therefore if
EG AG then we would have a positive answer to Wolf’s conjecture.
Adjan [1] stated that each Burnside group B(m, n) with m > 1, n odd and

> 665, has exponential growth. Rosenblatt has kindly communicated to us that
in many cases the Golod-Shafarevitch’s p-groups have exponential growth.
This fact can be readily seen from Golod’s construction. Let R be the polyno-
mial ring of non-commuting variables x 1, xd over the field of residue classes
modulo p, d > 2. Let I be the ideal of R generated by homogeneous elementsf
of degree > 2 in which for every > 2 the number off]s ofdegree is finite and
equal to ri. Write A=R/I=Ao+ A1 +"" and dim A,=b,. Golod-
Shafarevitch [6] showed that if 1/(1 dt +

_
2 rt) > 0 as a formal power

series then -o b, t- > 1/(1 dt + =2 r,t’). In [5], Golod showed that if

(1) r,<g:(d-2g)’-z (O<e<1/2)
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then 1/(1 at + ,o= 2 r, t,) >_ 0 and hence (by the remark prior to [6, Lemma
4])
(2) b. _> (n + 1)(d e)"- n(d e)-(d 2e)>_ (d e)".
Furthermore, he showed that it is possible to choosef such that (1) is satisfied
and that the multiplicative semigroup G generated by 1 + ,..., 1 + d in A is
a p-group. ( stands for the image of x in A.) In this case, let

F {1 + , 1 + a}.
Then IF" > b, and hence by (2)lim IF" /" > lim inf b,/" > d -e, > 1. So G
has exponential growth.
We like to conclude this section with two examples of groups in EG.

Example 1. For each pair of integers m, n, rn < n, consider a symbol e,... Let
M be the set of all expressions of the form 1 + a. e, where a,.. Z and
only finitely many of the a,.,’s are different from zero. If x 1 + a,.. e,.. and
y 1 + bk, ek, belong to M then define

x’y= 1 +a,,e,,+Zbk,ekl+Z
where e,., eu e if n k; 0 otherwise. With this multiplication M becomes
a locally nilpotent group with generators 1 + e,,,, m < n. Of course M is just a
slight modification of the group considered by McLain [15]. Note that
M EG. for n 1, 2, Let G Z M be the semi-direct product ofZ and
M with Z acting on M: k Z sends 1 + a,,,,,e,,,, to 1 + a,,,,e,,,+k,.+k. A
simple calculation shows that G is generated by (1, 1)and (0, 1 + e2). There-
fore G is a finitely generated torsion free group in EG but
G = EG, EG,o where 09 is the first infinite ordinal. Since G is not almost
solvable, by applying Theorem 3.2’, we know that G contains a free subsemi-
group on two generators.
Example 2. Let E be the group of finite even permutations on Z. Then E is a

locally finite simple group, E EG. Let G Z x E be the semi-direct product
of Z and E with Z acting on E: If n Z and g E, n. g E is defined by
(n. )(k + n) (k) + n, k Z. g simple calculation shows that G is generated
by (1, e) and (0, (1, 2, 3)) where e stands for the identity permutation on Z and
(1, 2, 3) is the 3-cycle which sends 1 to 2, 2 to 3, and 3 to 1. Therefore G is a
finitely generated group in EG2 and G is not almost solvable. By Theorem 3.2’,
G contains a free subsemigroup on two generators.

4. In this section we will apply Proposition 2.2 to study almost convergent
sets in an elementary amenable group. First of all let us introduce a certain
packing property concerning groups which may prove to be interesting in its
own right.

DEFINITION. A group G is said to have property (P) if given a finite set F in
G there exist a finite set S F and a set X in G such that the mapping from
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S x X to G which sends (s, x) to s x, s 6 S, x 6 X, is one-one and onto. For
convenience, we will say that the pair (S, X) forms a packing of G.

Clearly every finite group has property (P). The additive group of integers Z
also has property (P): if F is a finite subset of Z choose n large enough so that
Fc{-n, -n+l, -1, 0, 1, n}=S then the pair S and
X {k (2n + 1): k e Z} forms a packing of Z. A similar construction shows
that every finitely generated abelian group has property (P).

LEMMA 4.1. (a) IfG is a direct union of{G} and each G has property (P) then
G also has property (P).

(b)2 If
o

eAGBe

is an exact sequence of 9roups and A, B have property (P) then G also has
property (P).

Proof (a) If F is a finite set in G then there exists such that F c G. By
assumption there exist a finite set S in G and a set Y in G such that (S, Y)
forms a packing of G. Let Z G be a set of representatives of the right cosets
{Ga" a G}. Then (S, YZ) forms a packing of G.

(b) Let F be a given finite subset of G. Let F1 be a subset ofF such that the
mapping O" F1 O(F) is one-one and onto. Let E be the set of a A such that a
can be written as q- lp for some p F and q F 1. Then E is a finite subset ofA
and F F1 E. Choose a finite set T = E in A and a set Y = A such that

(1) (T, Y) forms a packing of A.
Let U1 be a finite subset of B, U1 O(F), and X1 B such that

(2) (U1, X1) forms a packing of B.

Choose subsets U and X of G such that U 0 U 1, X -3, X are one-one and onto
and U = F1. Note that U T F1 E = F is a finite subset of G. We claim
that (U T, Y. X) forms a packing of G.

Let r G. Theh, by (2), O(r)= u xl, u U1, x X1. So there exist u U
and xX such that ul=O(u), xl=O(x). So u-lrx-lA. By (1),
u-lrx-l ty, t T, y Y, i.e., r=utyx(U- T) (Y" X). By a similar
method one sees that the decomposition of r as (ut). (yx) is unique. Therefore
(U" T, Y. X) forms a packing of G as claimed.
By Lemma 4.1, the remarks before Lemma 4.1, Proposition 2.2 and

transfinite induction we get the following.

PROPOSITION 4.2. Every 9roup in EG has property (P).

The proof of this lemma was communicated to us by Professor S. Yuan. We wish to thank him
for giving us permission to include it here.
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We will apply the above proposition to obtain a result concerning almost
convergent sets. Let G be an amenable group and let LIM(G) be the set of all
left invariant means on l(G). Each/z LIM(G) can be identified with a left
translation invariant finitely additive probability measure on the family of all
subsets of G. For each subset A G, the upper density of A is

a(A) sup {/x(A):/z 6 LIM(G)}
and the lower density of A is

d(A) inf {/z(A): # s LIM(G)}.
The reason for calling a(A) (d_(A)) the upper (lower)density of A can be best
explained by quoting (a special case of) Proposition 3 in Granirer [8]:

if(A) inf I(1/I F[ sup A c F. x ]" F a finite subset of G

d_(A) sup {(1/IF[) inf A F" x[" F a finite subset of G}.
If a(A) d_(A) then we say that A is almost convergent and denote the common
value by d(A). (The adjective "almost convergent" was introduced by Lorentz
[13]). By Granirer’s result quoted above one sees that a set is almost convergent
if it is "evenly distributed" in G. The family of all almost convergent subsets of
G will be denoted by tl(G). For example, if (S, X) forms a packing of an
amenable group G then X II(G)and d(X)= 1/[S[.
The following proposition is perhaps true for every amenable group. But we

can only prove it for elementary amenable groups.

PROPOSITION 4.3. If G EG anf A c G with d_(A) > 0 then there exists

B A such that B II(G)and d(B) > O.

Proof Since d_(A)> 0, by [2, Lemma 4.1 (1)] or [8, Proposition 3], there
exists a finite set F in G such that F x c A 4: for each x G. Since G has
property (P), there exists a finit.e set S = F and a set X such that (S, X) forms a
packing of G. For each x X pick t(x) F. x c A and let B {t(x): x e X}.
Then, by Lemma 4.1 (3)in [2], B II(G), d(B)= d(X)= 1/Isl > 0 and, from
the construction, B A.

Combining the above proposition with Theorem 4.2 and Remark (1)on
p. 692 in [2], we get the following.

PROPOSITION 4.4. Let G be an infinite oroup in EG. If A II(G) and
0 < d(A) < 1 then there exists B tl(G)such that A B q If(G).

In [7], Granirer proved that if G is an amenable group such that either (i) G
contains an element of infinite order or (ii) G contains an infinite locally finite
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subgroup then for each r e [0, 1] there exists A II(G) such that d(A)= r.
Since, by Theorem 2.3, each infinite group in EG satisfies either (i) or (ii), a
consequence of his theorem can be stated as follows:

PROPOSITION 4.5. IfG is an infinite troup in EG thenfor each r [0, 1] there
exists an almost converlent set A such that d(A)= r.

The class of groups with property (P) is much bigger than EG as the follow-
ing lemma shows.

LEMMA 4.6. (a) Let G be a group such that for each finite set F c G there
exists a normal subgroup K such that G/K has property (P) and xK :/: yK if
x, y F, x =/: y. Then G has property (P).

(b) Let G be a group with a family of normal subgroups {Gr}r<_ indexed by
ordinals < , Go G, G-- {e}, Grl c G,. /f Vl -> rE, for <_ , G_ 1/Gr has
property (P) ify 1 exists and Gx {Ga: fl < y} ify is a limit ordinal. Then G
has property (P).

Proof. (a) Let F c G be a finite set. Choose a normal subgroup K ofG such
that the restriction of the natural homomorphism O: G - G/K to F is one-one
and that G/K has property (P). Pick a finite subset $1 O(F) in G/K and a set
X G/K such that (S 1, X 1) forms a packing of G/K. Choose a finite set S F
such that 0" S -, S is one-one and onto. Choose X G such that 0" X X is
one-one and onto. Then (S, X K) forms a packing of G.

(b) Clearly G/Go {e} has property (P). Suppose that G/Ga has property
(P) if fl < V. We claim that G/Gr has property (P). If V- 1 exists, then
e - G_ 1/Gr G/Gr - G/Gr_ --* e is an exact sequence, Gr_ 1/Gr and G/Gr_
have property (P). Therefore by Lemma 4.1, G/Gr has property (P). If V is a
limit ordinal, given a finite set F {x 1, xn} G/Gr, then there exists an
ordinal fl < V such that i :/: if :/: j where istands for the image ofx under
the natural homomorphism G/G- (G/G)/(G/G). Now

(G/G)/(G,/G) G/G,
has property (P)and hence, by (a), G/G also has property (P). So, by induc-
tion, G G/G has property (P).

COROLLARY 4.7. IfG is residually in EG, i.e.,for each x :/: e in G there exists
a normal sublroup K of G such that x q K and G/K EG, then G has property
(P).

Proof. Let xl : e, X2 :: e be in G. Then there exist normal subgroups K1
and K2 such that x K1, x2 K2 and G/K1, G/K2 belong to EG. Denote the
natural homomorphism G - G/K2 by 0. Then K1/K c K2 O(K 1) G/K2.
So K /K c K2 EG. Since e K 1/K c K2 "- G/K c K2 - G/K - e is
exact, K 1/K K2 EG and G/K EG, so G/K c K2 EG. This corol-
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lary follows easily from the above observation, Proposition 4.2 and Lemma
4.5(a).
As a consequence of the above corollary, we see that each free group has

property (P) since it is residually finite. Therefore, the free product of two
non-trivial groups also has property (P).by applying problems 13, 23, 24 of
Section 4.1 in [14]. A Golod-Shafarevitch’s infinite p-group G has property (P)
since Gn) (e) where Gn) stands for the nth derived group of G, see [5]. We
are unable to decide whether every group has property (P). In particular, we do
not know whether each amenable group has property (P).
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